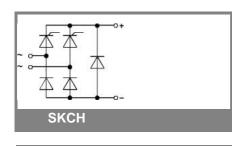

SKCH 28

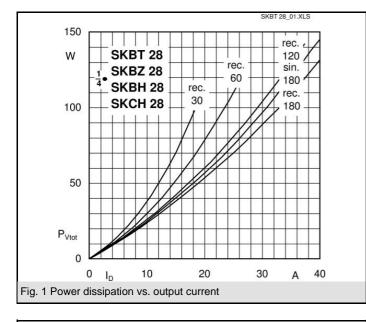
Controllable Bridge Rectifiers

SKCH 28

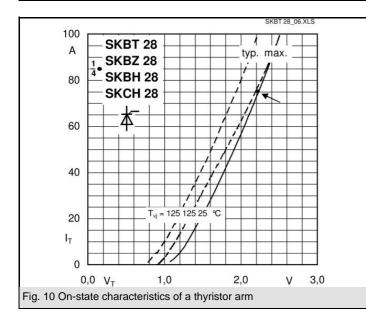
Features

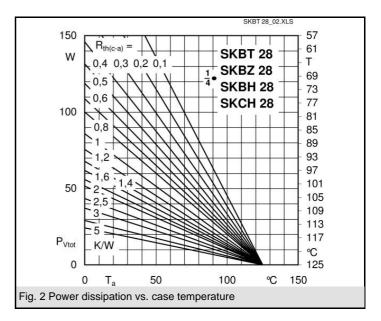

- Sturdy isolated metal baseplate
- · Fast-on terminals with solder tips
- Suitable for wave soldering
- · High surge current rating
- UL recognized, file no. E 63 532

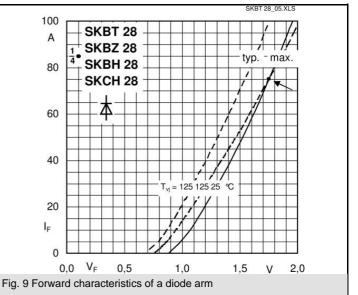
Typical Applications

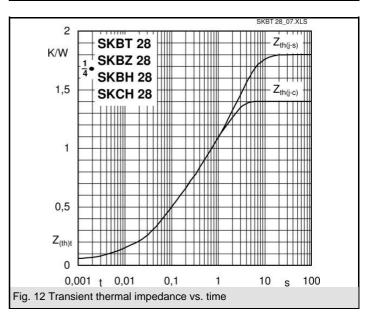

- Controllable single phase rectifierDC power supplies
- DC motor controllers
- DC motor field controllers
- 1) Painted metal shield of minimum 250 x 250 x 1 mm: R_{th(c-a)} = 1,85 K/W
- 2) Freely suspended or mounted on insulator

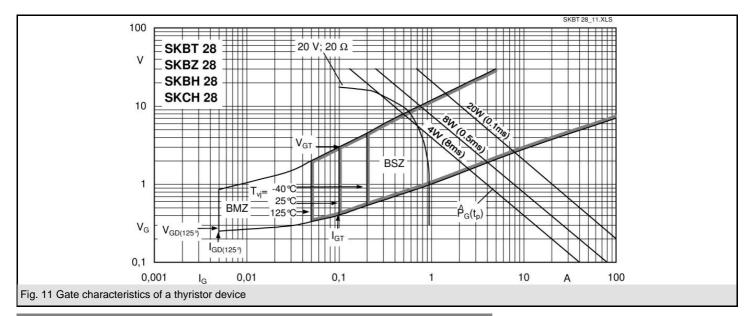
V _{RSM}	V _{RRM} , V _{DRM}	I _D = 28 A (full conduction)
V	V	(T _c = 89 °C)
400	400	SKCH 28/04
600	600	SKCH 28/06
800	800	SKCH 28/08
1200	1200	SKCH 28/12
1400	1400	SKCH 28/14

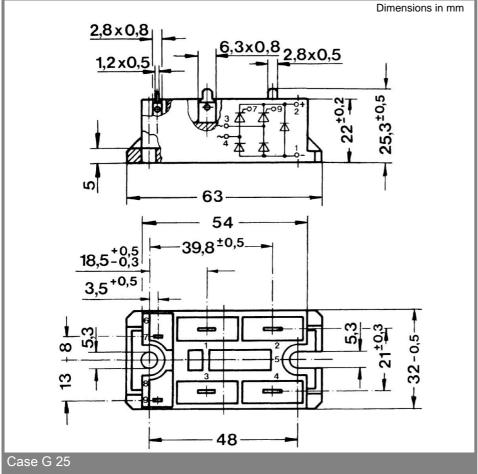

Symbol	Conditions	Values	Units
I _D	T _c = 85 °C	30	А
	$T_a = 45 \text{ °C}; \text{ chassis } ^{1)}$	13	А
	T _a = 45 °C; P5A/100	15	А
	T _a = 45 °C; P13A/125	16	А
	T _a = 45 °C; P1A/120	23	А
I _{TSM} , I _{FSM}	T _{vi} = 25 °C; 10 ms	320	А
	T _{vi} = 125 °C; 10 ms	280	А
i²t	T _{vi} = 25 °C; 8,3 10 ms	510	A²s
	T _{vj} = 125 °C; 8,3 10 ms	390	A²s
V _T	T _{vi} = 25 °C; I _T =75 A	max. 2,25	V
V _{T(TO)}	$T_{vi} = 125 \text{ °C};$	1	V
r _T	T _{vi} = 125 °C	16	mΩ
I _{DD} ; I _{RD}	T_{vj}^{i} = 125 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}	max. 8	mA
t _{gd}	$T_{vi} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A}/\mu\text{s}$	1	μs
t _{gr}	$V_{\rm D} = 0.67 \cdot V_{\rm DRM}$	1	μs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 500	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f = 50 Hz	max. 50	A/µs
t _q	$T_{vi}^{(1)} = 125 \text{ °C; typ.}$	80	μs
I _H	$T_{vi}^{,j}$ = 25 °C; typ. / max.	50 / 150	mA
IL .	$T_{vi} = 25$ °C; R _G = 33 Ω	100 / 300	mA
V _{GT}	$T_{vi} = 25 ^{\circ}C; d.c.$	min. 2	V
I _{GT}	$T_{vi}^{vj} = 25 \text{ °C; d.c.}$	min. 100	mA
V _{GD}	$T_{vi}^{vj} = 125 \text{ °C; d.c.}$	max. 0,25	V
I _{GD}	T _{vi} = 125 °C; d.c.	max. 3	mA
R _{th(j-c)}	per thyristor / diode	1,8	K/W
ui(j=c)	total	0,45	K/W
R _{th(c-s)}	total	0,1	K/W
R _{th(j-a)}	total ²⁾	15	K/W
T _{vi}		- 40 + 125	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M _s	case to heatsink	2	Nm
M _t		n.a.	Nm
m		66	g
Case	SKCH	G 25	




SKCH 28







SKCH 28

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.