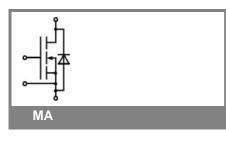
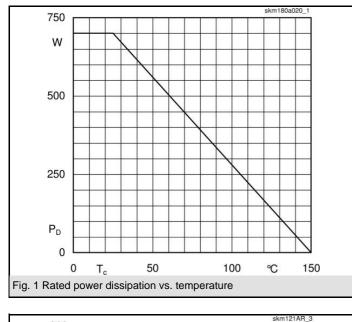


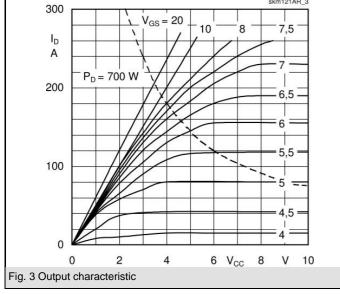
Power MOSFET Modules

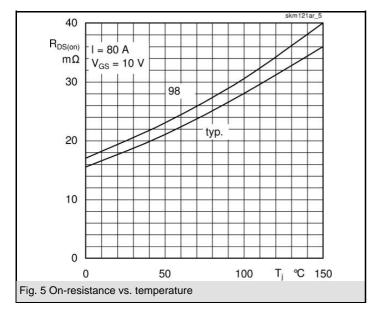
SKM 121AR

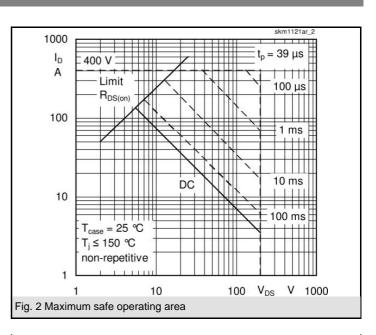
Features

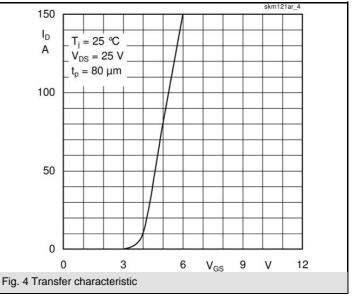

- N Channel, enhancement mode
- Avalanche characteristics
- Short internal connections avoid oscillations
- Isolated copper baseplates
- All electrical connections on top for easy busbaring
- Large clearance (10mm) and creepage distances (13mm)
- UL recognized, file no. E 63 532

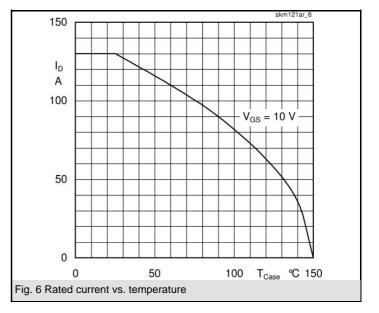

Typical Applications

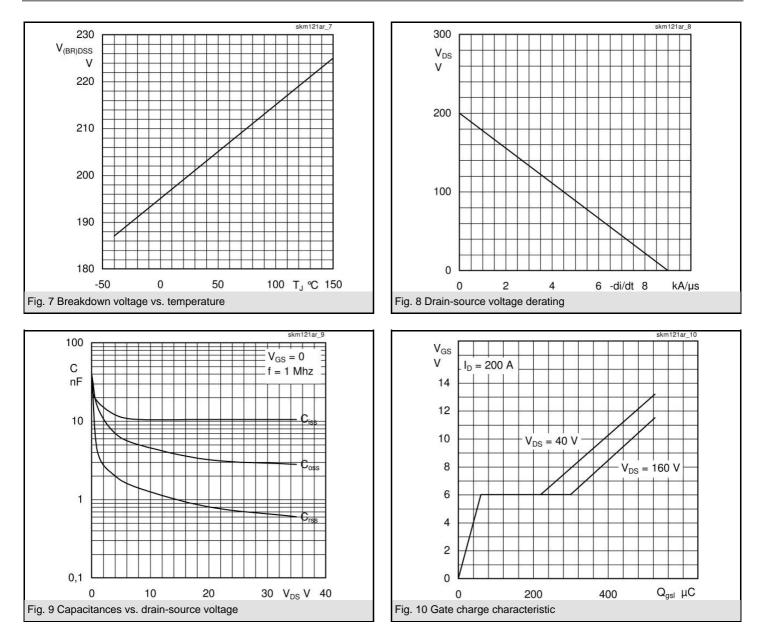

- Switched mode power supplies
- DC servo and robot drives
- DC choppers
- UPS equipment
- Plasma cutting
- Not suitable for linear amplification

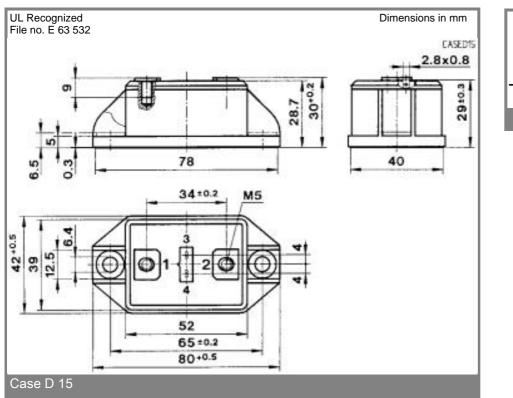

Absolute	Maximum Ratings	T_c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
V _{DS}		200	V				
I _D	T _s = 25 (80) °C	130 (95)	Α				
I _{DM}	1 ms	390	Α				
V _{GS}		± 20	V				
V _{GS} T _{vj} , (T _{stg})		- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	2500	V				
Inverse diode							
I _F = - I _S		130	А				
I_{FM} = - I_{SM}		390	А				

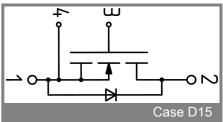

Characteristics		T_c = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units	
V _{(BR)DSS}	V _{GS} = 0 V, I _D = 0,25 mA	200			V	
V _{GS(th)}	$V_{GS} = V_{DS}, I_{D} = 1 \text{ mA}$	2,1	3	4	V	
I _{DSS}	$V_{GS} = 0 V, V_{DS} = 200 V,$ T _i = 25 (125) °C		50 (300)	250 (1000)	μA	
I _{GSS}	V _{GS} = 20 V, V _{DS} = 0 V		10	100	nA	
R _{DS(on)}	V _{GS} = 10 V, I _D = 80 A		18	20	mΩ	
9 _{fs}	V _{DS} = 25 V, I _D = 80 A	60	75		S	
C _{CHC}	V _{GS} = 0, V _{DS} = 25 V, f = 1 MHz			160	pF	
C _{iss}			10	13	nF	
C _{oss}			3	4,5	nF	
C _{rss}			0,7	1	nF	
L _{DS}				20	nH	
t _{d(on)}	V _{DD} = 100 V, I _D = 80 A,		60		ns	
t _r	V_{GS} = = 10 V, R_{G} = 3,3 Ω		60		ns	
t _{d(off)}			240		ns	
t _f			70		ns	
Inverse diode						
V _{SD}	I _F = 260 A; V _{GS} = 0 V		1,05	1,4	V	
t _{rr}	T _j = 25 (150) °C		400		ns	
Q _{rr}	T _j = 25 °C		4,3		μC	
I _{rr}	$T_j = °C$				A	
Thermal	characteristics					
R _{th(j-c)}	per MOSFET			0,18	K/W	
R _{th(c-s)}	$\rm M_s,$ surface 10 $\mu m,$ per module			0,05	K/W	
Mechanical data						
M _s	to heatsink (M6)	4		5	Nm	
M _t	for terminals (M5)	2,5		3,5	Nm	
w				130	g	











20-02-2004 SCT

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.