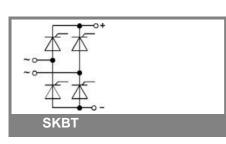
SKBT 28

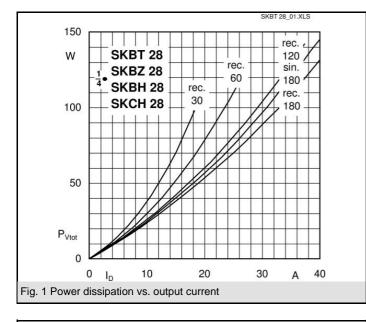
SEMIPONT[®] 1

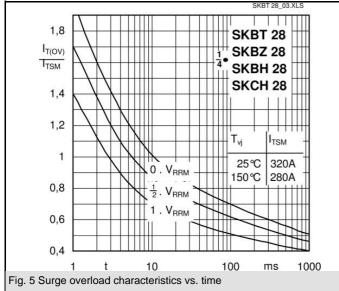
Controllable Bridge Rectifiers

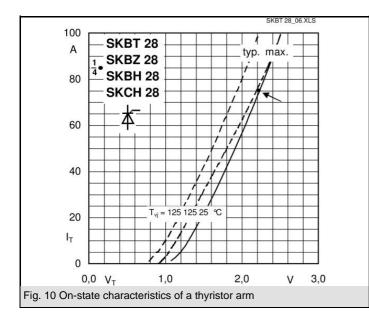
SKBT 28

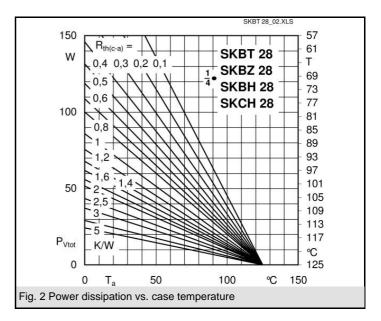

Features

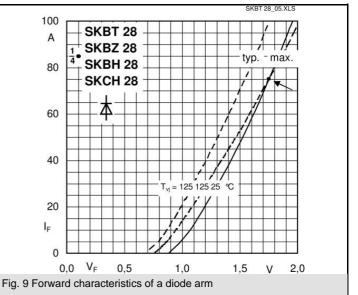
- Sturdy isolated metal baseplate
- · Fast-on terminals with solder tips
- Suitable for wave soldering
- High surge current rating
- UL recognized, file no. E 63 532

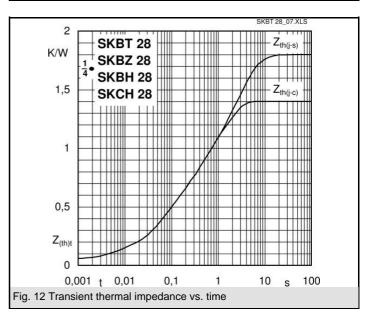

Typical Applications

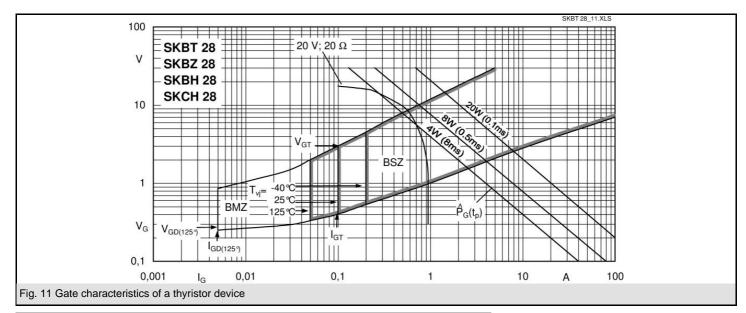

- Controllable single phase rectifierDC power supplies
- DC motor controllers
- DC motor field controllers
- 1) Painted metal shield of minimum 250 x 250 x 1 mm: R_{th(c-a)} = 1,85 K/W
- 2) Freely suspended or mounted on insulator

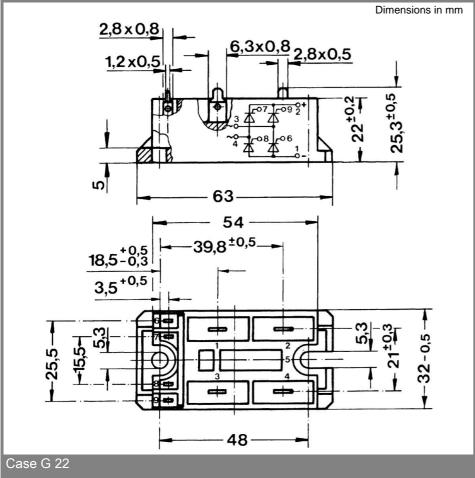

V _{RSM}	V _{RRM} , V _{DRM}		$I_{D} = 28 \text{ A} (\text{full conduction})$	
V	V		(T _c = 89 °C)	
600	600		SKBT 28/06	
800	800		SKBT 28/08	
1200	1200		SKBT 28/12	
1400 1400		SKBT 28/14		
Symbol	Conditions		Values	Units
I _D	T _c = 85 °C		30	A
	T _a = 45 °C; chassis ¹⁾		13	A
	T _a = 45 °C; P5A/100		15	A
	T _a = 45 °C; P13A/125		16	A
	T _a = 45 °C; P1A/120		23	А
I_{TSM}, I_{FSM}	T _{vj} = 25 °C; 10 ms		320	А
	T _{vj} = 125 °C; 10 ms		280	А
i²t	T _{vj} = 25 °C; 8,3 10 ms		510	A²s
	T _{vj} = 125 °C; 8,3 10 ms		390	A²s
V _T	T _{vj} = 25 °C; I _T =75 A		max. 2,25	V
V _{T(TO)}	T _{vj} = 125 °C;		1	V
r _T	T _{vj} = 125 °C		16	mΩ
I _{DD} ; I _{RD}	T_{vj} = 125 °C; V_{DD} = V_{DRM} ; V_{RD} = V_{RRM}		max. 8	mA
t _{gd}	$T_{vj} = 25 \text{ °C}; I_G = 1 \text{ A}; di_G/dt = 1 \text{ A/}\mu\text{s}$		1	μs
t _{gr}	$V_{\rm D}$ = 0,67 · $V_{\rm DRM}$		1	μs
(dv/dt) _{cr}	T _{vj} = 125 °C		max. 500	V/µs
(di/dt) _{cr}	T _{vj} = 125 °C; f = 50 Hz		max. 50	A/µs
t _q	T _{vj} = 125 °C; typ.		80	μs
I _H	T _{vj} = 25 °C; typ. / max.		50 / 150	mA
I _L	T_{vj} = 25 °C; R_G = 33 Ω		100 / 300	mA
V _{GT}	T _{vi} = 25 °C; d.c.		min. 2	V
I _{GT}	$T_{v_i}^{,j} = 25 \text{ °C; d.c.}$		min. 100	mA
V_{GD}	T _{vj} = 125 °C; d.c.		max. 0,25	V
I _{GD}	T _{vj} = 125 °C; d.c.		max. 3	mA
R _{th(j-c)}	per thyristor / diode		1,8	K/W
	total		0,45	K/W
R _{th(c-s)}	total		0,1	K/W
R _{th(j-a)}	total ²⁾		15	K/W
T _{vj}			- 40 + 125	°C
T _{stg}			- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.		3600 (3000)	V
M _s	case to heatsink		2	Nm
M _t			n.a.	Nm
m			66	g
Case	SKBT		G 22	




SKBT 28







© by SEMIKRON

SKBT 28

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.