SKBT 40

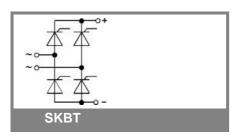
SEMIPONT[®] 2

Controllable Bridge Rectifiers

SKBT 40

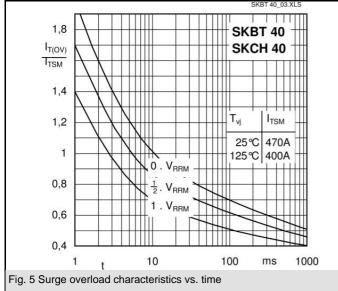
Features

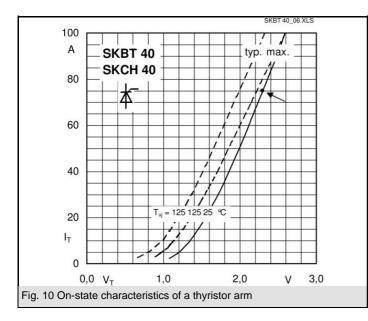
- Fully controlled single phase bridge rectifier
- Robust plastic case with screw terminals
- Large, isolated base plate
- Blocking voltage to 1400V
- High surge currents
- Easy chassis mounting
- UL recognized, file no. E 63 532

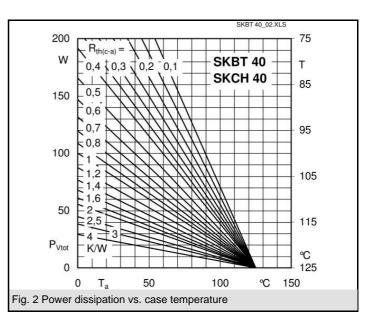

Typical Applications

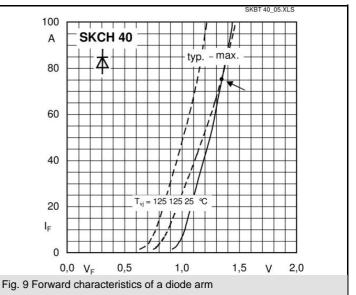
- For reversing DC drives
- Controlled field rectifiers for DC motors
- Controlled battery charger rectifiers
- 1) Painted metal shield of minimum 250 x

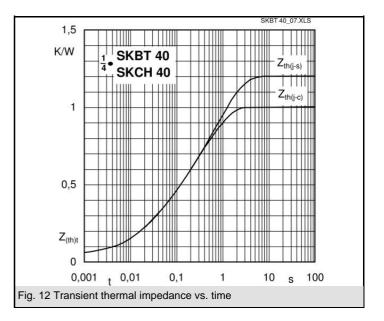

250 x 1 mm: R_{th(c-a)} = 1,8 K/W

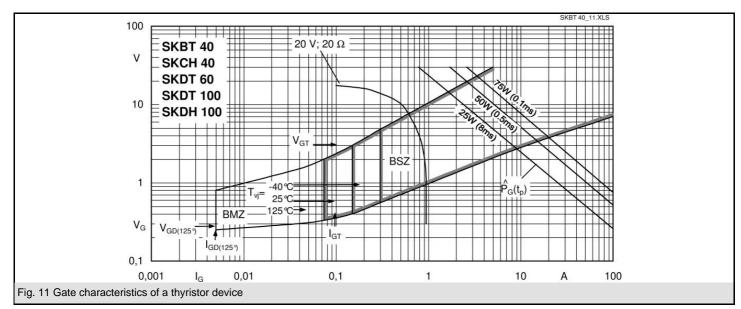

V _{RSM}	V _{RRM} , V _{DRM}	I _D = 40 A (full conduction)
V	V	(T _c = 92 °C)
800	800	SKBT 40/08
1200	1200	SKBT 40/12
1400	1400	SKBT 40/14

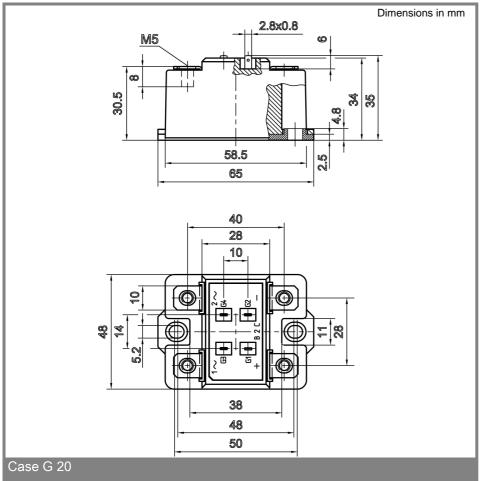

Symbol	Conditions	Values	Units
I _D	T _c = 85 °C	46	А
	T _a = 45 °C; chassis ¹⁾	15	А
	T _a = 45 °C; R4A/120	18	А
	T _a = 45 °C; P13A/125	18	Α
	T _a = 45 °C; P1A/120	28	А
I _{TSM} , I _{FSM}	T _{vi} = 25 °C; 10 ms	470	A
	T _{vi} = 125 °C; 10 ms	400	А
i²t	T _{vi} = 25 °C; 8,3 10 ms	1100	A²s
	T _{vj} = 125 °C; 8,3 10 ms	800	A²s
V _T	T _{vi} = 25 °C; I _T =75 A	max. 2,3	V
V _{T(TO)}	T _{vi} = 125 °C;	max. 1	V
r _T	$T_{vi}^{,j} = 125 \text{ °C}$	max. 16	mΩ
I _{DD} , I _{RD}	$T_{vj} = 125 \text{ °C}; V_{DD} = V_{DRM}; V_{RD} = V_{RRM}$	max. 10	mA
t _{gd}	$T_{vi} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t _{gr}	$V_{\rm D} = 0.67 \cdot V_{\rm DRM}$	1	μs
(dv/dt) _{cr}	T _{vi} = 125 °C	max. 500	V/µs
(di/dt) _{cr}	T _{vi} = 125 °C; f = 50 Hz	max. 50	A/µs
t _q	$T_{vi}^{vj} = 125 \text{ °C; typ.}$	80	μs
I _H	$T_{vi}^{,j} = 25 \text{ °C}; \text{ typ. / max.}$	100 / 200	mA
IL	$T_{vi} = 25$ °C; R _G = 33 Ω	250 / 400	mA
V _{GT}	T _{vi} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vi}^{vj} = 25 \text{ °C; d.c.}$	min. 150	mA
V _{GD}	T _{vi} = 125 °C; d.c.	max. 0,25	V
I _{GD}	T _{vi} = 125 °C; d.c.	max. 5	mA
R _{th(j-c)}	per thyristor / diode	1	K/W
ung-c <i>)</i>	total	0,25	K/W
R _{th(c-s)}	total	0,05	K/W
Ŧ		- 40 + 125	°C
T _{vj} T			-
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
м _s	to heatsink	5	Nm
M _t	to terminals	3	Nm
m		165	g
Case	SKBT	G 20	




SKBT 40







SKBT 40

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.