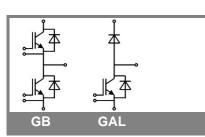


SEMITRANS[®] 3

SPT IGBT Module


SKM 300GB128D SKM 300GAL128D

Features

- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x l_c

Typical Applications

- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

Absolute Maximum Ratings $T_c = 25 \text{ °C}$, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT						
V_{CES}	$T_j = 25 \text{ °C}$ $T_i = 150 \text{ °C}$		1200	V		
Ι _C	T _j = 150 °C	T _c = 25 °C	370	A		
		T _c = 80 °C	265	А		
I _{CRM}	I _{CRM} =2xI _{Cnom}		400	А		
V_{GES}			± 20	V		
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs		
Inverse	Diode					
I _F	T _j = 150 °C	T _{case} = 25 °C	260	А		
		T _{case} = 80 °C	180	A		
I _{FRM}	$I_{FRM} = 2 x I_{Fnom}$		400	А		
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1800	А		
Freewh	eeling Diode					
۱ _F	T _j = 150 °C	T _{case} = 25 °C	260	A		
		T _{case} = 80 °C	180	A		
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 ms$		400	А		
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	1800	А		
Module						
I _{t(RMS)}			500	А		
T _{vj}			- 40+ 150	°C		
T _{stg}			- 40+ 125	°C		
V _{isol}	AC, 1 min.		4000	V		

Characteristics T _c =			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT			_			
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 8 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,2	0,6	mA
V _{CE0}		T _j = 25 °C		1	1,15	V
		T _j = 125 °C		0,9	1,05	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		4,5	6	mΩ
		T _j = 125°C		6	7,5	mΩ
V _{CE(sat)}	I _{Cnom} = 200 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		1,9	2,35	V
		$T_j = 125^{\circ}C_{chiplev.}$		2,1	2,55	V
C _{ies}				17		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		2		nF
C _{res}				1,9		nF
Q_{G}	V _{GE} = -8V - +20V			2400		nC
R _{Gint}	T _j = 25 °C			2		Ω
t _{d(on)}				170		ns
t _r	$R_{Gon} = 5 \Omega$	V _{CC} = 600V		55		ns
E _{on}		I _{Cnom} = 200A		22		mJ
t _{d(off)}	R_{Goff} = 5 Ω	$T_{j} = 125 \ ^{\circ}C$		660		ns
t _f		$V_{GE} = \pm 15V$		60		ns
E _{off}		L _s = 20 nH		22		mJ
R _{th(j-c)}	per IGBT				0,085	K/W

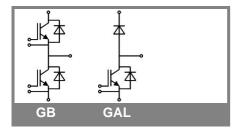
SEMITRANS[®] 3

SPT IGBT Module

SKM 300GB128D SKM 300GAL128D

Features

- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x l_c


Typical Applications

- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz

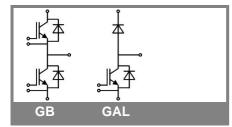
Characte	ristics						
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V			2	2,5	V	
		$T_j = 125 \ ^\circ C_{chiplev.}$		1,8		V	
V _{F0}		T _j = 25 °C		1,1	1,2	V	
r _F		T _j = 25 °C		4,5	6,5	mΩ	
I _{RRM}	I _{Fnom} = 200 A	T _i = 125 °C		280		А	
Q _{rr}	di/dt = 6300 A/µs	L _S = 20 nH		33		μC	
E _{off}	V_{GE} = -15 V; V_{CC} = 600 V			11		mJ	
R _{th(j-c)D}	per diode				0,18	K/W	
FWD							
$V_F = V_{EC}$	I _{Fnom} = 200 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V	
		T _j = 125 °C _{chiplev} .		1,8		V	
V _{F0}		T _j = 25 °C		1,1	1,2	V	
r _F		T _j = 25 °C		4,5	6,5	V	
I _{RRM}	I _{Fnom} = 200 A	T _i = 25 °C		280		Α	
Q _{rr}	di/dt = 6300 A/µs	L _S = 20 nH		33		μC	
E _{off}	V_{GE} = -15 V; V_{CC} = 600 V			11		mJ	
R _{th(j-c)FD}	per diode				0,18	K/W	
Module							
L _{CE}				15	20	nH	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
M _t	to terminals M6		2,5		5	Nm	
w					325	g	

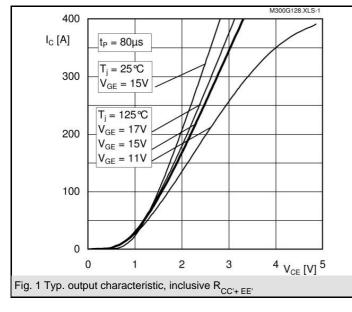
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

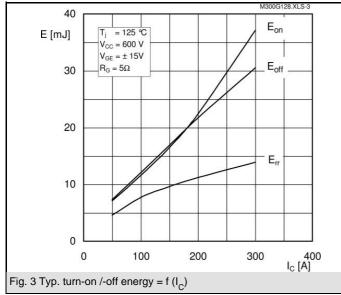
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

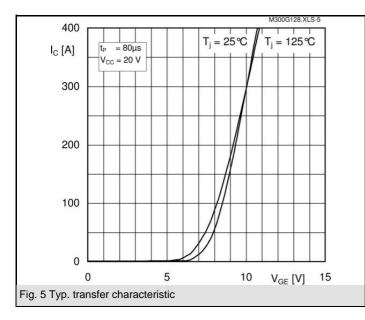
SPT IGBT Module

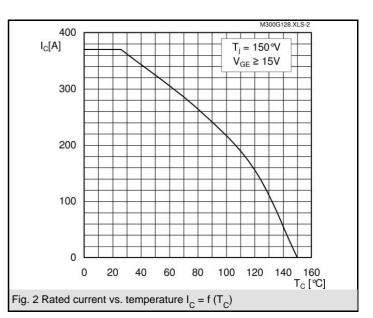
SKM 300GB128D SKM 300GAL128D

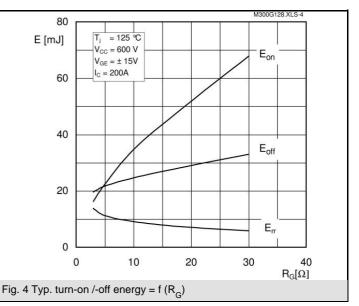

Z _{th}			
Symbol	Conditions	Values	Units
Z _{th(j-c)l}			
R _i	i = 1	55	mk/W
R _i	i = 2	26	mk/W
R _i	i = 3	3,5	mk/W
R _i	i = 4	0,5	mk/W
tau _i	i = 1	0,04	S
tau _i	i = 2	0,189	S
tau	i = 3	0,0017	s
tau _i	i = 4	0,003	s
Z Rith(j-c)D			
R _i	i = 1	120	mk/W
R _i	i = 2	48	mk/W
R _i	i = 3	10	mk/W
R _i	i = 4	2	mk/W
tau _i	i = 1	0,0727	S
tau _i	i = 2	0,006	s
tau _i	i = 3	0,0078	S
tau _i	i = 4	0,0002	s

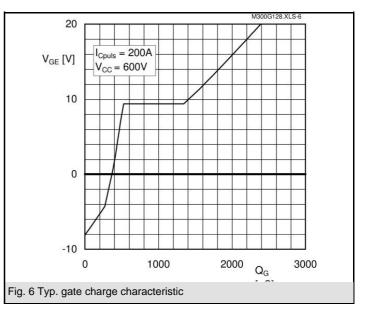

Features

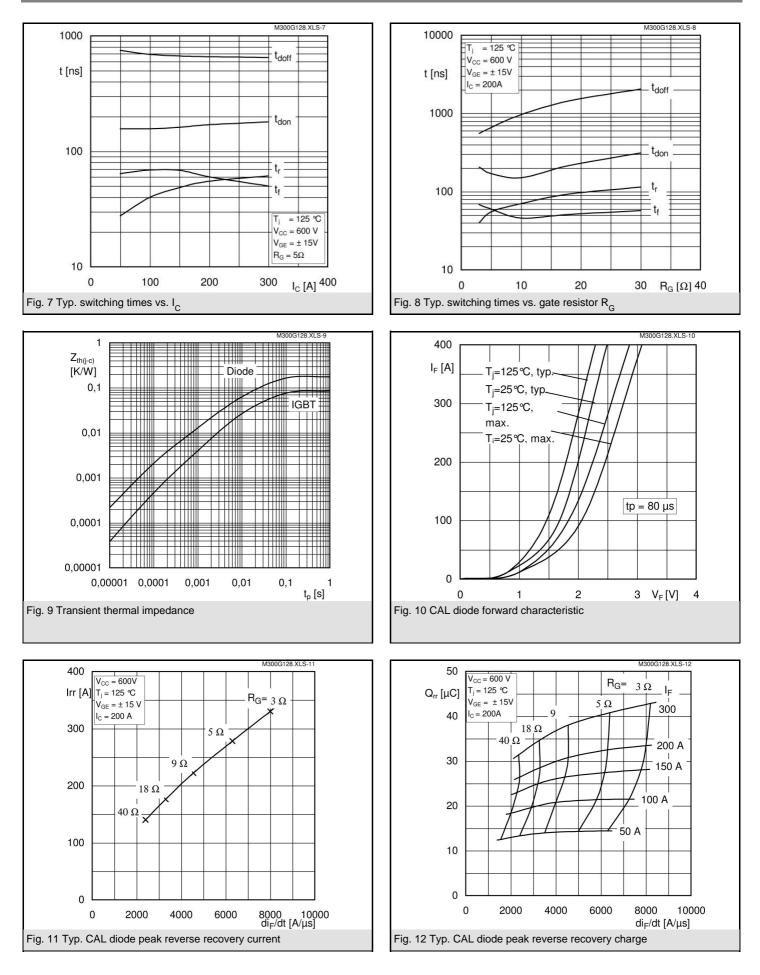

- Homogeneous Si
- SPT = Soft-Punch-Through technology
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x l_c

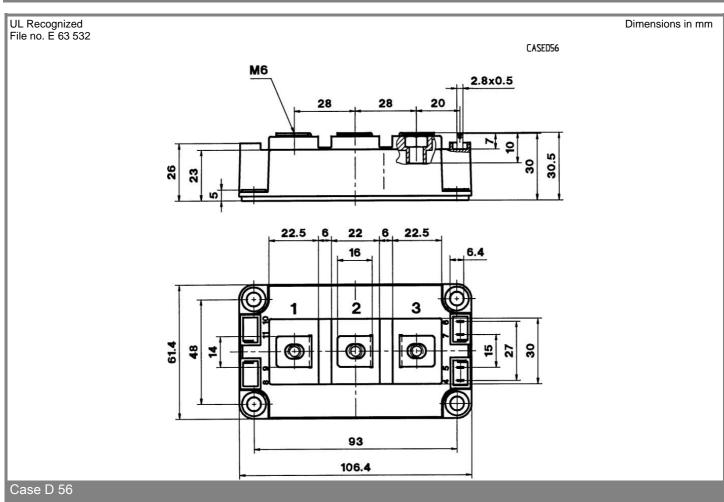

Typical Applications

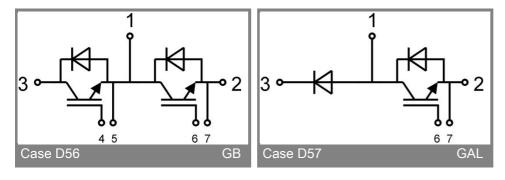

- AC inverter drives
- UPS
- Electronic welders at f_{sw} up to 20 kHz











13-10-2006 RAA

