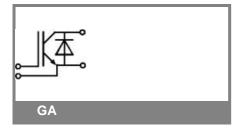
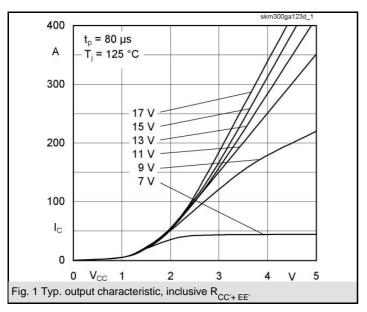


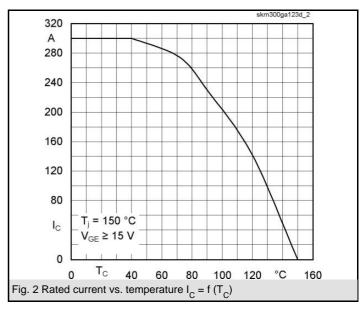
IGBT Modules

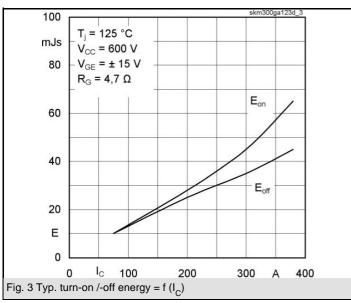
SKM 300GA123D

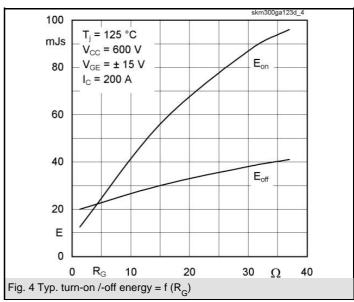
Features

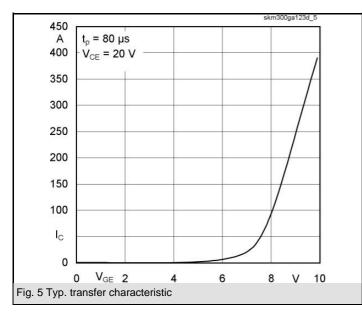

- MOS input (voltage controlled)
- N channel, Homogeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft inverse CAL diodes
- Isolated copper baseplate using DCB Cirect Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)


Typical Applications

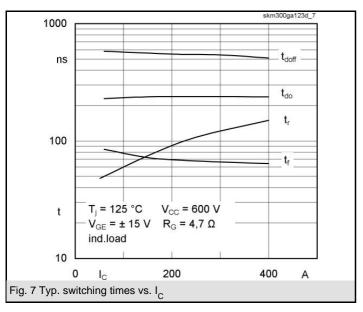

• Switching (not for linear use)

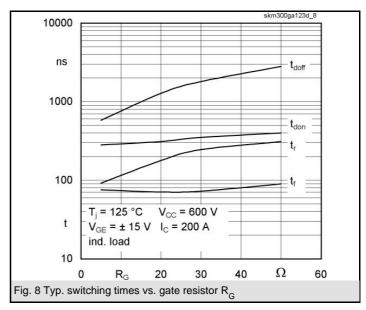

Absolute Maximum Ratings		T_c = 25 °C, unless otherwise	$\Gamma_{\rm c}$ = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units					
IGBT								
V_{CES}		1200	V					
V _{CES}	T _c = 25 (80) °C	300 (220)	Α					
I _{CRM}	$t_{D} = 1 \text{ ms}$	400	Α					
V_{GES}		± 20	V					
T_{vj} , (T_{stg})	$T_{OPERATION} \leq T_{stg}$	- 40 + 150 (125)	°C					
V_{isol}	AC, 1 min.	2500	V					
Inverse diode								
I _F	T _c = 25 (80) °C	300 (200)	Α					
I _{FRM}	t _p = 1 ms	400	Α					
I _{FSM}	$t_p = 10 \text{ ms; sin.; } T_j = 150 ^{\circ}\text{C}$	2200	А					

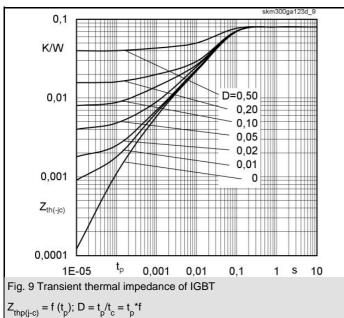

Characte	ristics	$T_c = 25 ^{\circ}C$	T _c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT					•	
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 8 \text{ mA}$	4,5	5,5	6,5	V	
I _{CES}	$V_{GE} = 0$, $V_{CE} = V_{CES}$, $T_j = 25$ (125) °C		0,1	0,3	mA	
$V_{CE(TO)}$	T _j = 25 (125) °C		1,4 (1,6)	1,6 (1,8)	V	
r_{CE}	V _{GE} = 15 V, T _j = 25 (125) °C		5,5 (7,5)	7 (9,5)	mΩ	
V _{CE(sat)}	I_{Cnom} = 200 A, V_{GE} = 15 V, chip level		2,5 (3,1)	3 (3,7)	V	
C _{ies}	under following conditions		15	19	nF	
C _{oes}	$V_{GE} = 0$, $V_{CE} = 25$ V, $f = 1$ MHz		2	2,6	nF	
C _{res}			1	1,3	nF	
L _{CE}				20	nΗ	
R _{CC'+EE'}	res., terminal-chip T _c = 25 (125) °C		0,18 (0,22)		mΩ	
t _{d(on)}	V _{CC} = 600 V, I _{Cnom} = 200 A		250	400	ns	
t _r	$R_{Gon} = R_{Goff} = 4.7 \Omega$, $T_i = 125 °C$		90	160	ns	
$t_{d(off)}$	V _{GE} = ± 15 V		550	700	ns	
t_f			70	100	ns	
$E_{on} \left(E_{off} \right)$			26 (22)		mJ	
Inverse d	iode	•			•	
$V_F = V_{EC}$	I_{Fnom} = 200 A; V_{GE} = 0 V; T_j = 25 (125)		2 (1,8)	2,5	V	
$V_{(TO)}$	T _i = 125 () °C			1,2	V	
r _T	T _i = 125 () °C		3	5,5	mΩ	
I_{RRM}	$I_{Fnom} = 200 \text{ A}; T_j = 25 (125) ^{\circ}\text{C}$		80 (120)		Α	
Q_{rr}	di/dt = A/µs		11 (29)		μC	
E _{rr}	V _{GE} = 0 V				mJ	
Thermal of	characteristics	•			•	
$R_{th(j-c)}$	per IGBT			0,075	K/W	
R _{th(j-c)D}	per Inverse Diode			0,15	K/W	
R _{th(c-s)}	per module			0,038	K/W	
Mechanic	al data	•			•	
M_s	to heatsink M6	3		5	Nm	
M_t	to terminals M6 (M4)	2,5 (1,1)		5 (2)	Nm	
w				330	g	

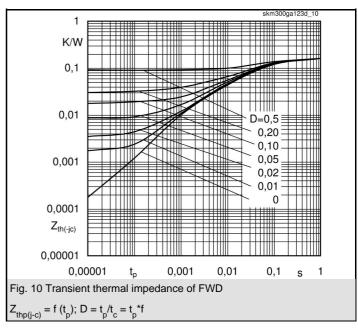


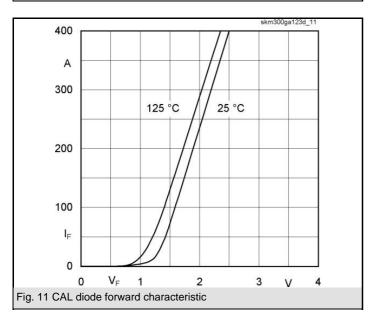


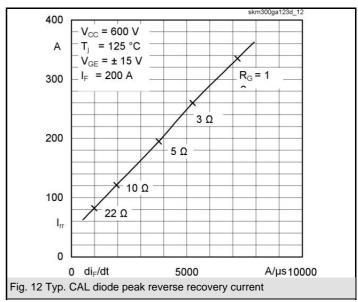


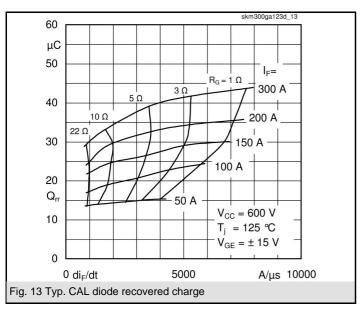


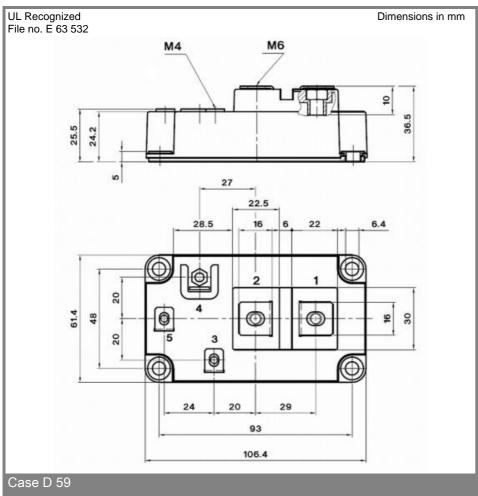


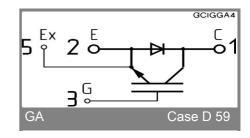












This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.