

Modules with Thyristor and Free-Wheeling Diode

SKNH 91

Features

- Heat transfer through ceramic isolated metal baseplate
- Hard soldered joints for high reliability
- UL recognized, file no. E 63532
- Electrical data see also data sheet SKKH 92

Typical Applications*

- Special modules for DC braking of AC induction motor

1) available on request

$V_{\text {RSM }}$	$V_{\text {RRM }}, V_{\text {DRM }}$	$\mathrm{I}_{\text {TRMS }}=150 \mathrm{~A}$ (maximum value for continuous operation)	
V	V	$\mathrm{I}_{\text {TAV }}=95 \mathrm{~A}\left(\sin .180 ; \mathrm{T}_{\mathrm{c}}=85^{\circ} \mathrm{C}\right)$	
1300	1200	SKNH 91/12E	
1500	1400	SKNH 91/14E	
1700	1600	SKNH 91/16E	
1900	1800	SKNH 91/18E ${ }^{1)}$	

Symbol	Conditions	Values	Units
$\mathrm{I}_{\text {tav }}$	sin. 180; $\mathrm{T}_{\mathrm{c}}=85(100){ }^{\circ} \mathrm{C}$;	95 (68)	A
$\mathrm{l}_{\mathrm{TSM}}^{\mathrm{I}^{2} \mathrm{t}}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} ; 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; 8,3 \ldots 10 \mathrm{~ms} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} ; 8,3 \ldots 10 \mathrm{~ms} \end{aligned}$	$\begin{aligned} & 2000 \\ & 1750 \\ & 20000 \\ & 15000 \end{aligned}$	$\begin{gathered} A \\ A \\ A^{2} S \\ A^{2} S \end{gathered}$
V_{T} $\mathrm{V}_{\mathrm{T} \text { (TO) }}$ ${ }^{r}$ $I_{D D} ; I_{R D}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{T}}=300 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{RD}}=\mathrm{V}_{\mathrm{RRM}} ; \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{DRM}} \end{aligned}$	max. 1,65 max. 0,9 max. 2 max. 20	$\begin{gathered} \mathrm{V} \\ \mathrm{~V} \\ \mathrm{~m} \Omega \\ \mathrm{~mA} \end{gathered}$
$\begin{array}{\|l\|} \hline \mathrm{t}_{\mathrm{gd}} \\ \mathrm{t}_{\mathrm{gr}} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{G}}=1 \mathrm{~A} ; \mathrm{di} \mathrm{i}_{\mathrm{G}} / \mathrm{dt}=1 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{D}}=0,67^{*} \mathrm{~V}_{\mathrm{DRM}} \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
$\begin{array}{\|l} \hline(\mathrm{di} / \mathrm{dt})_{\mathrm{cr}} \\ (\mathrm{dv} / \mathrm{dt})_{\mathrm{cr}} \\ \mathrm{t}_{\mathrm{q}} \\ \mathrm{I}_{\mathrm{H}} \\ \mathrm{l}_{\mathrm{L}} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{vj}}=125^{\circ} \mathrm{C}, \\ & \mathrm{~T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \text { typ. / max. } \\ & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{G}}=33 \Omega ; \text { typ. / max. } \end{aligned}$	$\begin{gathered} \hline \text { max. } 150 \\ \max .1000 \\ 100 \\ / 250 \\ / 600 \end{gathered}$	A/ $/ \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ $\mu \mathrm{s}$ mA mA
$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{GT}} \\ \mathrm{I}_{\mathrm{GT}} \\ \mathrm{~V}_{\mathrm{GD}} \\ \mathrm{I}_{\mathrm{GD}} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \mathrm{C} \text {; d.c. } \\ & \mathrm{T}_{\mathrm{vj}}=25^{\circ} \text {; d.c. } \\ & \mathrm{T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \text {; d.c. } \\ & \mathrm{T}_{\mathrm{vj}}=125^{\circ} \mathrm{C} \text {; d.c. } \\ & \hline \end{aligned}$	$\min .3$ $\min .150$ $\max .0,25$ $\max .6$	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \\ \mathrm{~V} \\ \mathrm{~mA} \end{gathered}$
$\begin{aligned} & \mathrm{R}_{\mathrm{th}(j-\mathrm{c})} \\ & \mathrm{R}_{\mathrm{th}(\mathrm{c})} \\ & \mathrm{R}_{\mathrm{th}(\mathrm{c}(\mathrm{c})} \\ & \mathrm{R}_{\mathrm{th}(\mathrm{~b})} \\ & \mathrm{T}_{\mathrm{vj}} \\ & \mathrm{~T}_{\mathrm{stg}} \\ & \hline \text { sit } \end{aligned}$	cont.; per thyristor / per module sin. 180; per thyristor / per module rec. 120; per thyristor / per module per thyristor / per module	$\begin{gathered} 0,28 / 0,14 \\ 0,3 / 0,15 \\ 0,32 / 0,16 \\ 0,2 / 0,1 \\ -40 \ldots+125 \\ -40 \ldots+125 \end{gathered}$	$\begin{aligned} & \hline \text { K/W } \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \end{aligned}$
$\begin{array}{\|l} \hline \mathrm{V}_{\text {isol }} \\ M_{\mathrm{s}} \\ M_{\mathrm{t}} \\ \mathrm{a} \\ \mathrm{~m} \end{array}$	a. c. 50 Hz ; r.m.s.; $1 \mathrm{~s} / 1 \mathrm{~min}$. to heatsink to terminals approx.	$\begin{gathered} \hline 3600 / 3000 \\ 5 \pm 15 \% \\ 5 \pm 15 \% \\ 5 * 9,81 \\ 120 \end{gathered}$	$\begin{gathered} \hline \mathrm{V} \sim \\ \mathrm{Nm} \\ \mathrm{Nm} \\ \mathrm{~m} / \mathrm{s}^{2} \\ \mathrm{~g} \end{gathered}$
Case		A 7	

SKNH

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.

