TURBOSWITCH Tм "A". ULTRA-FAST HIGH VOLTAGE DIODE

MAIN PRODUCTS CHARACTERISTICS

$\mathbf{I F}_{\text {(AV }}$	15 A
$\mathbf{V}_{\text {RRM }}$	1200 V
$\mathrm{trr}_{\text {(typ }}$	55 ns
$\mathrm{~V}_{\text {F }}$ (max)	1.9 V

FEATURES AND BENEFITS

- ULTRA-FAST, SOFT AND NOISE-FREE RECOVERY.
- VERY LOW OVERALL POWER LOSSES IN BOTH THE DIODE AND THE COMPANION TRANSISTOR.
- HIGH FREQUENCY AND/OR HIGH PULSED CURRENT OPERATIONS.
- CECC APPROVED.

DESCRIPTION

The TURBOSWITCH is a very high performance series of ultra-fast high voltage power diodes from 600 V to 1200 V .
TURBOSWITCH 1200 V drastically cuts losses in all high voltage operations which require extremely fast, soft and noise-free power diodes. Due to their optimized switching performances they also highly decrease power losses in any associated switching IGBT or MOSFET in all "Freewheel

PRELIMINARY DATA

Mode" operations.
They are particularly suitable in Motor Control circuitries, or in the primary of SMPS as snubber, clamping or demagnetizing diodes, and also at the secondary of SMPS as high voltage rectifier diodes.
Packaged in SOD93 and in DOP3I, these 1200V devices are particularly intended for use on 3 phase 400V industrial mains.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {RRM }}$	Repetitive peak reverse voltage	1200	V
$\mathrm{~V}_{\text {RSM }}$	Non repetitive peak reverse voltage	1200	V
$\mathrm{I}_{\text {F(RMS })}$	RMS forward current	50	A
$\mathrm{I}_{\text {FRM }}$	Repetitive peak forward current $(\mathrm{tp}=5 \mu \mathrm{~s}, \mathrm{f}=5 \mathrm{kHz})$	300	A
$\mathrm{~T}_{\mathrm{j}}$	Max operating junction temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$

TM : TURBOSWITCH is a trademark of SGS-THOMSON MICROELECTRONICS.

STTA1512P/PI

THERMAL AND POWER DATA

Symbol	Parameter	Conditions	Value	Unit
$\mathrm{R}_{\text {th(j(j-c) }}$	Junction to case thermal resistance	STTA1512P STTA1512PI	1.6 2.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$
P_{1}	Conduction power dissipation (see fig. 6)	I F(AV) $=15 \mathrm{~A} \quad \delta=0.5$ STTA1512P TC $=95^{\circ} \mathrm{C}$ STTA1512PI TC $=78^{\circ} \mathrm{C}$	34	W
$\mathrm{P}_{\max }$	Total power dissipation $\mathrm{Pmax}=\mathrm{P} 1+\mathrm{P3} \quad(\mathrm{P} 3=10 \% \mathrm{P} 1)$	STTA1512P TC $=89^{\circ} \mathrm{C}$ STTA1512PI TC $=70^{\circ} \mathrm{C}$	38	W

STATIC ELECTRICAL CHARACTERISTICS (see Fig.6)

Symbol	Parameter	Test Conditions		Min	Typ	Max	Unit
$\mathrm{V}_{\mathrm{F}} *$	Forward voltage drop	$\mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$			2.1	V
			$\mathrm{Tj}=125^{\circ} \mathrm{C}$			1.9	V
$\mathrm{I}_{\mathrm{R}} * *$	Reverse leakage current	$\mathrm{V} R=0.8$ 	$\mathrm{Tj}=25^{\circ} \mathrm{C}$			100	$\mu \mathrm{~A}$
	$\mathrm{Tj}=125^{\circ} \mathrm{C}$			6.0	mA		

Test pulses widths: * tp $=380 \mu \mathrm{~s}$, duty cycle $<2 \%$
${ }^{* *} \mathrm{tp}=5 \mathrm{~ms}$, duty cycle $<2 \%$

DYNAMIC ELECTRICAL CHARACTERISTICS

TURN-OFF SWITCHING (see Fig.7)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{trr}^{\text {r }}$	Reverse recovery time	$\begin{array}{ll} \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} & \\ \mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A} \quad \mathrm{IR}=1 \mathrm{~A} \quad \mathrm{Irr}=0.25 \mathrm{~A} \\ \mathrm{I}_{\mathrm{F}}=1 \mathrm{~A} \quad \mathrm{dI}_{\mathrm{F}} / \mathrm{dt}=-50 \mathrm{~A} / \mu \mathrm{s} \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \end{array}$		55	105	ns
IRM	Maximum reverse recovery current	$\mathrm{Tj}=125^{\circ} \mathrm{C} \quad \mathrm{VR}=600 \mathrm{~V} \quad \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}$ $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-120 \mathrm{~A} / \mu \mathrm{s}$ $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-500 \mathrm{~A} / \mu \mathrm{s}$		TBD	TBD	A
S factor	Softness factor	$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=125^{\circ} \mathrm{C} \quad \mathrm{~V}_{\mathrm{R}}=600 \mathrm{~V} \quad \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A} \\ & \mathrm{~d} \mathrm{l}_{\mathrm{F}} / \mathrm{dt}=-500 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$		1.2		1

TURN-ON SWITCHING (see Fig.8)

Symbol	Parameter	Test Conditions	Min	Typ	Max	Unit
$\mathrm{tfr}^{\text {r }}$	Forward recovery time	$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \mathrm{~d} \mathrm{~d}_{\mathrm{F}} / \mathrm{dt}=120 \mathrm{~A} / \mu \mathrm{s} \\ & \text { measured at, } 1.1 \times \mathrm{V}_{\mathrm{Fmax}} \end{aligned}$			TBD	ns
$V_{\text {Fp }}$	Peak forward voltage	$\begin{aligned} & \mathrm{Tj}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{F}}=15 \mathrm{~A}, \mathrm{~d} \mathrm{~d}_{\mathrm{F}} / \mathrm{dt}=120 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{I}_{\mathrm{F}}=40 \mathrm{~A}, \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=500 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$			$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	V

APPLICATION DATA

The 1200 V TURBOSWITCH series has been designed to provide the lowest overall power losses in all high frequency or high pulsed current operations. In such applications (Fig 1 to 5),the way of calculating the power losses is given below
:

Fig. 1 : "FREEWHEEL" MODE.

Fig. 2 : SNUBBER DIODE.

Fig. 4 : DEMAGNETIZING DIODE.

Fig. 3 : CLAMPING DIODE.

Fig. 5 : RECTIFIER DIODE.

STATIC \& DYNAMIC CHARACTERISTICS . POWER LOSSES .

Fig. 6: STATIC CHARACTERISTICS

Conduction losses:
$\mathrm{P} 1=\mathrm{V}_{\mathrm{t}} 0 \cdot \mathrm{IF}(\mathrm{AV})+\mathrm{Rd}_{\mathrm{d}} \cdot \mathrm{IF}^{2}(\mathrm{RMS})$
with

$$
V_{t 0}=1.48 \mathrm{~V}
$$

$$
\mathrm{R}_{\mathrm{d}}=0.027 \mathrm{Ohm}
$$

(Max values at $125^{\circ} \mathrm{C}$,suitable for Ipeak < 3. IF(av))
Reverse losses :
$\mathrm{P} 2=\mathrm{V}_{\mathrm{R}} \cdot \mathrm{I} \mathrm{R} \cdot(1-\delta)$

APPLICATION DATA (Cont'd)

Fig. 7: TURN-OFF CHARACTERISTICS

Fig. 8: TURN-ON CHARACTERISTICS

Turn-on losses :
(in the transistor, due to the diode)

$$
\begin{aligned}
\mathrm{P} 5 & =\frac{V_{R} \times I_{R M}{ }^{2} \times(3+2 \times S) \times F}{6 \times d I_{F} / d t} \\
+ & \frac{V_{R} \times I_{R M} \times I_{L} \times(S+2) \times F}{2 \times d I_{F} / d t}
\end{aligned}
$$

Turn-off losses (in the diode) :

$$
\mathrm{P} 3=\frac{V_{R} \times I_{R M^{2}} \times S \times F}{6 \times d I_{F} / d t}
$$

Turn-off losses : (with non negligible serial inductance)

$$
\begin{aligned}
\mathrm{P}^{\prime}= & \frac{V_{R} \times I_{R M^{2} \times S \times F} 6 \times d I_{F} / d t}{}+ \\
& \frac{L \times I_{R M}{ }^{2} \times F}{2}
\end{aligned}
$$

P3, P3' and P5 are suitable for power MOSFET and IGBT

Turn-on losses
$\mathrm{P} 4=0.4\left(\mathrm{~V}_{\mathrm{FP}}-\mathrm{V}_{\mathrm{F}}\right)$. IFmax . tfr . F

PACKAGE MECHANICAL DATA
SOD93

REF.	DIMENSIONS				
	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
A	14.7	15.2	0.578	0.596	
B	16.2			0.637	
C	31 typ		1.220 typ		
D	18 typ		0.708 typ		
E			12.2		
G	3.95	4.15	0.155	0.163	
H	4.7	4.9	0.185	0.193	
I	4	4.1	0.157	0.161	
J	1.9	2.1	0.062	0.075	
L	0.5	0.78	0.019	0.030	
M	2.5 typ	0.098 typ			
N	10.8	11.1	0.425	0.437	
P	1.1	1.3	0.043	0.051	

Cooling method: C
Marking : Type number
Weight : 5.2 g
Recommended torque value : $0.8 \mathrm{~m} . \mathrm{N}$
Maximum torque value : $1.0 \mathrm{~m} . \mathrm{N}$

PACKAGE MECHANICAL DATA

DOP3I (isoluted)

Cooling method: C
Marking : Type number
Weight: 4.6 g
Recommended torque value : $0.8 \mathrm{~m} . \mathrm{N}$
Maximum torque value : $1.0 \mathrm{~m} . \mathrm{N}$

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1995 SGS-THOMSON Microelectronics - Printed in Italy - All rights reserved.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

