Handbook

REF542 bay control and protection unit (SCU)

Structure, function, technical data, configuration program, configuration, installation, commissioning, operation, maintenance, troubleshooting, decommissioning, storage

Copyright

We reserve all rights for this document, including in the of a patent being granted patent and another commercial property right being registered.

Unauthorized use, particularly reproduction and making it available to third parties, is not permitted.
© 1999 ABB Calor Emag Mittelspannung GmbH

Documentation prepared by:
Technische Dokumentationen
T. Platte

Brockenberg 4
52223 Stolberg

Table of Contents

1 Introduction 1-1
1.1 Operation of the REF542 1-2
1.2 How to use this documentation 1-3
1.2.1 Special designations in the program documentation 1-4
1.2.2 Special designations in the LCU documentation 1-6
1.3 Operator's responsibilities 1-7
1.4 Guarantee Provisions 1-7
2 Safety Regulations 2-1
2.1 Appearance of Safety Notes 2-1
2.2 General safety notes 2-2
2.3 Specific safety information 2-2
3 Design, Function and Technical Data 3-1
3.1 Basic Information 3-1
3.2 Design 3-3
3.2.1 General information 3-3
3.2.2 Combination options for the components/boards 3-4
3.3 General description of functions 3-5
3.4 Components: Function and Technical Data 3-12
3.4.1 CPU Board 1 3-14
3.4.2 CPU board 2 3-16
3.4.3 Power supply and process bus (LON) 3-18
3.4.4 Binary input and output boards 3-20
3.4.4.1 Input and output board with transistor relay 3-20
3.4.4.2 Input and output boards with conventional relays 3-25
3.4.5 Analog output board 3-30
3.4.6 Recording measured values 3-32
3.4.6.1 Instrument transformer 3-32
3.4.6.2 Signal converter 3-33
3.4.6.3 Combi sensors 3-34
3.4.6.4 Sensor terminal adapter 3-35
3.4.7 Interbay bus system 3-36
3.4.7.1 SPA bus as interbay bus 3-36
3.4.7.2 MVB as interbay bus 3-39
3.4.8 Process bus system 3-41
3.5 Principles of LCU control 3-42
3.6 Overview of the technical data 3-45
4 Configuration Program 4-1
4.1 Safety Information 4-1
4.2 System Requirements 4-1
4.3 Installation. 4-1
4.4 Starting the program 4-2
4.5 Using the configuration program 4-2
4.5.1 First steps in creating or editing an application 4-3
4.5.1.1 Working with projects 4-3
4.5.1.2 Selecting the language version 4-4
4.5.1.3 Setting the PC-REF542 connection 4-5
4.5.1.4 Configuring the REF542 4-5
4.5.1.5 Creating a function chart (FUPLA) 4-5
4.5.1.6 Add or move function blocks 4-6
4.5.1.6.1 Restrictions 4-6
4.5.1.7 Add or move connection 4-7
4.5.1.8 Starting configuration dialogs 4-8
4.5.1.9 Deleting objects in the function chart 4-9
4.5.1.10 Check function chart 4-9
4.5.1.11 Setting the LC display screen and display language 4-10
4.5.1.12 Sending the application to the REF542 4-10
4.5.1.13 Receiving an application from the REF542 4-11
4.5.1.14 Exporting the fault recorder 4-11
4.5.1.15 Exporting the input or output status 4-13
4.5.1.16 Exporting the operational measured values 4-14
4.5.2 Description of the menu items 4-16
4.5.2.1 Main Menu/File 4-16
4.5.2.2 Main menu/Transfer 4-18
4.5.2.3 Main menu/Configure 4-19
4.5.2.4 Main menu/Utilities 4-20
4.5.2.5 Main menu/Options 4-20
4.5.2.6 Main menu/Help 4-20
4.5.2.7 Drawing menu/File 4-21
4.5.2.8 Drawing menu/Edit 4-21
4.5.2.9 Drawing menu/view 4-22
4.5.2.10 Drawing menu/Insert 4-23
4.5.2.11 Drawing menu/Utilities 4-23
4.5.2.12 Drawing menu/options 4-24
4.5.2.13 Drawing menu/Help 4-24
4.6 Uninstall 4-25
5 REF542 Setup 5-1
5.1 Basic information 5-1
5.2 Connecting inputs and outputs 5-1
5.3 General settings 5-2
5.3.1 Serial Port 5-2
5.3.2 Global Settings 5-2
5.3.3 Hardware 5-5
5.3.4 Analog inputs 5-6
5.3.4.1 Setting the rated network values 5-7
5.3.4.2 The nominal values of the net and the protection settings. 5-9
5.3.4.3 The nominal values of the net and the measured value display 5-10
5.3.5 Analog outputs 5-11
5.3.6 Calculated values 5-12
5.3.7 Display 5-13
5.3.7.1 User controls for the editor for the LC display screen. 5-13
5.3.7.2 Working with the editor for the LC display screen 5-15
5.3.7.3 Configuration dialog for icons 5-17
5.3.7.4 Configuration dialogue for lines 5-18
5.3.8 Display language 5-18
5.4 Function and configuration of the function blocks 5-20
5.4.1 Control panel 5-21
5.4.1.1 Indication LED 5-21
5.4.1.2 Alarm LED 5-23
5.4.1.3 Alarm Reset 5-24
5.4.1.4 LR-Key 5-24
5.4.1.5 Emergency Buttons 5-25
5.4.1.6 Beeper. 5-25
5.4.2 Binary IO (switching objects) 5-26
5.4.2.1 System of function blocks and configuration dialogs of the switching objects 5-26
5.4.2.2 Switching object 0-1 5-31
5.4.2.3 Switching object 0-2 5-32
5.4.2.4 Switching object 0-3 5-34
5.4.2.5 Switching object 1-0 5-36
5.4.2.6 Switching object 1-1 5-38
5.4.2.7 Switching object 1-2 5-40
5.4.2.8 Switching object 2-1 5-43
5.4.2.9 Switching object 2-2 5-45
5.4.2.10 Switching object 2-2 as power circuit-breaker 5-48
5.4.2.11 Switching object $2-2$ with no power output 5-48
5.4.2.12 Switching object 4-3: Motorcard 5-49
5.4.2.13 Switching object 6-5: Magnetmotorcard 5-52
5.4.2.14 Switching object 2-2: H bridge Card 5-56
5.4.2.15 Switching object 4-4: H bridge Card 5-59
5.4.2.16 Module for truck (witdrawable unit) 5-63
5.4.2.17 IO-Supervision. 5-64
5.4.3 Digital logic 1 5-66
5.4.3.1 Inverter 5-66
5.4.3.2 Constant 1/0 5-66
5.4.3.3 AND logic gate with inverted output 5-67
5.4.3.4 AND logic gate with an inverting input 5-67
5.4.3.5 AND logic gate 5-68
5.4.3.6 OR logic gate 5-68
5.4.3.7 OR logic gate with inverting output 5-69
5.4.4 Digital logic 2 5-70
5.4.4.1 Exclusive OR logic gate 5-70
5.4.4.2 Exclusive OR logic gates with inverting output 5-70
5.4.5 Flip-Flops 5-72
5.4.5.1 RS Flip-Flop 5-72
5.4.5.2 RS flip-flop with timing input (clock) 5-73
5.4.5.3 JK Flip-Flop 5-73
5.4.5.4 D Flip-Flop 5-74
5.4.5.5 T Flip-Flop. 5-75
5.4.5.6 Monoflop retriggerable 5-75
5.4.5.7 Monoflop non-retriggerable. 5-76
5.4.5.8 Drop Delay/Rise Delay (slope delay) 5-76
5.4.5.9 Counter 5-77
5.4.5.10 Pulse generator 5-78
5.4.5.11 Digital Store object 5-79
5.4.6 Analog components 5-80
5.4.6.1 Analog Threshold 5-80
5.4.6.2 Energy management 5-82
5.4.6.3 Energy counter 5-83
5.4.6.4 Energy pulse output 5-84
5.4.6.5 LON sensor 5-85
5.4.7 General Information on the protective functions 5-87
5.4.8 Current protective functions 5-90
5.4.8.1 Inrush 5-91
5.4.8.2 Overcurrent directional high 5-97
5.4.8.3 Overcurrent directional low 5-100
5.4.8.4 Overcurrent instantaneous 5-102
5.4.8.5 Overcurrent high 5-105
5.4.8.6 Overcurrent low 5-107
5.4.8.7 IDMT 5-109
5.4.8.8 Earth fault high 5-112
5.4.8.9 Earthfault low 5-114
5.4.8.10 Earthfault directional high 5-116
5.4.8.11 Earthfault directional low. 5-120
5.4.8.12 Earthfault IDMT 5-122
5.4.9 Voltage supervision 5-125
5.4.9.1 Overvoltage instantaneous 5-126
5.4.9.2 Overvoltage high 5-128
5.4.9.3 Overvoltage low 5-130
5.4.9.4 Undervoltage instantaneous 5-132
5.4.9.5 Undervoltage high 5-135
5.4.9.6 Undervoltage low 5-137
5.4.9.7 Residual overvoltage high 5-139
5.4.9.8 Residual overvoltage low 5-141
5.4.10 Motor Protection 5-143
5.4.10.1 Thermal overload protection 5-144
5.4.10.2 Motor start 5-148
5.4.10.3 Blocking rotor 5-152
5.4.10.4 Number of starts 5-155
5.4.11 Distance protection 5-158
5.4.12 Additional protective functions 5-186
5.4.12.1 Thermal supervision 5-186
5.4.12.2 Unbalanced load 5-189
5.4.12.3 Directional power 5-192
5.4.12.4 Low load 5-194
5.4.12.5 Frequency supervision 5-197
5.4.12.6 Synchrocheck 5-199
5.4.13 Faultrecorder 5-202
5.4.14 Other components 5-206
5.4.14.1 Operating hours 5-206
5.4.14.2 Event generator 5-207
5.4.14.3 Direct read-write 5-208
5.5 Additional functions 5-209
5.5.1 Autoreclosure 5-209
6 Mounting and Installation 6-1
6.1 Safety Information 6-1
6.2 Unpacking 6-1
6.3 Mounting 6-2
6.3.1 Set-up Area and Required Environmental Conditions 6-3
6.3.2 Installation on the front panel of a substation 6-4
6.3.3 Wiring the REF542 6-5
7 Commissioning 7-1
7.1 Safety Information 7-1
7.2 Required devices and adapters 7-1
7.2.1 Converter for the sensor terminal adapter 7-1
7.3 Calibrating the analog inputs (measuring inputs) 7-3
7.4 Testing the interlock conditions, 7-4
7.5 Determining the transformer direction 7-4
7.5.1 Current transformer 7-4
7.5.2 Voltage transformer 7-5
7.5.3 Current sensor 7-5
7.5.4 Voltage sensor 7-6
7.6 Testing the measured value recording 7-6
7.7 Testing the protective functions 7-8
7.7.1 Testing the current protective functions 7-11
7.7.2 Testing the voltage protective functions 7-11
7.7.3 Testing the motor protective functions 7-12
7.7.3.1 Thermal overload 7-12
7.7.3.2 Motor start monitoring 7-12
7.7.3.3 Monitoring on blocking rotor 7-12
7.7.3.4 Number of starts 7-13
7.7.4 Testing the distance protection 7-13
7.7.5 Testing the supplementary protective functions 7-14
7.8 Protection test records 7-16
7.9 Communications test 7-41
7.10 REF542 switch-on process 7-41
7.11 Commissioning with a replacement EPROM 7-42
7.12 Commissioning without replacing EPROMs 7-43
8 Operation and Maintenance 8-1
8.1 Operating the LCU 8-1
8.1.1 The control elements of the LCU 8-2
8.1.2 The operating modes of the LCU 8-3
8.1.3 Functions in all operating modes 8-3
8.1.3.1 Loading a configuration from the PC into the REF542 8-3
8.1.3.2 Loading a configuration from the REF542 into the PC 8-3
8.1.3.3 Export of the fault recorder (when configured) 8-4
8.1.3.4 Setting the LC display screen contrast 8-4
8.1.3.5 Deleting the EEPROMs 8-4
8.1.4 Functions in the mode: Local-operational 8-4
8.1.4.1 Display LED message texts 8-4
8.1.4.2 Acknowledging messages and alarms 8-5
8.1.4.3 Retrieving measured and calculated values 8-5
8.1.4.4 Selecting and actuating switchgear 8-7
8.1.4.5 Starting the tripping page 8-7
8.1.5 Functions in mode: Remote-operational 8-15
8.1.5.1 Display LED message texts 8-15
8.1.5.2 Acknowledging messages and alarms 8-15
8.1.5.3 Retrieving measured and calculated values 8-16
8.1.5.4 Starting the tripping page 8-16
8.1.6 Functions in the mode: Local-set 8-17
8.1.6.1 Starting the service page 8-19
8.1.6.2 Change the active parameter set 8-19
8.1.6.3 Viewing the parameters of the individual protective functions 8-20
8.1.6.4 Switching the autoreclosure on and off 8-20
8.1.6.5 Changing a parameter of a protective function 8-21
8.1.6.6 Resetting the quantities saved in the unit 8-23
8.1.6.7 Entry point to test mode 8-23
8.2 Parameter names 8-24
8.3 Regular testing of the REF542 8-28
8.4 Maintenance Program 8-28
8.4.1 Durability of specific components 8-29
9 Troubleshooting 9-1
9.1 Safety Information 9-1
9.2 Error and status messages 9-1
9.2.1 Error and status messages at the LCU 9-1
9.2.2 Error and status messages of the configuration program 9-4
9.3 Causes and corrections for error or status messages 9-11
9.3.1 Corrective action for error messages on the LCU 9-11
9.3.2 Correction in the event of configuration program error messages 9-22
9.4 Further information 9-38
9.4.1 ACE Center 9-39
10 Decommissioning and Storage 10-1
10.1 Storage 10-1
10.2 Decommissioning 10-2
11 Appendices 11-1
11.1 Requirements for the current transformers when implementing distance protection 11-1
11.2 Event list of switching objects 11-4
11.3 Event list of protective functions 11-6
11.4 Typical examples of sensor or transducer connections 11-14
11.5 IDMT protection and earthfault IDMT protection families of curves 11-20
11.5.1 Current-time characteristic "normal inverse" 11-22
11.5.2 Current-time characteristic "very inverse". 11-23
11.5.3 Current-time characteristic "extremely inverse" 11-24
11.5.4 Current-time characteristic "long time inverse" 11-25
11.6 Tripping characteristics thermal overload protection 11-26
11.6.1 Motor cold start 11-27
11.6.2 Motor warm start: 20% of the operating temperature 11-28
11.6.3 Motor warm start: 50% of the operating temperature 11-29
11.7 Measuring principle of the REF542 11-30
11.7.1 Measured-value processing 11-30
11.7.2 Measurement or calculation of Uo, lo 11-33
11.7.3 Calculation of the $\cos \varphi$ 11-33
11.7.4 Calculation of the frequency 11-33
11.7.5 Power calculation 11-33
11.7.5.1 Active power calculation 11-33
11.7.5.2 Reactive power calculation 11-35
11.8 Network neutral point earthing 11-35
11.8.1 Low-resistance neutral earthing, 11-36
11.8.2 Resistance earthed neutral point 11-37
11.8.3 Isolated neutral point 11-38
11.8.4 Network with Petersen coil 11-40
11.8.5 Earth fault signal 11-41
11.9 Setup example for motor protection 11-43
11.10 Diagrams of all function blocks 11-45
11.11 SPA bus List. 11-51
11.12 Feedback form 11-85
12 New REF542 Version V2C04 12-1
12.1 Changes and supplements 12-1
12.1.1 Print setup 12-1
12.1.2 Add connection/Number of connections 12-1
12.1.3 Blocking the protective funktions 12-2
12.1.4 Shorter trip time: Overcurrent instantaneous, l>>> 12-2
12.1.5 New Protection function: Earthfault directional sensitive (lo>dir., sensitive) 12-2
12.1.6 Revised protection function: Synchrocheck 12-6
12.1.7 Changed recording: Fault recorder 12-9
12.1.8 Changed measured value display 12-10

List of Illustrations

Fig. 1: Front view of the local command unit (LCU) 1-1
Fig. 2: The menu structure as exemplified by the configuration program 1-4
Fig. 3: Dialog window for setting the REF542 unit as an example of the window components 1-5
Fig. 4: Section of a dialog window with a list field 1-5
Fig. 5: Front view of the local command unit (LCU) with its control elements 1-6
Fig. 6: The switch symbols on the LCU and the symbols assigned to them in the text 1-7
Fig. 7: Principal protective function actions in the REF542 3-2
Fig. 8: Communication paths between the REF542 and its peripherals 3-2
Fig. 9: Circuit diagram of the communication paths for the three main processors 3-6
Fig. 10: Configuration of the interfaces in the short REF542 housing from above 3-12
Fig. 11: Configuration of the interfaces in the deep REF542 housing from above 3-13
Fig. 12: Schematic design of the CPU1 plug-in board 3-14
Fig. 13: Schematic design of the CPU2 plug-in board 3-16
Fig. 14: Schematic design of the power supply board 3-18
Fig. 15: Binary inputs on the transistor relay boards 3-20
Fig. 16: Configuration of the transistor relays on the binary outputs 3-21
Fig. 17: Principle of a power output with trip circuit monitoring using the example of binary output 1. 3-21
Fig. 18: Principle of the power output to the motor control unit using the example of the binary outputs $3,4,5$ and 6 on the transistor relay board 3-22
Fig. 19: Schematic view of transistor relay and input and output board 3-23
Fig. 20: The binary inputs on the conventional relay boards 3-25
Fig. 21: Breaker configuration implemented with the conventional relays 3-26
Fig. 22: Principle of a power output with trip circuit monitoring using the example of binary output 1 3-26
Fig. 23: Principle of the power output to the motor control unit using the example of binary outputs 5 and 6 of the conventional relay board 3-27
Fig. 24: Schematic view of the conventional relay board 3-28
Fig. 25: Configuration of the analog output board current sources 3-30
Fig. 26: Schematic design of the analog output board 3-31
Fig. 27: Circuit diagram of a current transformer at a phase 3-32
Fig. 28: Circuit diagram of a voltage transformer used to measure the conductor-earth voltage 3-33
Fig. 29: Front view and main circuit diagram of the sensor terminal adapter 3-35
Fig. 30: SPABUS in single ring design 3-36
Fig. 31: SPABUS in star design 3-37
Fig. 32: Schematic design of the SPA bus board 3-37
Fig. 33: Bus structure of the MVB interbay bus 3-39
Fig. 34: Schematic design of the MVB board 3-40
Fig. 35: REF542 control panel 3-42
Fig. 36: Configuration dialogue for a connection 4-8
Fig. 37: Example of a dialog window for exporting fault records 4-12
Fig. 38: Example of a dialog window for setting the fault record defaults 4-13
Fig. 39: Examples of the dialog windows for displaying the status of the analog inputs or outputs. 4-14
Fig. 40: Examples of the dialog window for displaying the operational measured values 4-15
Fig. 41: Configuration dialog for the continuous measured value scan 4-16
Fig. 42: Dialog drawing menu/Utilities/protection functions 4-23
Fig. 43: Configuration dialog for the REF542 Global Settings 5-3
Fig. 44: Dialog window for the REF542 hardware configuration 5-5
Fig. 45: Example of the configuration dialog for setting the analog inputs. 5-6
Fig. 46: Nominal values for the current transformer 5-7
Fig. 47: Rated network values for the voltage transformer. 5-8
Fig. 48: Rated network values for the Rogowski coil 5-8
Fig. 49: Rated network values for the voltage sensor 5-9
Fig. 50: Configuration dialog for the analog outputs 5-11
Fig. 51: Configuration dialog for calculating some internal quantities 5-12
Fig. 52: Editor for configuring the mimic diagram. 5-13
Fig. 53: Configuration dialog for icons in the editor for the LC display 5-17
Fig. 54: Configuration dialog for lines in the editor for the LC display 5-18
Fig. 55: Configuration dialog for selecting the language of the texts on the LC display screen 5-18
Fig. 56: Function block indication LED. 5-21
Fig. 57: Control panel of the LCU with the LEDs 5-21
Fig. 58: Configuration dialog function block signaling LED 5-22
Fig. 59: Function block alarm LED 5-23
Fig. 60: Function block alarm reset 5-24
Fig. 61: Function block LR-Key 5-24
Fig. 62: Function block Emergency Buttons 5-25
Fig. 63: Function block beeper. 5-25
Fig. 64: Example of the display of a switching object in the function chart 5-26
Fig. 65: Example of the switching object configuration dialog. 5-27
Fig. 66: Function block switching object 0-1 5-31
Fig. 67: Configuration dialog switching object 0-1 5-31
Fig. 68: Function block switching object 0-2 5-32
Fig. 69: Configuration dialog switching object 0-2 5-33
Fig. 70: Function block switching object 0-3 5-34
Fig. 71: Configuration dialog switching object 0-3 5-35
Fig. 72: Function block switching object 1-0 5-36
Fig. 73: Configuration dialog switching object 1-0 5-37
Fig. 74: Function block switching object 1-1 5-38
Fig. 75: Configuration dialog switching object 1-1 5-39
Fig. 76: Function block switching object 1-2 5-40
Fig. 77: Configuration dialog switching object 1-2 5-41
Fig. 78: Function block switching object 2-1 5-43
Fig. 79: Configuration dialog switching object 2-1 5-44
Fig. 80: Function block switching object 2-2 5-45
Fig. 81: Configuration dialog switching object 2-2 5-46
Fig. 82: Function block switching object 2-2 as power circuit-breaker 5-48
Fig. 83: Function block switching object 2-2 with no power output 5-48
Fig. 84: Function block switching object 4-3 motor 5-49
Fig. 85: Configuration dialog function block switching object 4-3 motor 5-51
Fig. 86: Function block switching object 6-5 magnet motor 5-52
Fig. 87: Configuration dialog function block switching object 6-5 magnet motor 5-54
Fig. 88: Function block switching object 2-2 H bridge 5-56
Fig. 89: Configuration dialog function block switching object 2-2 H bridge 5-57
Fig. 90: Function block switching object 4-4 H bridge 5-59
Fig. 91: Configuration dialog function block switching object 4-4 H bridge 5-61
Fig. 92: Function block module for truck 5-63
Fig. 93: Configuration dialog function block module for thrust 5-63
Fig. 94: Function block trip circuit supervision 5-64
Fig. 95: Function block inverter 5-66
Fig. 96: Function blocks constant 1 and constant 0 5-66
Fig. 97: Function block AND logic gate with inverting output 5-67
Fig. 98: Function blocks AND logic gate with inverting inputs 5-67
Fig. 99: Function blocks AND logic gate with varying input number 5-68
Fig. 100: Function blocks OR logic gate with varying output numbers 5-68
Fig. 101: Function block OR logic gate with inverting output (NOR logic gate) 5-69
Fig. 102: Function block exclusive OR logic gate with varying input number 5-70
Fig. 103: Function block exclusive OR logic gate with inverting output and varying number of inputs 5-70
Fig. 104: Function block RS flip-flop 5-72
Fig. 105: Function block RS flip-flop with timing input 5-73
Fig. 106: Function block JK flip-flop with timing input (clock) 5-73
Fig. 107: Function block D flip-flop. 5-74
Fig. 108: Function block T flip-flop 5-75
Fig. 109: Function block retriggerable monoflop 5-75
Fig. 110: Function block non-retriggerable monoflop. 5-76
Fig. 111: Function blocks slope delay rising and falling 5-76
Fig. 112: Flow chart of the slope delay function blocks 5-76
Fig. 113: Configuration dialog slope delay rising (and falling) 5-77
Fig. 114: Function block counter 5-77
Fig. 115: Configuration dialog counter 5-78
Fig. 116: Function block pulse generator 5-78
Fig. 117: Output signal of the pulse generator 5-78
Fig. 118: Configuration dialog pulse generator 5-79
Fig. 119: Function block digital Store object 5-79
Fig. 120: Function block analog threshold 5-80
Fig. 121: Configuration dialog threshold object. 5-81
Fig. 122: Function block energy management 5-82
Fig. 123: Function block energy counter 5-83
Fig. 124: Configuration energy counter. 5-83
Fig. 125: Function block energy impulse output 5-84
Fig. 126: Configuration dialog energy impulse output. 5-84
Fig. 127: Function block LON 5-85
Fig. 128: Configuration dialog LON sensor 5-85
Fig. 129: Function block inrush current blocking 5-91
Fig. 130: Current-time characteristic of the detected switch-on process when using inrush current blocking. 5-92
Fig. 131: Current-time characteristic of the detected fault when using inrush current blocking 5-93
Fig. 132: Current-time characteristic of the detected overload when using inrush current blocking 5-94
Fig. 133: Function block inrush current blocking 5-95
Fig. 134: Configuration dialog function block inrush current blocking. 5-95
Fig. 135: Function block overcurrent directional high 5-97
Fig. 136: Vector diagram of the directional phase fault current protective functions 5-97
Fig. 137: Function block overcurrent directional high 5-98
Fig. 138: Configuration dialog function block overcurrent directional high. 5-98
Fig. 139: Function block overcurrent directional low. 5-100
Fig. 140: Configuration dialog overcurrent directional low. 5-100
Fig. 141: Function block overcurrent instantaneous 5-102
Fig. 142: Schematic view of the definite time tripping steps 5-102
Fig. 143: Configuration dialog function block Overcurrent instantaneous l>>> 5-103
Fig. 144: Function block overcurrent high 5-105
Fig. 145: Configuration dialog function block overcurrent high 5-105
Fig. 146: Function block overcurrent low 5-107
Fig. 147: Configuration dialog function block overcurrent low. 5-107
Fig. 148: IDMT protection 5-109
Fig. 149: Function block dependent overcurrent timer protection 5-110
Fig. 150: Configuration dialog function block dependent overcurrent timer protection 5-110
Fig. 151: Function block earthfault high 5-112
Fig. 152: Configuration dialog function block earth fault high 5-113
Fig. 153: Function block earhfault low. 5-114
Fig. 154: Configuration dialog function block earthfault low 5-114
Fig. 155: Function block earth fault directional high 5-116
Fig. 156: Vector diagrams of the directional earth fault protection (earthed networks $(\cos \varphi)$) 5-117
Fig. 157: Vector diagrams of the directional earth fault protection (isolated networks $(\sin \varphi)$) 5-117
Fig. 158: Function block Eartfault directional high 5-117
Fig. 159: Configuration dialog function block earth fault directional high 5-118
Fig. 160: Function block earthfault directional low 5-120
Fig. 161: Configuration dialog function block earthfault directional low 5-120
Fig. 162: Function block earthfault IDMT 5-122
Fig. 163: Configuration dialog function block earthfault IDMT 5-123
Fig. 164: Function block overvoltage instantaneous 5-126
Fig. 165: Overvoltage response grading 5-126
Fig. 166: Configuration dialog function block overvoltage instantaneous 5-127
Fig. 167: Function block overvoltage high 5-128
Fig. 168: Configuration dialog function block overvoltage high 5-128
Fig. 169: Function block overvoltage low 5-130
Fig. 170: Configuration dialog function block overvoltage low protection 5-130
Fig. 171: Function block undervoltage instantaneous 5-132
Fig. 172: Undervoltage protection response stages 5-132
Fig. 173: Configuration of the undervoltage limit $=0$ 5-132
Fig. 174: Configuration dialog function block undervoltage instantaneous 5-133
Fig. 175: Function block undervoltage high 5-135
Fig. 176: Configuration dialog function block undervoltage high 5-135
Fig. 177: Function block undervoltage low protection 5-137
Fig. 178: Configuration dialog function block undervoltage low protection 5-137
Fig. 179: Function block residual overvoltage high 5-139
Fig. 180: Configuration dialog function block residual overvoltage high 5-139
Fig. 181: Function block residual overvoltage low 5-141
Fig. 182: Configuration dialog function block residual overvoltage low 5-141
Fig. 183: Function block thermal overload protection 5-144
Fig. 184: Function block thermal overload protection 5-145
Fig. 185: Configuration dialog function block thermal overload protection 5-146
Fig. 186: Function block motor start 5-148
Fig. 187: Standardized current-time characteristic of the starting supervision 5-149
Fig. 188: Function block motor start 5-150
Fig. 189: Configuration dialog function block motor start 5-150
Fig. 190: Function block blocking rotor 5-152
Fig. 191: Configuration dialog function block blocking rotor 5-153
Fig. 192: Function block number of starts 5-155
Fig. 193: Configuration dialog function block number of starts 5-156
Fig. 194: Function block distance protection 5-158
Fig. 195: Logic diagram of overcurrent starting 5-160
Fig. 196: Logic diagram of the voltage-controlled overcurrent starting 5-161
Fig. 197: Tripping surface for the distance protection 5-164
Fig. 198: Impedance-timer characteristics 5-165
Fig. 199: Flow chart for the distance protection autoreclosure 5-166
Fig. 200: Signal flow chart for distance protection autoreclosure 5-167
Fig. 201: Impedance-time characteristics for autoreclosure on an overhead cable 5-167
Fig. 202: Impedance-time characteristics for autoreclosure on overhead cable-cable 5-168
Fig. 203: Impedance-time characteristics for autoreclosure on cable-overhead cable 5-169
Fig. 204: Impedance-time characteristic for the distance protection with underlying signal comparison protection 5-169
Fig. 205: Functional principle of the distance protection with underlying signal comparison protection 5-170
Fig. 206: Function block distance protection. 5-171
Fig. 207: Configuration dialog function block distance protection 5-172
Fig. 208: Configuration dialog starting values, function block distance protection 5-175
Fig. 209: Input screen for setting the phase selection 5-176
Fig. 210: Earth factors configuration dialog 5-176
Fig. 211: Autoreclosure times configuration dialog 5-177
Fig. 212: Selecting the zone configuration dialog 5-178
Fig. 213: Example of a configuration dialog for the zones of the function block distance protection 5-179
Fig. 214: Overreach zone configuration dialog for the function block distance protection 5-181
Fig. 215: Configuration dialog autoreclosure blocking zone 1 5-182
Fig. 216: Configuration dialog for the directional backup protection of the function block distance protection 5-183
Fig. 217: Configuration dialog for the non-directional backup protection of the function block distance protection 5-184
Fig. 218: Function block thermal supervision 5-186
Fig. 219: Configuration dialog function block thermal supervision. 5-187
Fig. 220: Function block unbalanced load supervision 5-189
Fig. 221: Configuration dialog function block unbalanced load supervision 5-190
Fig. 222: Function block directional power 5-192
Fig. 223: Configuration dialog function block directional power 5-192
Fig. 224: Function block low load supervision 5-194
Fig. 225: Configuration dialog function block low load 5-195
Fig. 226: Function block frequency supervision 5-197
Fig. 227: Configuration dialog function block frequency supervision 5-198
Fig. 228: Function block synchrocheck 5-199
Fig. 229: Vector diagram of the Synchronization condition 5-199
DECMS/S
Fig. 230: Configuration dialog function block synchrocheck 5-200
Fig. 231: Function block faultrecorder 5-202
Fig. 232: Example showing the graphic display of fault record data of a two-pole short circuit with the WINEVE program 5-203
Fig. 233: Example of a configuration dialog for the function block fault recorder 5-204
Fig. 234: Function block operating hours 5-206
Fig. 235: Configuration dialog function block operating hours counter 5-206
Fig. 236: Function block event generator 5-207
Fig. 237: Configuration dialog function block event generator 5-207
Fig. 238: Function block direct read-write 5-208
Fig. 239: Configuration dialog function block direct write-read command 5-208
Fig. 240: Configuration window autoreclosure (AR) 5-210
Fig. 241: autoreclosure flow chart, one successful attempt 5-211
Fig. 242: Autoreclosure flow chart, an unsuccessful attempt 5-211
Fig. 243: Autoreclosure flow chart, two successful attempts 5-212
Fig. 244: Autoreclosure flow chart, two unsuccessful attempts 5-212
Fig. 245: Dimensions of the REF542 housing 6-2
Fig. 246: REF542 installation diagram in the front panel of a substation 6-4
Fig. 247: Grounding of a cable current transformer 6-5
Fig. 248: Principal circuit diagram of the REF542 Omicron converter 7-2
Fig. 249: Setup for the polarity test of current transformers 7-5
Fig. 250: Polarity test of voltage transformers 7-5
Fig. 251: Polarity test of current sensors (Rogowski coil) 7-6
Fig. 252: Polarity test of voltage sensors (resistive splitter). 7-6
Fig. 253: Standard circuit diagram for operating characteristics of the directional functions 7-9
Fig. 254: REF542 control panel 8-2
Fig. 255: LCU operating structure local set mode 8-18
Fig. 256: Local set mode, starting the service page 8-19
Fig. 257: Local set, change active parameter set 8-19
Fig. 258: Local set mode, viewing the individual protective function parameters 8-20
Fig. 259: Local set mode, activate and deactivate the autoreclosure 8-20
Fig. 260: Local set, changing protective function parameters 8-21
Fig. 261: Local set, resetting quantities saved in the unit 8-23
Fig. 262: Local set, entry to test mode 8-23
Fig. 263: An example from the computer simulation 11-2
Fig. 264: Factor K(ct) for setting upper dimension of the current transformer in the presence of phase fault currents with decaying DC elements 11-3
Fig. 265: Typical sensor circuitry in sensors or transducers for supply or feeder bays 11-15
Fig. 266: Typical sensor circuitry in sensors or transducers for busbar measuring 11-16
Fig. 267: Typical circuitry in sensors for six current inputs 11-17
Fig. 268: Typical circuitry in sensors for paralleling monitoring with measuring field 11-18
Fig. 269: Typical circuitry in transducers for paralleling monitoring with measuring field 11-19
Fig. 270: Current-time characteristic "normal inverse" 11-22
Fig. 271: Current-time characteristic "very inverse" 11-23
Fig. 272: Current-time characteristic "extremely inverse" 11-24
Fig. 273: Current-time characteristic "long time inverse" 11-25
Fig. 274: Trip curves of the independent thermal protection with cold start. 11-27
Fig. 275: Trip curves of the independent thermal protection with a warm start at 20% of the operating temperature 11-28
Fig. 276: Trip curve of the independent thermal protection with a warm start at 50% of the operating temperature 11-29
Fig. 277: Frequency response of the band-pass filter at frequencies above 50 Hz 11-30
Fig. 278: Distribution of the sampling values of the measured value acquisition of the REF542 11-31
Fig. 279: Approximation of the calculated rms values to the actual rms value 11-32
Fig. 280: Aron circuit for two line currents and three phase voltages 11-34
Fig. 281: Equivalent circuit of a carrier or a cable 11-36
Fig. 282: Single-line fault with low-resistance neutral earthing 11-37
Fig. 283: Single-line fault with neutral earthing over resistance 11-38
Fig. 284: Single-line fault with isolated network neutral point 11-39
Fig. 285: Single-line fault with coil-earthed network neutral point. 11-40
Fig. 286: Measuring the displacement voltage with open delta winding 11-42
Fig. 287: Measuring the displacement voltage in the transformer neutral 11-42
Fig. 288: Function block Earthfault directional sensitive (lo>dir., sensitive) 12-2
Fig. 289: Vector diagram of the earthfault directional sensitive for networks with ground fault compensation. 12-3
Fig. 290: Vector diagram of the earthfault directional sensitive for networks with isolated neutral point. 12-4
Fig. 291: Response characteristic of the earthfault directional sensitive for networks with ground fault compensation ($\cos \varphi$ circuit) 12-4
Fig. 292: Function block Earthfault directional sensitive (lo>dir., sensitive) 12-5
Fig. 293: Configuration dialog function block earthfault directional sensitive 12-5
Fig. 294: Function block Synchrocheck 12-6
Fig. 295: Vector diagram of the voltage quantities with unequal frequencies. 12-7
Fig. 296: Function block Synchrocheck 12-8
Fig. 297: Configuration dialog function block synchrocheck 12-8

List of Tables

Tab. 1: Combination options of the components/boards 3-4
Tab. 2: REF542 protective functions 3-7
Tab. 3: -X3 interface assignment 3-15
Tab. 4: Technical data of processor card, CPU 1 3-15
Tab. 5: -X3 interface assignment 3-17
Tab. 6: Technical data of processor card, CPU 2 3-17
Tab. 7: -X0 interface assignment 3-18
Tab. 8: -X1 interface assignment 3-19
Tab. 9: Technical data of the power supply and LON process bus board 3-19
Tab. 10: Trip circuit monitoring error message 3-22
Tab. 11: Technical data of the binary input/output board with transistor relay 3-24
Tab. 12: Error message in the trip circuit monitoring 3-27
Tab. 13: Maximum switching cycles of the conventional power relays 3-28
Tab. 14: Technical data of the binary input/output board with conventional relays 3-29
Tab. 15: Technical data of the analog output board 3-30
Tab. 16: Limitations on the output of analog signals. 3-31
Tab. 17: Example of an -X2 terminal strip assignment 3-33
Tab. 18: Technical data of the SPA bus communications board 3-38
Tab. 19: Technical data of the SPA bus 3-40
Tab. 20: Overview of the most important technical data 3-45
Tab. 21: Overview of the files belonging to a project 4-4
Tab. 22: Restrictions in the FUPLA 4-6
Tab. 23: Assignment of the function keys 4-20
Tab. 24: Assignment of the function keys 4-24
Tab. 25: Configuration examples of the measurement recorder 5-10
Tab. 26: Connections on the function block signaling LED 5-22
Tab. 27: Connections at the function block local-remote switchover 5-24
Tab. 28: Connection labels switching object 0-1 5-31
Tab. 29: Connection labels switching object 0-2 5-33
Tab. 30: Connection labels switching object 0-3 5-34
Tab. 31: Connection labels switching object 1-0 5-36
Tab. 32: Connection labels switching object 1-1 5-38
Tab. 33: Connection labels switching object 1-2 5-41
Tab. 34: Connection label switching object 2-1 5-43
Tab. 35: Connection labels switching object 2-2 5-46
Tab. 36: Connection labels switching object 1-2 5-50
Tab. 37: Connection label switching object 6-5 magnet motor 5-53
Tab. 38: Connection labels switching object 1-2 5-57
Tab. 39: Connection labels switching object 1-2 5-60
Tab. 40: Use of the protective functions depending on the configuration of the analog measuring inputs 5-89
Tab. 41: Technical data 6-2
Tab. 42: Technical data for the set-up area and the environmental conditions 6-3
Tab. 43: Material for manufacturing the converter 7-1
Tab. 44: Pin assignment of the Omicron connector from S/N CMC56 BK xxxxx 7-2
Tab. 45: Technical data of the operator view and the control elements 8-1
Tab. 46: Measured value display on the REF542 LC display screen 8-5
Tab. 47: Protective function entries on the tripping page and in the status line 8-8
Tab. 48: Parameter name in the configuration program and on the parameter setting pages 8-24
Tab. 49: Messages on the LC display screen 9-2
Tab. 50: Configuration program messages 9-4
Tab. 51: Causes and options for correction in the event of LCU error messages 9-11
Tab. 52: Causes and options for correction in the event of configuration program error messages 9-22
Tab. 53: Addresses of German Centers 9-39
Tab. 54: Technical data for storage and environmental conditions 10-1
Tab. 55: Event list of switching objects 11-4
Tab. 56: Event list of protective functions 11-6
Tab. 57: Symbols used in the connection diagrams of the REF542 11-14
Tab. 58: Diagrams of all function blocks 11-45
Tab. 59: List of SPA Bus data 11-52
Tab. 60: Event list of Earthfault directional sensitive (lo>dir., sensitive) 12-6

1 Introduction

This section will show the following:

- How this documentation is structured, its details and the best way to use it.
- The principal tasks the REF542 can be used for.
- What the operator needs to know to ensure smooth operation.
- Our guarantee provisions.

REF542: The made-to-measure protection for your substation

This is the fully revised documentation for the microprocessor-controlled REF542 bay control and protection unit (formerly SCU: Switchbay Control Unit). Open Chapter "1.1 Operation of the REF542" on page 1-2 first to find an overview of the basic functions of your new unit. Please also read Chapter "1.2 How to use this documentation" on page 1-3. It outlines the basic concept of this documentation and is intended to assist in optimum usage of the unit.

Figure 1: \quad Front view of the local command unit (LCU)
The above illustration shows the REF542 local command unit. The REF542 control panel is also referred to as the LCU (Local Command Unit). All other differences in design are in the "interior values", the functions and the equipment of the unit. Detailed information on the designs can be found in Chapter "3.6 Overview of the technical data" on page 3-45.

1.1 Operation of the REF542

The REF542 bay control and protection unit is a microprocessor-controlled multifunction module. Installed in an air or gas-insulated switchbay, it controls the following primary functions:

- Measurement
- Monitoring
- Control
- Protection
- Communication and
- Substation Automation.

The REF542 is typically used in various switchbay types in medium-voltage substations, industry, marine substations and power supply companies. It is also used as bakkup protection in high-voltage substations or also for simple high-voltage bays. It is a component of the ABB PYRAMID ${ }^{\circledR}$-substation control system.

The many and varied uses of the REF542 are controlled by the real-time capable microprocessor system. It consists of three self-monitoring microprocessors in continuous communication with one another. The following interfaces to the monitored bay are available:

- Binary inputs, electrically insulated by optocoupler for acquisition of external signals
- Binary output for sending signals (electrically insulated)
- Analog inputs for measuring current and voltage
- Process bus for data connections to external sensors
- Communications interface to connect to higher-order control systems and an
- interface for data exchange with the configuration PC.

The control panel can be supplied with a backlit LC display screen and nine keys as an option (LC is liquid crystal and refers to the functional principle of the display). In combination these components provide an easily understandable, self-explanatory operator view.

The REF542's variety of functions are precisely programmed for the requirements and the substation. The user-specific programming (application) is set up with the configuration program under Microsoft Windows ${ }^{\circledR}$.

The various functions of the unit are shown by function blocks in a function chart (FUPLA) and linked to one another. The application is imported to the REF542 when the unit is commissioned.

The following protection and monitoring functions may be incorporated, depending on the application:

Current protection functions

- Inrush blocking
- Overcurrent definite time protection (directional, two-stage)
- Overcurrent definite time protection (non-directional, three-stage)
- IDMT protection (four characteritic curve sets)
- Earth-fault protection (GFP) (non-directional, two-stage)
- Earth-fault protection (GFP) (directional, two-stage)
- Earth fault AMZ: Earth fault-dependent maximum current time protection (four trip curve sets)

Voltage protection functions

- Overvoltage definite time protection (three-stage)
- Undervoltage definite time protection (three-stage)
- Residual voltage definite time protection (two-stage)

Motor protection functions

- Thermal overload protection
- Motor start protection
- Blocking rotor
- Number of starts

Additional protective functions

- Distance protection
- Transformer differential protection
- Thermal supervision
- unbalanced load
- Directional Power
- Low load
- Frequency supervision
- Synchrocheck
- Automatic reclosing (component of some protective functions)

Further information

A detailed description of all components of the REF542 and their functions can be found in Chapter "3 Design, Function and Technical Data" on page 3-1. What components can be combined in one device can be found in "Table 1: Combination options of the components/boards" on page 3-4.

Chapter "5.4 Function and configuration of the function blocks" on page 5-20 includes comprehensive information on the function and configuration of the protective functions. There is an overview of the allowable combination options for protective functions in Chapter "5.4.7 General Information on the protective functions" on page 5-87. This explains the limitations to which the protective functions are subject when preparing the function chart.

1.2 How to use this documentation

The modular structure of the documentation enables the required information to be found quickly in the day-to-day operation of the device. This is aided by the finely detailed table of contents, the index and cross-references in the text.

To a large extent, the information required to conduct specific activities has been collected in separate sections. This avoids time wasted in searching and flipping back and forth through pages. However, this documentation should be read completely. This is the only way to achieve an overview of the operation and the variety of functions of the REF542 bay control and protection unit.

Some additional information to assist in using this manual follows:

- Every main section (1 to 11) is preceded by an overview of its contents. This will enable you to find out quickly whether the desired information is in this section.
- References to a section where additional information on the same subject can be found are always in italic. In addition, if they are not in the middle of a section, references are preceded by the following character: ${ }^{\Perp}$ This character means "See also...".

Example: ${ }^{\mu}$ Section "15.3.3 There is more" on p. 1234.

- Safety information is graded according the degree of danger and therefore is shown differently.
${ }^{\Perp}$ Chapter "2.1 Appearance of Safety Notes" on page 2-1
- The following characters are used in tables as required:

Characters	Meaning
\checkmark	Yes. / OK. / Function available.
-	No. / Not OK. / Function not available.

- All variations and components of the REF542 are described in this documentation. Information that is not relevant to your equipment may also be found. Your order documentation will show what components are included in your specific unit.

The following two subsections include additional special designations or illustrations in the documentation that refer to the local command unit or the configuration program. All terms in use are summarized there.

1.2.1 Special designations in the program documentation

Specific elements of the configuration program interface must be shown in a unified manner. This will ensure that the instructions are understood. Not all dialogue windows are described exactly in the corresponding sections. The structure of save and print dialogs is usually highly dependent on the operating system in use. Relevant information must be found in the online help or the manuals.

The graphics clarify the corresponding terms:

Figure 2: The menu structure as exemplified by the configuration program
The individual components are described below:

- The menu bar; click on the individual menus with the mouse cursor. The configuration program has two different menu bars, which are displayed on the upper border of the screen. After starting the program the main program menu bar (Main menu) is displayed. If the function chart editor is open, the other menu bar (Drawing menu) is displayed.
- The menu items; a menu is a combination of one or more menu items. They are selected with the mouse cursor and initiate an action.
- A submenu; after selecting a menu item a new menu with additional different menu items opens.

The individual menu items generally open dialog windows, which may appear as shown below and in part include the components described below.

Figure 3: Dialog window for setting the REF542 unit as an example of the window components
The individual components of the complete dialog window are described as follows:

- Entry fields; an entry of restricted length relevant to the context can be made here.
- Input area; this contains several checkboxes and/or option fields to which specific functions are assigned. Input areas are always indicated by a surrounding frame.
- A checkbox; they are marked with the mouse cursor. The mouse cursor is moved to the checkbox and the left mouse button clicked. The function is then activated (marked with an X) or deactivated (empty box).
- Information area; information that cannot be changed at this point or not at all is shown here.
- An option field; only one option can be marked here at any point (filled circle). Any option can be marked; it then excludes the other.
- The button; it can be clicked with the mouse cursor and then opens additional dialog windows, acknowledges various inputs or cancels a process. It is labeled with its function.

The screenshot below shows additional dialog window components.

Figure 4: \quad Section of a dialog window with a list field

- A selection from a list of options can be made in list fields. The following illustration shows an example of a list field: Left in the form as first shown in the dialog window and then right in its "open" form. A selection list is opened by clicking the mouse cursor on the button with the down arrow.
- Registry cards combine different setting options. To bring a a desired registry card to the foreground, click the mouse cursor on the visible part (the "tab" at the top) of the otherwise concealed card.
- Text or terms taken from the dialog windows or the configuration program are shown in a non-proportional font. Example: Click the Accept button to implement the set values.
- If menu items or submenus are to be activated in menus, this is described as follows:
E.g. Select the menu item Main Menu/File/Print/Connections....

First select the File menu from the menu bar of the main menu. Then select the Print submenu and then the menu item Connections.... The matching dialog is then shown.

Note Typical Windows save or print dialogs are not described in greater detail in this documentation, because they depend on the operating system in use. However, they do use the control components that have been described above.
Detailed explanations on using windows and the Windows operating system can be found in the Windows manual or Windows online help.

1.2.2 Special designations in the LCU documentation

The following symbols and designations for the switching elements on the LCU (local command unit) can be found in the descriptive text. The key symbols in the text are all set in pointed brackets and in bold.

Example: Press the $<\checkmark>$ keys to confirm the input.
The following graphic shows the arrangements of the control elements on the LCU.

Figure 5: \quad Front view of the local command unit (LCU) with its control elements

The description or display of the control elements shown above can be found in the diagram below.

Figure 6: The switch symbols on the LCU and the symbols assigned to them in the text

1.3 Operator's responsibilities

Please observe the following information for the operator:

- The operating personnel for the REF542 must have the appropriate qualifications for work on the unit.
- Your operating personnel must be authorized to work with or on REF542. (E.g. switching authorization in substations)
- Changes to the application as delivered may be made only by ABB personnel.
- For guarantee reasons, changes to the application as delivered made by the customer must always be approved by the appropriate ABB sales department.
- We recommend that only ABB personnel make adjustments to the unit. Once the guarantee has expired, the unit is opened at your own risk and is permitted after consultation with the ABB office that sold the unit.

1.4 Guarantee Provisions

The data provided in this documentation is intended solely to describe the product and must not be considered as assured properties. In the interest of clients, we are continually striving to bring our products up to the latest state of the art in technology. For this reason there may be differences between the product and the product description and the Handbook.

If the instructions and recommendations of our documentation are observed, then, according to our experience, the best possible operational reliability of our products is guaranteed.

It is virtually impossible for comprehensive documentation to cover every possible event that may possibly occur when using technical devices and apparatus. We therefore request that we or our representatives be consulted in the event of any unusual incidents and in cases for which this Handbook do not provide comprehensive information.

We explicitly refuse to accept any responsibility for all direct damages that occur as a result of erroneous usage of our devices, even if no special instructions on this are included in the Handbook.

The documentation has been carefully checked. If the user should find any defects in spite of this, we request that you inform us as quickly as possible.
$\left.{ }^{4}\right)$ Chapter "9.4.1 ACE Center" on page 9-39
${ }^{\text { }}$ Section "11.12 Feedback Form" on page 11-90

We, ABB Calor Emag Schaltanlagen AG, provide a 1 year guarantee for the functioning of the REF542.

The guarantee provisions are a component of the related contract documents.

Note Special arrangements may be made in consultation with the operator and will be specified in the contract documentation.
In general, all agreements, assurances, legal relationships and all ABB Calor Emag Schaltanlagen AG obligations arise from the current valid contract documentation, including any reference to the warranty provisions, which are not influenced by the content of this documentation.

Note ABB Calor Emag Schaltanlagen AG assumes no responsibility for damages resulting from improper use of REF542.

In the event of a guarantee claim, please contact the ABB office that sold the unit. $\left.{ }^{\wedge}\right)$ Chapter "9.4 Further information" on page 9-38.

2 Safety Regulations

In this chapter you will find the following information:

- The layout of safety notes in this documentation
- General safety notes
- Special safety warnings that must always be observed when working with the REF542.

The safety notes in the following chapters represent only a general selection of the points that must be observed. Additional safety notes applicable to the actual content of the chapter can be found in the specific chapters referring to the functions described or the Handbook.

Safety notes are either at the beginning of the section or directly at the relevant position in the text.

2.1 Appearance of Safety Notes

There are notes and warnings on hazards at the beginning of every section and also in the text. They are in a different font to distinguish them from normal text.

The safety warnings must be observed in all circumstances. If they are not observed, no guarantee claims will be accepted.

Note

A note indicates items that are significant in the specific context. A note may contain information on the interplay of various software components and appears as shown below.

Example:

Note

Caution Do not make any changes to the function chart unless you are familiar with the REF542 and the configuration software.
 Hazard information level 2
 Level 2 hazard information indicates hazards affecting life and limb. It must be observed to avoid injury to the operator or other personnel.
 Example:

Warning! Never attempt to remove the protective covers on the busbars by force.

Please read this section completely for information on the various formats for safety notes.

Hazard information level 1

Level 1 hazard information indicates hazards affecting substations and devices. It should always be observed, because otherwise function interruptions or malfunctions may occur. An example is shown below:

2.2 General safety notes

Documentation

Note The content of the documentation supplied with the device must be followed in all circumstances when the device is in operation.

Operating an electrical device

Warning! When any electrical device is being operated, specific parts of the device are subject to voltage. If safety warnings are not followed, hazards to personnel and property will result. Personal injury and damage to property may also occur.

Safe Operation

Note The device must be properly transported and stored to ensure fault-free and safe operation. In addition, commissioning, control, service and maintenance must be properly and thoroughly conducted.

Please also observe the following requirements for the operator:
${ }^{\wedge}$) Chapter "1.3 Operator's responsibilities" on page 1-7

2.3 Specific safety information

Five safety rules

Warning! The five safety rules according the so called "VBG4 Electrical Substations and Equipment" must be observed in all circumstances for personal safety:

1) Isolate the system before beginning work.
2) Secure against reactivation.
3) Ensure that there is no voltage.
4) Ground and short circuit.
5) Cover or shut out neighboring parts under power.

Additional safety standards

Warning! The following safety standards must be observed in all circumstances:

1) DIN VDE 0435 electrical relays in high-voltage substations
2) DIN VDE 0627 plug connections

Working on and operating the device

Note Only qualified personnel may work on and operate the device.
Qualified personnel are:

- Entrusted with the setup, installation, commissioning and operation of the device and the system in which it is installed.
- Qualified and authorized to conduct switching operations in accordance with the standards of safety engineering. This specifically includes switching on and off, isolating, grounding and signage.
- Trained in safety engineering standards and are familiar with the maintenance and use of safety equipment.
- Trained in first aid.

3 Design, Function and Technical Data

In this chapter you will find the following information:

- How to conducting the basic functions of measurement, monitoring, control and protection on the device
- How the REF542 operates in detail and its capabilities
- Its components
- What specific components do
- The control components of the REF542 bay control and protection unit
- The technical data of the unit and its components
- The tests and standards to which the unit or individual components are subject.

This chapter should be read through in full to become familiar with the unit and its functions and its options.

Chapter "3.6 Overview of the technical data" on page 3-45 provides an overview of the technical data of all possible components of the REF542. Chapter "3.2.2 Combination options for the components/boards" on page 3-4 explains how components can be combined.

This information and knowledge of the scope of delivery of the reader's own unit, which can be found in the delivery documents, will enable the reader to find specific information on his own unit in Chapter "3.4 Components: Function and Technical Data" on page 3-12. Finally, Chapter "3.5 Principles of LCU control" on page 3-42 provides information on the principles of control of the REF542 bay control and protection unit.

3.1 Basic Information

Measuring, monitoring, control and protection

The REF542 acquires various measured quantities from the bay being monitored via the binary and the analog inputs. They are converted to digital values and filtered. The filters remove harmonics and other high-frequency signals (> 350 Hz) and also lowfrequency signals (<45 Hz).
Unfiltered signals are used for impedance protection to guarantee its proper functioning.

The current values and the calculated rms values (rms values: root mean square values) are saved in a buffer memory. All currents, voltages, outputs, energies and the frequency are saved there. The buffer memory is scanned at regular intervals and the protection unit calculates whether a protective function should be started. If necessary a trip signal is generated. The buffer memory ensures that the processor holds constant measured values for the duration of the calculation. The following diagram clarifies the principal procedure.

Figure 7: \quad Principal protective function actions in the REF542
The next diagram shows the basic communications structure between the components of the REF542 and the required peripherals. The variety of functions of the bay control and protection unit is only possible with these communications. Continuous data exchange among the three processors ensures mutual monitoring.

The arrows indicate the direction of communication in every case. The terms and abbreviations are explained below:

- PC: Personal computer for configuring the REF542 and for recording measurement data.
- RS232: REF542 interface to a PC. It is at the operator view (LCU) of the bay control and protection unit.
- Protocol Handler: It administers the data to be exchanged between the REF542 and the PC; for example, when exporting measured values and event data from the REF542 to the PC.
- Analog Output Handler: It ensures that measured or calculated values are output by the analog output board.
- Microcontroller: A processor that coordinates data exchange with the other blocks, among other functions.
- FUPLA: Function chart; in this case a component of the microcontroller for the program controller.
- DSP: Protection and measurement unit (digital signal processor), among other functions responsible for processing the protective functions. The DSP also generates the trip signals for switching devices.
- Interbay bus interface: Intelligent module used to link a higher-order control system to the substation computer by a fiber-optic cable.
- I/O handler: It administers the data and commands for the binary inputs and outputs.
- Data Handler: It administers the data exchanged between the microprocessor and the LCU; for example, the status of the switches or the LED controls.
- LCU (Local Command Unit): Operator view of the REF542 with display screen, keys, LEDs and keyswitches.
Detailed information on the basic functions described above can be found in the following sections:
(4)Chapter "3.3 General description of functions" on page 3-5
${ }^{\text {² }}$ Chapter "3.4 Components: Function and Technical Data" on page 3-12

3.2 Design

The REF542 consists of various components that are described in Chapter "3.4 Components: Function and Technical Data" on page 3-12. General information and an overview of the combination options of the components is given below first.

3.2.1 General information

The REF542 housing is aluminum and painted with a special black coating. The paint protects the housing against electromagnetic interference. There is a short housing and a deep housing. An additional third binary input/output board and also the analog output board can be installed in the deep housing.

To enable installation in a switch panel, the front panel with its control elements is at the front of the housing. The plug connectors for connecting the unit to the bay are on the various boards, which are installed in the housing parallel to the control panel. They are accessible from above and protected by a cover. A signal converter ("Rucksack") for level conversion is attached to the rear or the side of the housing when current and voltage converters are used.
When sensors are used the converter set is not used. In this case, the sensor connector adapter is attached to the side of the REF542 housing with test taps.
${ }_{\mu}{ }^{\circ}$ Chapter "3.4.6 Recording measured values" on page 3-32

Depending on the equipment option, the REF542 control panel, is fitted with a backlit LC display screen. There are also 9 membrane keys and two keyswitches with eleven LEDs (light-emitting diodes) on the front panel. An RS232-standard interface for connection to a PC is installed on the front panel. Special keyswitches and connector covers can be supplied to raise the protection class.

The unit is of modular design and consists of various boards, each with a specific function.
${ }^{4}$) Chapter "3.4 Components: Function and Technical Data" on page 3-12

3.2.2 Combination options for the components/boards

The following table shows what components/boards and housings can be combined. Therefore, it provides information on the unit's expansion options.
Table 1: Combination options of the components/boards

					Transistor relay		Transistor relay			$\begin{aligned} & \text { I } \\ & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & \text { Oid } \end{aligned}$			$\begin{aligned} & \text { 응 } \\ & \text { O} \end{aligned}$ \sum_{Σ}^{m}	$\begin{aligned} & \pm \\ & \mathbf{t} \\ & \frac{1}{\omega} \end{aligned}$	-
	Voltage supply	-	\checkmark												
1st Board	Transistor relay	\checkmark	-	-	\checkmark	-	\checkmark	-	\checkmark						
Board	Conventional relay	\checkmark	-	-	-	\checkmark	-	\checkmark							
2nd Board	Transistor relay	\checkmark	\checkmark	-	-	-	\checkmark	-	\checkmark						
d Board	Conventional relay	\checkmark	-	\checkmark	-	-	-	\checkmark							
3rd Board	Transistor relay	\checkmark	\checkmark	-	\checkmark	-	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark
d Board	Conventional relay	\checkmark	-	\checkmark	-	\checkmark	-	-	\checkmark	-	\checkmark	\checkmark	\checkmark	-	\checkmark
	Analog outputs	\checkmark	-	-	\checkmark	\checkmark	\checkmark	-	\checkmark						
Pressor board	Processor 1	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	-	-	\checkmark	-	\checkmark	-
Processor board	Processor 2	\checkmark	-	-	\checkmark	\checkmark	\checkmark	\checkmark							
Communications board	SPA bus	\checkmark	-	-	\checkmark	\checkmark									
Communications board	MVB	\checkmark	-	\checkmark	-	-	\checkmark	\checkmark							
	Short	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	-	-	\checkmark	\checkmark	\checkmark	\checkmark	-	-
using	Deep	\checkmark	-	-											

3.3 General description of functions

The REF542 receives a large quantity of information from the switchbay via the binary and the analog inputs. These measured values are acquired and processed in cycles.

The values are acquired by current and voltage transformers. The signal level is converted by signal converters installed in an attachment on the REF542. The signal converter signals are forwarded to the unit by a terminal strip on the converter attachment. If current and voltage sensors are used, the signal converters are not used and the output signals are wired from the sensors to the analog inputs of the REF542 through a sensor connector adapter.
Binary and analog outputs are also available (when the corresponding boards are in use), for example to initiate switching operations. A fiber-optic system enables communication with a higher-order control system.

For the most part, the versatile functions of the REF542 are conducted by a realtimeenabled multiprocessor system. The individual processors conduct the following tasks:

DSP: Digital Signal Processor, Motorola DSP 56002
 Protection and measurement unit for:

- Processing the protection algorithms,
- Generating the starting, trip and directional signals,
- Generating the signal for the automatic restart (AR), when configured,
- Processing the blocking signal,
- Input filtering,
- Communication with the microcontroller and
- Self-monitoring.

MC: Microcontroller, Motorola MC 68332
Control and command unit for:

- Communication with the DSP and the peripherals,
- Processing the inputs and outputs,
- Data recording, processing and storage,
- Data exchange with the local control unit (LCU) and
- Self-monitoring.

CP: Communication Processor

Communication unit for the interbay bus for:

- Data exchange with the substation unit of a control system (for example, within the ABB Pyramid ${ }^{\circledR}$ system) via the communications interface. The communications board depends on the protocol in use.

The circuit diagram shows the design and the functional connections of the REF542 and its three main processors.

Figure 9: Circuit diagram of the communication paths for the three main processors
A table below shows exactly what protective functions the REF542 has and what types of faults can be detected. The table can also show how much the protection and measurement processor (DSP) is addressed by the various protective functions. The user can also determine the number of parameters used per protective function. This information is important, because an application can only operate properly if the configured protective functions meet the following three criteria:

- Max. DSP load 100\%
- Max. 12 protective functions
- Max. 120 protection parameters (note that 26 parameters are always used independently of the protective functions.)
Further information on the restrictions on the use of protective functions can be found in Chapter "5.4.7 General Information on the protective functions" on page 5-87.

Table 2: REF542 protective functions

ANSI Code	Protective function								
68	Inrush current blocking	7	8	\checkmark	-	-	-	\checkmark	\checkmark
67	Overcurrent Directional High	12	5	\checkmark	-	-	\checkmark	\checkmark	\checkmark
67	Overcurrent Directional Low	12	5	\checkmark	-	-	-	\checkmark	\checkmark
50	Overcurrent Instantaneous	7	4	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
51	Overcurrent High	3	4	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
51	Overcurrent Low	3	4	\checkmark	-	\checkmark	-	\checkmark	\checkmark
51	IDMT	6	4	\checkmark	-	-	-	\checkmark	\checkmark
50N	Earthfault High	6	4	\checkmark	-	-	\checkmark	\checkmark	\checkmark
50N	Earthfault Low	6	4	\checkmark	-	-	-	\checkmark	\checkmark
67 N	Earthfault Directional High	6	6	\checkmark	-	-	\checkmark	\checkmark	\checkmark
67N	Earthfault Directional Low	6	6	\checkmark	-	-	-	\checkmark	\checkmark
51 N	Earthfault IDMT	6	4	\checkmark	-	-	-	\checkmark	\checkmark
59	Overvoltage Instantaneous	3	4	\checkmark	-	\checkmark	-	\checkmark	\checkmark
59	Overvoltage High	3	4	\checkmark	-	\checkmark	-	\checkmark	\checkmark
59	Overvoltage Low	3	4	\checkmark	-	\checkmark	-	\checkmark	\checkmark
27	Undervoltage Instantaneous	4	4	\checkmark	-	\checkmark	-	\checkmark	\checkmark
27	Undervoltage High	4	4	\checkmark	-	\checkmark	-	\checkmark	\checkmark
27	Undervoltage Low	4	4	\checkmark	-	\checkmark	-	\checkmark	\checkmark
59N	Residual overvoltage High	3	4	\checkmark	-	-	-	\checkmark	\checkmark
59N	Residual overvoltage Low	3	4	\checkmark	-	-	-	\checkmark	\checkmark
49C	Thermal Overload	7	8	\checkmark	-	-	-	\checkmark	\checkmark
51	Motor Start Protection	3	4	\checkmark	-	-	-	\checkmark	\checkmark
51LR	Blocking Rotor	8	4	\checkmark	-	-	-	\checkmark	\checkmark
66	Number of Starts	0	4	\checkmark	-	-	-	\checkmark	\checkmark
21	Distance Protection	53	57	\checkmark	-	\checkmark	\checkmark	\checkmark	\checkmark
49 T	Thermal Supervision ${ }^{1}$	7	4	\checkmark	-	-	-	\checkmark	\checkmark
46	Unbalanced Load	9	5	\checkmark	-	-	-	\checkmark	\checkmark
32	Directional Power	2	5	\checkmark	-	-	-	\checkmark	\checkmark
37	Low Load	4	6	\checkmark	-	-	-	\checkmark	\checkmark
81	Frequency Supervisiom	2	4	-	\checkmark	-	-	\checkmark	\checkmark
25	Synchrocheck	10	5	-	\checkmark	-	-	\checkmark	\checkmark

1) This protective function requires a LON temperature sensor on the process bus

Control functions

Up to eight switchgear units and/or fixed symbols can be displayed on the freely configurable LC display screen by using a single-phase mimic diagram. The three keys below the LC display screen < $\mathbf{V}>,<\mathbf{l}\rangle,<\mathbf{O}>$ can be used to select up to five switchgear units and control them in double-pole mode. Manually controlled devices can be dis-
played as well as the remote controlled devices. The lower keyswitch "local/remote" blocks the local controller and releases the remote control via the control system. The control functions can be individually defined by using the configuration program and can be adapted for all current stations.

Interlocking

The interlocking is programmed with a user-friendly configuration program. Bay-level interlocking can be easily controlled by the position messages available from the individual switchgear units. Station-level interlocking can also be programmed. The messages required for this are sent to the binary inputs of the REF542 via the wiring. This allows the information to be linked to the bay level.

A control command, regardless of whether it is input at the local controller unit or at a control system, is only run if all interlockings are in place. Otherwise the command is blocked and an error message is displayed.

Measurement functions

Various measured values are displayed above the mimic diagram on the LC display screen. The display is numerically absolute and also in the case of currents and voltages as a bar graph. The currents are displayed relative to the rated value, that is set for the specific bay.

The display of the line voltage is based on the rated system value, and the display of the phase voltage is based on the rated system value $/ \sqrt{ } 3$.
$\left.{ }^{\wedge}\right)$ Chapter "5.3.4.3 The nominal values of the net and the measured value display" on page 5-10
The measured value to be displayed is selected with the two arrow keys. The measured values are arranged in a ring binder menu, which can be leafed through in either direction with the arrow keys.

If all of the REF542 measurement inputs are occupied with the corresponding signals, the following measured and calculated values can be displayed when the unit has all functions activated:

- The three line currents
- The earth current (measured)
- The zero sequence current (calculated)
- The average of current per phase in a configurable time window (1-30 minutes)
- The maximum current value per phase (i.e. the upper, maximum average value recorded),
- The three phase voltages
- The three line voltages
- The residual voltage (measured)
- The zero sequence voltage (calculated)
- The active power
- The reactive power
- The active energy
- The reactive energy
- The $\cos \varphi$
- The frequency
- The operating hours
- The total of switched phase fault currents
- The number of power circuit-breaker switching cycles.

To enable the option of measuring and calculating the above quantities, the REF542 requires a specific minimum number of current and voltage transformers/sensors that can be assigned to the seven analog inputs/measurement inputs:

- A current transformer/sensor for every phase that is to be measured,
- A voltage transformer/sensor for every phase that is to be measured,
- Once there is more than one voltage transformer/sensor, the line voltages are calculated and
- to calculate the power at least two current transformers/sensors and three voltage transformers/sensors (measurement of the phase voltages) are necessary.
"Table 46: Measured value display on the REF542 LC display screen" on page 8-5 provides a detailed overview of the conditions under which a measured or calculated value is displayed.

The physical sampling rate for the measured values is 2.4 kHz . Because two sampling values are combined by the measurement algorithm, the effective sampling rate is 1.2 kHz . When calculating the rms value (rms value: root mean square = square root of the sum of the quadratic average values) for current and voltage, the signal up to the seventh harmonic for 50 Hz or 60 Hz is used. These values are then also used as the basis for calculating power and energy.
${ }^{\wedge} \downarrow$ Chapter "11.7.1 Measured-value processing" on page 11-30
When calculating power, note that the REF542 expects the conductor-earth voltage as the voltage input quantity. The power can be calculated by the "Aron method" or threephase as required.
${ }^{4} \downarrow$ Chapter "11.7.5 Power calculation" on page 11-33
To calculate the frequency, a voltage sensor/transducer is normally used. If there are only current sensors/transducers available, one of them is used.
${ }^{4}$) Chapter "11.7.4 Calculation of the frequency" on page 11-33
If the temperature is required as a measured quantity, it is linked to the REF542 via the process bus (LON).

Monitoring

There is a total of eleven LEDs on the LCU, which display the current operating states of the switchbay.

The Operating LED lights as soon as the REF542 is ready for operation.
A three-color protection-status LED provides information on the status of the protective functions (protection not activated, protection activated, protection tripped).

A two-color interlocking status LED monitors the interlocking of the protective functions. It shows red if a prohibited switching operation is attempted.

The large red ALARM LED is strictly for warnings and, for example, is used to display a group alarm. When it is lit, communication with a PC, parameter set switching and parameter setting on the REF542 is not possible. The warning must first be acknowledged. The seven remaining LEDs can have the colors green, orange and red. They are freely configurable.
The warning or alarm messages can be saved until the alarms have been acknowledged. The explanations for the LEDs are displayed on the LC display screen when the <? > key is actuated.

Various functions are available for more detailed monitoring of the equipment in the switchbay, such as:

- Switching cycle counter
- Monitoring activation and deactivation circuits of the power circuit-breaker
- Monitoring the gas spaces in SF_{6} insulated substations (with corresponding external wiring)
- Monitoring the spring power of the power circuit-breaker (with corresponding external wiring)
- Monitoring the miniature circuit breakers in the switchbay (with corresponding external wiring).
The REF542 monitors itself internally. It has one watchdog relay per binary input/output board. This relay is actuated and breaks the N/C circuit as soon as one of the following faults occurs:
- Processor error: The MC (control and command processor) and the DSP (protection and measurement processor) are in continuous communication with each other. If one of the two processors detects a malfunction in the other, the REF542 is restarted.
- Interruption in auxiliary voltage supply: If this occurs, the REF542 is subject to a defined shut down with an internal voltage reserve. This retains the contents of the REF542 memory. Interruptions in the auxiliary voltage that last for less than 50 ms will have no effect.

The watchdog relay can also provide a second signaling path for reporting a malfunction in the REF542 directly to the message.
In addition, two output channels per binary output board in the REF542 can be monitored for trip circuit defects. A total of four output channels can be checked. The trip circuits on the breaker outputs are continuously monitored for interruptions by a quiescent current.
Trip circuit defects and processor errors are also transmitted to the higher-order control system over the interbay bus. A defective or missing communications board will therefore not influence the local controller functions or the protective functions.

The analog output board can, depending on its configuration, allow a quiescent current of 4 mA to flow to the connected terminal device. This allows the terminal device to generate an error message if the quiescent current fails.

Communications

The optical interface enables the REF542 to communicate directly with a higher-order control system. To ensure interference-resistant data transmission over the interbay bus, transmission throughout the system uses fiber-optic cables. The REF542 supports the SPA bus and the MVB protocol.
There is an RS 232 interface for communication with a PC on the front panel. This enables an application to be sent to the REF542. Before sending an application, the function chart included in it is checked for correctness according to various criteria.
Measured values, configuration data or the data from the optionally configurable interference recorder can be queried while the REF542 is operating via the RS 232 interface.
A defective or missing communications board will not influence the unit's local controller functions or its protective functions.

Data storage

The monitoring values of various sizes are saved internally. This includes: Maximum current values, energy values, switching cycles, switched currents and the fault records. The values are retained even if the auxiliary voltage fails or during maintenance work.
An event list is also maintained internally when the REF542 is connected to a control system. The events are timestamped and saved in a ring list with 50 entries. The trip
side, which contains the information on the last protective function trips, is saved in volatile memory.

Configuration

The configuration program is used to configure the REF542. All functions are designed as straight program components, and therefore changes to a function are usually possible without changes on the unit.

The application is saved in non-volatile memory in an EEPROM. It sets most of the capabilities of the REF542.

The configuration software runs under the Microsoft Windows ${ }^{\circledR}$ PC user interface. The functions are linked to one another in a function chart (FUPLA). It is programmed similarly to PLC programming and does not require special knowledge. The REF542 functions can therefore be changed in almost any way desired. This flexibility is particularly significant in with all automation sequences: For example, device and protection interlocking, switching sequences and automated functions can be implemented.

In the function chart various logical functions can be accessed as well as the function blocks of the protective functions and the binary interfaces. AND, OR and XOR logic gates as well as various flip-flop types and timing circuits are also among the other items available.

Operating modes

The REF542 can be used in three different operating modes. The two keyswitches on the control panel (LCU - Local Command Unit) of the unit are used to set the required operating mode.

The two modes "local/operating" and "remote/operating" are used in "standard" REF542 operations. In these modes all configured functions are active, and the unit can be controlled locally ("local/operating") or from a higher-order control station ("remote/operating"). For example, the operational data (measured and calculated quantities important for tripping the protective functions) can be scanned, maximum values can be displayed, switching operations conducted and alarms acknowledged.
The "local/input" operating mode enables various settings to be scanned and changed directly at the unit. The protective function parameter sets can be checked and if necessary another parameter set can be selected. In addition, the test mode, in which all interlockings are deactivated and function tests can be run, can be started. Authorization to start the test mode must be configured in the application.

3.4 Components: Function and Technical Data

The various components generally correspond to the individual boards. The fact that every one of these boards can be combined with others gives the REF542 its flexibility and variety of functions.

${ }^{7}$) Chapter "3.2.2 Combination options for the components/boards" on page 3-4

The boards have different interfaces, designated X1 to X10, Rx and Tx and accessible from above after removing the housing cover. The interfaces form the connection between the REF542 and the bay or equipment that is being monitored. The boards are plugged into the housing from above. To protect the boards there is an inner cover in the unit that has openings for the interfaces. Every board has the plug contact strip for the backplane (backplane, which is at the bottom of the housing. It connects the various boards together.
The principal configuration of the interfaces of the boards in the deep or short housing is shown in the two diagrams below. They both show a view of the REF542 from above and show the maximum possible number of boards that can be installed. The description and the technical data of the individual interfaces can be found in the following subsections where the individual components are described.

Figure 10: Configuration of the interfaces in the short REF542 housing from above

Figure 11: Configuration of the interfaces in the deep REF542 housing from above

3.4.1 CPU Board 1

Note The CPU board 1 can only be used with software versions V1*.**.

The CPU board is the heart of the REF542. It has two of the three processors. The third processor, the communication unit, is on the interbay bus board. The interface that receives the analog input quantities is installed directly on the CPU board. This enables them to be directly processed and evaluated. The following sections contain additional information on recording and processing measured values:
²)Chapter "3.1 Basic Information" on page 3-1
${ }^{\mu}$ Chapter "3.3 General description of functions" on page 3-5
The following diagram shows the schematic design of the CPU1 plug-in board. The sections relevant for this documentation are labeled. The black marks on the EEPROMs in the drawing indicate the orientation of the correspondingly marked corner on the EEPROM itself.

Figure 12: Schematic design of the CPU1 plug-in board

Caution Observe the precautions necessary when handling components that might be damaged by electrostatic discharges.

Interface assignment, -X3 analog inputs

The analog input signals are not sent directly from the switchbay to the -X3 interface. If transducers are used, the signals are received at the interface via the signal converter; if sensors are used, the signals are received at the interface via the sensor connection adapter with check tapping.
${ }^{\wedge}$) Chapter "3.4.6.4 Sensor terminal adapter" on page 3-35

REF542 bay control and protection unit (SCU)
Handbook

Table 3: $\quad-X 3$ interface assignment

-X3: analog inputs			
d-terminal	Signal	2	z-terminal
2	not assigned	4	not assigned
4	analog signal input 7	analog signal input 7	
6	not assigned	6	not assigned
8	analog signal input 6	analog signal input 6	
10	not assigned	10	not assigned
12	analog signal input 5	12	analog signal input 5
14	not assigned	14	not assigned
16	analog signal input 4	16	analog signal input 4
18	not assigned	18	not assigned
20	analog signal input 3	20	analog signal input 3
22	not assigned	22	not assigned
24	analog signal input 2	24	analog signal input 2
26	not assigned	26	not assigned
28	analog signal input 1	28	analog signal input 1
30	not assigned	30	not assigned
32	not assigned	32	not assigned

Plug type

Socket: Harting 0906248 3201, DIN 41612
Matching plug: Harting 0906000 9474, DIN 41612
Connector cable cross section max. $2.5 \mathrm{~mm}^{2}$ when transducers are connected to the -X2 signal converter connection
Connector cable cross section max. $0.5 \mathrm{~mm}^{2}$ when sensors are connected to the sensor connector adapter.

Table 4: Technical data of processor card, CPU 1

Processor Board		
Digital Signal Processor	DSP 56002	
Microcontroller	MC68332	
LON process bus	LON neuron	(optional)
Analog inputs	7	
	Rated frequency: 50 Hz or 60 Hz	Operating range of protective functions: $49.5 \mathrm{~Hz} \ldots 50.5 \mathrm{~Hz}$ or $59.5 \mathrm{~Hz} \ldots 60.5 \mathrm{~Hz}$
	Rated current: 150 mV 1 A or 5 A	when sensors are used when signal converters are used
	```Permissible load of current circuit sustained: 4 · In during 1 s: 100 · In dynamic (1 half-period): 250 · In```	(peak value)
	Rated voltage: $2 \mathrm{~V} / \sqrt{3}$    100 V or 110 V	when sensors are used when signal converters are used
	Consumption per conductor:   In the current circuit: $<0.1 \mathrm{VA}$ $<0.3 \mathrm{VA}$   In the voltage circuit: $<0.25 \mathrm{~A}$	at $I_{n}=1 \mathrm{~A}$   at $I_{n}=5 \mathrm{~A}$   at $U_{n}$

### 3.4.2 CPU board 2

Note The CPU board 2 is used from software version V2*.**.

The CPU board is the heart of the REF542. It has two of the three processors. The third processor, the communication unit, is on the interbay bus board. The interface that receives the analog input quantities is installed directly on the CPU board. This enables them to be directly processed and evaluated. The following sections contain additional information on recording and processing measured values:
$\left.{ }^{4}\right)$ Chapter "3.1 Basic Information" on page 3-1
${ }^{\mu}$ Chapter "3.3 General description of functions" on page 3-5
The following diagram shows the schematic design of the CPU 2 plug-in board. The sections relevant for this documentation are labeled. The black marks on the EEPROMs in the drawing indicate the orientation of the correspondingly marked corner on the EEPROM itself.


4 —Plug contact strip backplane
Figure 13: Schematic design of the CPU2 plug-in board

Caution Observe the precautions necessary when handling components that might be damaged by electrostatic discharges.

Interface assignment, -X3 analog inputs
The analog input signals are not sent directly from the switchbay to the -X3 interface. If transducers are used, the signals are received at the interface via the signal converter; if sensors are used, the signals are received at the interface via the sensor connection adapter with check tapping.
${ }^{4}$ ) Chapter "3.4.6.4 Sensor terminal adapter" on page 3-35

Table 5: $\quad-X 3$ interface assignment

-X3: analog inputs			
d-terminal	Signal	z-terminal	Signal
2	not assigned	2	not assigned
4	analog signal input 7	4	analog signal input 7
6	not assigned	6	not assigned
8	analog signal input 6	8	analog signal input 6
10	not assigned	10	not assigned
12	analog signal input 5	12	analog signal input 5
14	not assigned	14	not assigned
16	analog signal input 4	16	analog signal input 4
18	not assigned	18	not assigned
20	analog signal input 3	20	analog signal input 3
22	not assigned	22	not assigned
24	analog signal input 2	24	analog signal input 2
26	not assigned	26	not assigned
28	analog signal input 1	28	analog signal input 1
30	not assigned	30	not assigned
32	not assigned	32	not assigned

## Plug type

Socket: Harting 0906248 3201, DIN 41612 Matching plug: Harting 0906000 9474, DIN 41612
Connector cable cross section max. $2.5 \mathrm{~mm}^{2}$ when transducers are connected to the -X2 signal converter connection
Connector cable cross section max. $0.5 \mathrm{~mm}^{2}$ when sensors are connected to the sensor connector adapter.

Table 6: Technical data of processor card, CPU 2

Processor Board		
Digital Signal Processor	DSP 56002	
Microcontroller	MC68332	
LON process bus	LON neuron	(optional)
Analog inputs	7	
	Rated frequency: 50 Hz or 60 Hz	Operating range of protective functions: $49.5 \mathrm{~Hz} \ldots 50.5 \mathrm{~Hz}$ or $59.5 \mathrm{~Hz} \ldots 60.5 \mathrm{~Hz}$
	Rated current: 150 mV    1 A or 5 A	when sensors are used when signal converters are used
	Permissible load of current circuit sustained: $4 \cdot I_{n}$   during $1 \mathrm{~s}: 100 \cdot \mathrm{I}_{\mathrm{n}}$   dynamic (1 half-period): $250 \cdot I_{n}$	(peak value)
	Rated voltage: $2 \mathrm{~V} / \sqrt{ } 3$    100 V or 110 V	when sensors are used when signal converters are used
	Consumption per conductor:   In the current circuit: $<0.1 \mathrm{VA}$   $<0.3$ VA   In the voltage circuit: $<0.25 \mathrm{~A}$	at $I_{n}=1 \mathrm{~A}$   at $I_{n}=5 \mathrm{~A}$   at $U_{n}$

### 3.4.3 Power supply and process bus (LON)

The power supply provides the REF542 with the required operation voltage. It reduces the input DC voltage of $48 \ldots 240 \mathrm{~V}$ (smoothed) to the voltages required to supply the other boards and components and also the LON sensors. The power supply board of the -X0 process bus connection is also available. The LON is currently used as the process bus for recording temperatures.
${ }^{4}$ ) Chapter "3.4.8 Process bus system" on page 3-41
The following diagram shows the schematic design of the power supply board. The sections relevant for this documentation are labeled.


Figure 14: Schematic design of the power supply board

## Caution Observe the precautions necessary when handling components that might be

 damaged by electrostatic discharges.Interface assignment, -X0 process bus (LON)
Table 7: -X0 interface assignment

-XO: process bus (LON)	
Terminal	Assignment
1	+24 V output
2	-24 V output
3	+ LON process bus
4	- LON process bus

${ }^{〔}$ Chapter "3.4.8 Process bus system" on page 3-41

Interface assignment, -X1 auxiliary voltage supply
Table 8: -X1 interface assignment

$-X 1:$ external voltage supply	
Terminal	Assignment
1	Plus (48 $\ldots 240 \mathrm{~V} / \mathrm{DC}$, smoothed $)$
2	not assigned
3	Minus

## Plug type

-XO: LON process bus electrical

- PCB plug $90^{\circ}, 4$-pole
-X1: REF542 voltage supply
- Weidmüller BLA, connector cables to $1.5 \mathrm{~mm}^{2}$

Table 9: Technical data of the power supply and LON process bus board

Power supply and LON process bus board		
Power supply	Voltage range $\mathrm{V}_{\mathrm{CC}}$ : $48 \text {... } 240 \text { V DC }$	Oscillation amount: max. $10 \%=U_{t} / U_{n} \cdot 100 \%$
	Earth connection on housing	
	Override time: min. 50 ms	
	Power input: $<40 \mathrm{~W}$    $<50 \mathrm{~W}$	Short housing Deep housing
	Surge resistance: 300 V	Surge arrester/varistor
	Switch-on peak current $\mathrm{I}_{\mathrm{p}}$ :   - 15 A at $\mathrm{V}_{\mathrm{CC}}=48 \mathrm{~V}$   - 36 A at $\mathrm{V}_{\mathrm{CC}}=110 \mathrm{~V}$   - 73 A at $\mathrm{V}_{\mathrm{CC}}=230 \mathrm{~V}$	$\begin{aligned} & >10 \mathrm{~A} \text { for } 100 \mu \mathrm{~s} \\ & >15 \mathrm{~A} \text { for } 100 \mu \mathrm{~s} \\ & >20 \mathrm{~A} \text { for } 100 \mu \mathrm{~s} \end{aligned}$

### 3.4.4 Binary input and output boards

Two types of input and output boards (I/O boards) are available for the REF542. They differ in the type and the number of relays used and are described in next two subsections.

## Caution Input and output boards with conventional and transistor relays cannot be combined in one unit.

### 3.4.4.1 Input and output board with transistor relay

This board provides the interfaces "to the outside". It has the binary inputs, which acquire messages such as switching confirmations, and the binary outputs (channels), through which switching objects such as power circuit-breakers can be controlled. A maximum of three such boards may be installed in the REF542.

## Binary inputs on the transistor relay board

The figure below shows the optocoupler input circuits, which are parallel switched to the binary inputs. It also shows the assignment of the input numbers for the terminals of the $-\mathrm{X} 4,-\mathrm{X} 5$ and -X 8 interfaces. These interfaces are occupied by the binary inputs of the maximum of three binary input/output boards.


Figure 15: Binary inputs on the transistor relay boards

## Binary outputs on the transistor relay board

The figure below shows the configuration of the transistor relay on the input terminals of the binary outputs. It also shows the assignment of the output numbers (channel numbers) for the terminals of the -X6, -X7 and -X9 interfaces. These interfaces are occupied by the binary outputs of the maximum of three binary input/output boards.


Figure 16: Configuration of the transistor relays on the binary outputs

## Functional principle of the transistor relay and the trip circuit monitoring

The following diagram uses the example of binary output 1 on the first transistor relay board to show the functioning of the transistor relay and the trip circuit monitoring.


Figure 17: Principle of a power output with trip circuit monitoring using the example of binary output 1

Note Trip circuit monitoring is only available for the first two I/O boards.
The trip circuits are monitored for binary outputs 1, 2 (1st I/O board) and 10, 11 (2nd I/O board). For this purpose there is a permanent constant DC current of 2 mA in the trip circuit (connections -X4/-X5:d4/z4 and -X4/-X5:d8/z8). If the auxiliary supply voltage fails for at least 100 ms , this is interpreted as a fault in the trip circuit and an error message appears on the LC display screen:

Table 10: Trip circuit monitoring error message

Defective	Error message
Binary output 1 on the 1st I/O board defective.	Coil monitor board 1.1
Binary output 2 on the 1st I/O board defective.	Coil monitor board 1.2
Binary output 1on the 2nd I/O board defective.	Coil monitor board 2.1
Binary output 2 on the 2nd I/O board defective.	Coil monitor board 2.2

If more switching operations have to be suppressed in the event of a failure, the message is required not only on the REF542 display screen but also as a signal that can be processed in the function chart. A special function block has been developed for this. It sends a logical 1 for every monitored circuit if a malfunction occurs.
${ }^{〔}$ h Chapter "5.4.2.17 IO-Supervision" on page 5-64
Transistor relay: Power output to motor control unit
The binary outputs 3,4 and 5, 6 (1st I/O board), 12, 13 and 14, 15 (2nd I/O board) and 21, 22 and 23, 24 (3rd I/O board) are power outputs that can be specifically used for the motor control unit. To enable optimum usage of these power outputs, two special switching objects are available.
${ }^{4}$ ) Chapter "5.4.2.14 Switching object 2-2: H bridge Card" on page 5-56
${ }^{\mu} \downarrow$ Chapter "5.4.2.15 Switching object 4-4: H bridge Card" on page 5-59


Figure 18: Principle of the power output to the motor control unit using the example of the binary outputs $3,4,5$ and 6 on the transistor relay board

## Plug type

-X4-9: socket: Harting 0906248 3201, DIN 41612
Matching plug: Harting 0906000 9474, DIN 41612

- Binary inputs: Connector cables to $1.5 \mathrm{~mm}^{2} 265 \mathrm{~V}$ AC/DC
- Power outputs: Connector cables to $1.5 \mathrm{~mm}^{2} 265 \mathrm{~V}$ AC/DC
- Signal outputs: Connector cables to $1.5 \mathrm{~mm}^{2} 250$ V AC/DC


## Schematic layout

The schematic layout of the transistor relay input and output board is shown in the diagram below. The sections relevant for this documentation are labeled.


Figure 19: Schematic view of transistor relay and input and output board

## Caution Observe the precautions necessary when handling components that might be damaged by electrostatic discharges.

Table 11: Technical data of the binary input/output board with transistor relay
Binary input/output board with transistor relay

Max. number	2	Short housing
	3	Deep housing
Number of inputs	14 per board	
Input voltage	48 ... 265 V DC	
Voltage ON state	> 35 V	
Input current ON state	1.2 mA	
Voltage OFF state	$<25 \mathrm{~V}$	
Input current OFF state	$0 \mathrm{~mA} \mathrm{(0V)}$	
Minimum impulse time	15 ms	
Configurable delay	$0 \ldots 65000 \mathrm{~ms}$	additive to min. impulse time
Number of power outputs	2 per board	
Transistor relay type	IRGPC50S	
Operating voltage	$48 . . .265$ V DC	
Impulse current	12 A	Maximum of 10 switching operations with a switching duration $<30 \mathrm{~s}$ within 10 min .
Phase fault current	70 A	Switching duration < 10 ms
Number of power outputs	4 per board	
Transistor relay type	IRFP350	
Operating voltage	$48 . . .265$ V DC	
Impulse current	10 A	Maximum of 10 switching operations with a switching duration $<30 \mathrm{~s}$ within 10 min .
Phase fault current	16 A	Switching duration $<10 \mathrm{~ms}$
Number of signal outputs	2 per board	
Transistor relay type	AQZ204	
Operating voltage	$48 \ldots 265$ V DC	
Load current	0.3 A	
Phase fault current	1 A	Switching duration < 100 ms
Number of watchdog relays	1 per board	
Transistor relay type	AQZ204	
Operating voltage	$48 \ldots 265$ V DC	
Load current	0.3 A0	
Phase fault current	1 A	Switching duration < 100 ms
Total inputs	14 per board	
Total outputs	9 per board   (8 freely configurable)	

### 3.4.4.2 Input and output boards with conventional relays

This board provides the interfaces "to the outside". It has the binary inputs, which acquire messages such as switching confirmations, and the binary outputs (channels), through which switch objects such as power circuit-breakers can be controlled. A maximum of three such boards may be installed in the REF542.

## Binary inputs on the conventional relay board

The diagram below shows the optocoupler input circuits, which are switched parallel to the binary inputs. It also shows the arrangement of the input numbers for the terminals of the -X4, -X5 and -X8 interfaces. These interfaces are occupied by the binary inputs of the maximum of three binary input/output boards.


Figure 20: The binary inputs on the conventional relay boards

## Binary outputs on the conventional relay board

The diagram below shows the configuration of the conventional relays to the input terminals of the binary outputs. It also shows the assignment of the output numbers (channel numbers) to the terminals on the -X6, -X7 and -X9 interfaces. These interfaces are occupied by the binary outputs of the maximum of three binary input/output boards.


Figure 21: Breaker configuration implemented with the conventional relays

## Functional principle of the conventional relay and the trip circuit monitoring

The following diagram uses the example of binary output 1 on the first conventional relay board to clarify the functioning of the conventional relay and the trip circuit monitoring.


Figure 22: Principle of a power output with trip circuit monitoring using the example of binary output 1

Note Trip circuit monitoring is only available for the first two binary output boards.

The trip circuits are monitored for binary outputs 1, 2 (1st I/O board) and 9, 10, (2nd I/O board). There is a permanent DC current with a frequency of 2 kHz in the trip circuit (connections -X6/-X7:d4/z4 and -X6/-X7:d8/z8; current flows from d to z ). The amount of this current is independent of the applied voltage of the output. If there is no current for at least 100 ms , it is interpreted as a fault and an error message is displayed on the LC display screen:

Table 12: Error message in the trip circuit monitoring

Defective	Error message
Binary output 1 on the 1st I/O board defective.	Coil monitor board 1.1
Binary output 2 on the 1st I/O board defective.	Coil monitor board 1.2
Binary output 1on the 2nd I/O board defective.	Coil monitor board 2.1
Binary output 2 on the 2nd I/O board defective.	Coil monitor board 2.2

If more switching operations have to be suppressed in the event of a failure, the message is required not only on the REF542 display screen but also as a signal that can be processed in the function chart. A special function block has been developed for this. It supplies a logical 1 for every monitored circuit if a malfunction occurs.
(4) Chapter "5.4.2.17 IO-Supervision" on page 5-64

## Conventional relay: power output to motor control unit

The binary outputs 5, 6 (1st I/O board), 13, 14, (2nd I/O board) and 21, 22 (3rd I/O board) are power outputs that can be specifically used for the motor control unit. To enable optimum usage of these power outputs, two special switching objects are available.
${ }^{\text {² }}$ ) Chapter "5.4.2.12 Switching object 4-3: Motorcard" on page 5-49
² Chapter "5.4.2.13 Switching object 6-5: Magnetmotorcard" on page 5-52


Figure 23: Principle of the power output to the motor control unit using the example of binary outputs 5 and 6 of the conventional relay board

## Plug type

-X4-9: socket: Harting 0906248 3201, DIN 41612
Matching plug: Harting 0906000 9474, DIN 41612

- Binary inputs: Connector cables to $1.5 \mathrm{~mm}^{2} 265 \mathrm{~V}$ AC/DC
- Power outputs: Connector cables to $1.5 \mathrm{~mm}^{2} 265 \mathrm{~V}$ AC/DC
- Signal outputs: Connector cables to $1.5 \mathrm{~mm}^{2} 250$ V AC/DC


## Number of switching cycles for conventional power relays

Note that the conventional, mechanical relays are not infinitely durable. The following tables show the maximum switching cycles of the power relays.
Table 13: Maximum switching cycles of the conventional power relays

Number of maximum switching cycles   Operating   voltage   250 V AC   Switched   current	Power	Load type	Switching   frequency	Switching   cycles	
220 V AC	6.62 A	1500 VA	$\cos \varphi=1$	0.2 Hz	30000
220 V AC	5.11 A	1125 VA	$\cos \varphi=0.6$	0.2 Hz	100000
220 V AC	4.43 A	975 VA	$\cos \varphi=0.35$	0.2 Hz	100000
220 V AC	2.27 A	500 VA	$\cos \varphi=1$	0.2 Hz	100000
220 V AC	1.7 A	375 VA	$\cos \varphi=0.6$	0.2 Hz	300000
220 V AC	1.45 A	320 VA	$\cos \varphi=0.35$	0.2 Hz	300000
30 V DC	2 A	60 W	$\mathrm{~L} / \mathrm{R}=0 \mathrm{~ms}$	0.2 Hz	300000
60 V DC	0.05 A	3 W	$\mathrm{~L} / \mathrm{R}=26 \mathrm{~ms}$	0.2 Hz	2000000
10 V DC	0.01 A	0.1 W	$\mathrm{~L} / \mathrm{R}=0 \mathrm{~ms}$	0.2 Hz	2000000

## Schematic layout

The following diagram shows the schematic design of the board. The sections relevant for this documentation are labeled.

## Binary inputs Binary inputs



Figure 24: Schematic view of the conventional relay board

## Caution

Observe the precautions necessary when handling components that might be damaged by electrostatic discharges.

REF542 bay control and protection unit (SCU)

## Handbook

Table 14: Technical data of the binary input/output board with conventional relays

Binary input/output board with conventional relays		
Max. number	2	Short housing
	3	Deep housing
Number of inputs 14 per board		
Input voltage $48 \ldots 265 \mathrm{~V}$ DC		
Voltage ON state	$>35 \mathrm{~V}$	
Input current ON state	1.2 mA	
Voltage OFF state	$<25 \mathrm{~V}$	
Input current OFF state	$0 \mathrm{~mA} \mathrm{(0V)}$	
Minimum impulse time (filter time)	15 ms	Type-specific fil
Configurable delay	$0 \ldots 65000 \mathrm{~ms}$	additive to min
Number of power outputs	5 per board	
Relay type	SF2	
Operating voltage	265 V DC or 250 V AC	
Switch-on peak current	20 A	
Load current	12 A	
Shutdown current	6 A	
Switching power	300 W for max. 100 ms	
Switching cycles	$\stackrel{\text { Th }}{ }$ "Table 13: Maximum switching cycles of the conventional power relays" on page 3-28	
Number of signal outputs	2 per board	
Relay type	DS2E	
Operating voltage	220 V DC or 250 V AC	
Max. current	2 A	
Switching cycles	Electrical max. 100000	
	Mechanical max. 10000000	
Number of watchdog relays	1 per board	
Relay type	DS2E	
Operating voltage	220 V DC or 250 V AC	
Max. current	2 A	
Switching cycles	Electrical max. 100000	
Mechanical max. 1000000		
Total inputs	14 per board	
Total outputs	8 per board (7 freely configurable)	

### 3.4.5 Analog output board

This board continuously sends four analog signals to its outputs. The signals represent measured or calculated values from the REF542 and may be displayed on analog measuring instruments. The measured or calculated values to be output from the REF542 are converted by digital-analog converters and represented over a range of $0 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$. In each case there is an overload range of $20 \%$.

If the range $4 \ldots 20 \mathrm{~mA}$ is used, a quiescent current of 4 mA flows through the carrier to the terminal device. This enables the terminal device to generate an error message if there are problems with the carrier or the board. The use of the analog output board must be input in the configuration program when configuring the unit.

## ${ }^{\text {r }}$ Chapter "5.3.5 Analog outputs" on page 5-11

The figure below shows the wiring of the -X10 interface. It also shows the numbers of the analog outputs and their terminal assignments.


Figure 25: Configuration of the analog output board current sources

Table 15: Technical data of the analog output board
Analog output board (optional)

Number of analog outputs	4	
Output current	$0 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$	with $20 \%$ overload in each case
Output voltage	$<15 \mathrm{~V}$	
Permissible burden	$500 \Omega$	

## Limitations on the output of Operational measured values

Note The analog output board can only yield values that are measured or calculated based on the configuration.

The following table shows the conditions under which a measured or calculated value is also output:
Table 16: Limitations on the output of analog signals

Measured or calculated value	Condition
$\mathrm{U}_{1 \mathrm{E}}, \mathrm{U}_{2 \mathrm{E}}, \mathrm{U}_{3 \mathrm{E}}:$ Phase voltages	Three voltage transformers/sensors   configured
$\mathrm{U}_{12}, \mathrm{U}_{23}, \mathrm{U}_{31}$ : Line voltage	Voltage transformer or voltage sensor on the 7th an-   alog input
$\mathrm{U}_{7 \mathrm{E}}:$ Measured residual voltage	Neutral point voltage-protective function   configured
$\mathrm{U}_{0}:$ Calculated zero sequence voltage	Three current transformers/sensors configured
$\mathrm{I}_{1}, \mathrm{I}_{2}, \mathrm{I}_{3}:$ Line currents	Voltage transformer/sensor on the 7th analog input
$\mathrm{I}_{7}:$ Measured earth current	Earth fault-protective function configured
$\mathrm{I}_{0}:$ Calculated zero sequence current	Power calculation activated in   the configuration
$\mathrm{P}:$ Active power	Q: Reactive power
Phase difference: cos $\varphi$	Synchrocheck configured.
U37, U67: Calculated line voltages of the se-   cond network	

## Schematic layout

The following diagram shows the schematic design of the plug-in board. The sections relevant for this documentation are labeled.


Figure 26: Schematic design of the analog output board

Caution Observe the precautions necessary when handling components that might be damaged by electrostatic discharges.

## Plug type

Socket: Harting 0906248 3201, DIN 41612
Matching plug: Harting 0906000 9474, DIN 41612
Connector cable cross section max. $1.5 \mathrm{~mm}^{2}$, twisted-pair low-current cable

### 3.4.6 Recording measured values

The REF542 operates with current and voltage transformers and also with sensors.
When instrument transformers are connected, the REF542 requires a signal converter in which several input transformers for adjusting the current and voltage measured quantities are installed. The input transformers are there for electrical decoupling of the electronics from the primary measured quantities, which have disturbance variables. The input transformers transform the standardized phase voltages
$\frac{100 \mathrm{~V}}{\sqrt{3}}$ on $\frac{2 \mathrm{~V}}{\sqrt{3}}$
and the standardized line currents
1 A or $5 \mathrm{~A} \quad$ on 150 mV
in accordance with the defined measurements for the analog inputs of the bay control and protection unit.
When measurement sensors are connected, the REF542 receives the measurements directly at the output of the sensors. Only one sensor connection adapter, which can be easily installed, is installed between them.

The following subsections have brief descriptions of the various measurement recorders and the required converters or adapters.

Note Please note that in the REF542 the measurement and protective functions use the same measurement recorders.

### 3.4.6.1 Instrument transformer

## Current transformer

These are transformers in a special small design. They transform the high currents that are to be measured down to lower currents virtually linearly. They are then connected (secondary converter) to the REF542 via a signal converter. The instrument transformer consists of the primary coil (the primary conductor) and the secondary coil, which is wound around the core.
$\left.{ }^{4}\right)$ Chapter "11.1 Requirements for the current transformers when implementing distance protection" on page 11-1


Figure 27: Circuit diagram of a current transformer at a phase

Note When selecting the rated value of current transformers, note that their signals are used for the REF542 measurements and also for starting and tripping protective functions.

## Voltage transformer

The voltage transformers are also special transformers that step down the high primary voltage signal to a lower, more easily measurable secondary quantity virtually linearly. Also in this case a signal converter (secondary converter) must be used for the connection to the REF542.


Figure 28: Circuit diagram of a voltage transformer used to measure the conductorearth voltage

### 3.4.6.2 Signal converter

The signal converters are installed in a separate housing at the rear of the REF542. They are used exclusively for adjusting the levels between the transducers and the analog inputs. The standardized conductor-earth voltages are transformed from

$$
\frac{100 \mathrm{~V}}{\sqrt{3}} \text { on } \frac{2 \mathrm{~V}}{\sqrt{3}}
$$

and the standardized line currents from
1 A or 5 A
on
150 mV

Closed U-core transformers and core-balance current transformers are different. While in the closed U-core transformers a phase error of approximately $2.7^{\circ}$ occurs, the core-balance current transformers show no phase error. Otherwise the only difference is in the configuration of the -X2 interface: In the closed U-core transformers it is at the top of the transformer housing and at the left in core-balance current transformers.

## -X2 interface assignment (example)

Table 17: Example of an -X2 terminal strip assignment

-X2: signal converter input			
Terminal number	Signal		Nominal value
1	Current transformer	$\mathrm{I}_{\mathrm{L} 1}$	1A
2	Neutral point current	$\mathrm{L}_{\mathrm{L} 1}{ }^{\text {d }}$	
3	Current transformer	$\mathrm{I}_{\mathrm{L} 1}$	5A
4	Current transformer	$\mathrm{I}_{\mathrm{L} 2}$	1A
5	Neutral point current	$\mathrm{IL}_{\text {L }}$	
6	Current transformer	$\mathrm{I}_{\text {L2 }}$	5A
7	Current transformer	$\mathrm{I}_{\text {L3 }}$	1A
8	Neutral point current	LL3'	
9	Current transformer	$\mathrm{I}_{\text {L3 }}$	5A
10	Voltage transformer	$\mathrm{U}_{\text {L1E }}$	$100 \mathrm{~V} / \sqrt{ } 3$ or $110 \mathrm{~V} / \sqrt{ } 3$
11	Neutral point voltage	N	
12	Voltage transformer	$\mathrm{U}_{\text {L2E }}$	$100 \mathrm{~V} / \sqrt{ } 3$ or $110 \mathrm{~V} / \sqrt{ } 3$
13	Neutral point voltage	N	
14	Voltage transformer	$\mathrm{U}_{\text {L3E }}$	$100 \mathrm{~V} / \sqrt{ } 3$ or $110 \mathrm{~V} / \sqrt{ } 3$
15	Neutral point voltage	N	
Design, Function and Technical DataDECMS/S   $3-33$			

Table 17: Example of an -X2 terminal strip assignment

-X2: signal converter input   Terminal   number   Signal	Nominal value	
16	not assigned	
17	not assigned	
18	not assigned	
19	Residual current transformer	$\mathrm{I}_{0}$
20	Neutral point residual current	$\mathrm{I}_{0}^{\prime}$
21	Earth	

## Plug type

Weidmüller AP DFK6 Gr C, connector cables up to $6 \mathrm{~mm}^{2}$

### 3.4.6.3 Combi sensors

The combi sensors measure current and voltage of a phase simultaneously. The required current and voltage sensor is integrated into a cast resin housing. A Rogowski coil is used as a current sensor and a resistive precision voltage divider as a voltage sensor. In addition, the required shielding of the voltage sensor to prevent interference by any signals is also used as a capacitive voltage divider.
The sensors are distinguished by their high precision, their linear response characteristics and their high dynamic range. The Rogowski coil and the voltage sensor map the line current or the line voltage directly to voltage signals that can be processed by the REF542. The Rogowski coil, because of its design as an air-core coil, does not show saturation characteristics as experienced with conventional iron-core transformers. The current-proportional measured quantities are inductively phase-shifted by $90^{\circ}$.

The special, double-shielded signal lines are installed on the sensor terminal adapter of the REF542 in one piece. This eliminates any possible error sources resulting from intermediate terminals.

### 3.4.6.4 Sensor terminal adapter

The sensor terminal adapter, also referred to as a hedgehog, is used to connect seven sensors. It is installed externally on the side of the REF542 housing and has 7 check taps as well as the sensor connectors. The sensor signals can be measured there. The sensor connection box is linked directly to the -X3 interface for the analog measurement inputs.
The diagram below shows the front view and the circuit diagram of the sensor terminal adapter. The drawings are not to scale and are only intended to give an impression of the design and the function.


The $p$ index indicates the check taps. The configuration of the current and voltage inputs is only an example.


Front view


Sensor terminal adapter

REF542

Figure 29: Front view and main circuit diagram of the sensor terminal adapter

## Plug type

Socket on sensor terminal adapter: Radiall BR2 R. 605550020
Matching plug: Radiall R. 605006010

## Other technical data

Line between sensor terminal adapter and REF542-X3 interface:
0.5 m cable $\mathrm{CY}(\mathrm{F} 168.770) 16 \times 0.14 \mathrm{~mm}^{2}$ with Harting plug 09060009474

### 3.4.7 Interbay bus system

The optoelectronic interbay bus system (former name: interbay bus system) in the REF542 is used for communication with a higher-order control system or other substations. Therefore, it is particularly suited as a component of the ABB Pyramid ${ }^{\circledR}$ control system. It can be used to send control commands to the REF542 if the "operating/remote" operating mode has been enabled with the keyswitch on the REF542 operator panel. The event data (Events) is sent from the bay control and protection unit with information on current status and monitoring data from various function blocks. Events are transmitted at changes in status. Protective function parameters can also be set and queried over the interbay bus. In addition, the status of specific function blocks can be called up (status information).

The interbay bus system operates with the SPA bus or the MVB, depending on the interbay bus board.

### 3.4.7.1 SPA bus as interbay bus

The SPA bus is implemented as a system-wide, non-redundant interbay bus system. Incoming and outgoing data are primarily processed by the communication unit (Motorola 68HC11 processor). The SPABUS protocol is an asynchronous, serial communications protocol.

The other substations are connected with fiber-optic or plastic-fiber cables. The fiberoptic cables are used to avoid interference caused by electromagnetic influence. In addition, the SPA bus system is designed to ensure internal substation communications for the protection and control systems and also for the report printer system.

The SPA bus protocol supports one master and several slaves in various bus structures. The bus structure must be input into the device configuration in the configuration program.
². Chapter "5.3.3 Hardware" on page 5-5

## Bus structure of the SPA bus

Inside a substation the slaves, i.e. the various bay control and protection devices, are linked to the master in the ring or star bus.

The advantage of the ring bus is that only one single hardware-I/O module is necessary in the substation. However, one disadvantage is that station-wide communications are disrupted if a line or a slave malfunctions. The diagram below shows the layout of the ring bus:


Figure 30: $\quad$ SPABUS in single ring design

Note For reasons of transmission speed and availability, it is recommended that no more than five REF542s be operated in a ring bus system.

The advantage of the star bus is that every slave is linked directly to the master. If a line or a slave malfunctions, the other system components continue to operate. There is a disadvantage in the greater hardware requirements. The diagram below shows the layout of the star bus:


Figure 31: $\quad$ SPABUS in star design

Plastic fiber-optic cables should be used only to lay out a star bus.

## Schematic layout

The following diagram shows the schematic design of the SPA bus plug-in board. The sections relevant for this documentation are labeled.


Figure 32: $\quad$ Schematic design of the SPA bus board

## Caution Observe the precautions necessary when handling components that might be damaged by electrostatic discharges.

Interface assignment, Tx, Rx, RS 232 (modified)
Tx: Transmission connector for fiber-optic cable
Rx: Receiver connector for fiber-optics cable
RS 232 (modified): Electrical transmitter and receiver connector. This connector is only offered as an option and is used to connect a LON SPA gateway.

The pin assignment of the LON SPA gateway is as follows:

Connection	Label
1	-
2	TXD: Data to SPA bus device
3	RXD: Data from SPA bus device
4	+12 V voltage supply
5	Earth (signals and voltage supply)
6	-
7	-
8	-
9	-12 V voltage supply
The LON SPA gateway power consumption is less than 2 W.	

Table 18: Technical data of the SPA bus communications board

Communications board SPA bus (optional)		
Communications processor	MC 68HC11	
Transmission media	Electrical: 9-pole RS 232 cable	(for LON-SPA gateway only)
	Optical: Fiber-optic cable   - Inner fiber-optic cable 2-wire (DUPLEX) HBZ 50/125 62.5/125 $\mu \mathrm{m}$   - Inner fiber-optic cable 1-wire (SIMPLEX) HAS 50/125 62.5/125 $\mu \mathrm{m}$   - Outer cable/rodent-resistant fiber-optic 16 strand (DUPLEX) HBN 16G 50/125 62.5/125 $\mu \mathrm{m}$   - Outer cable/rodent-resistant fiber-optic 8 strand (SIMPLEX) HBN 8G 50/125 62.5/125 $\mu \mathrm{m}$	Guaranteed cable length: 1000 m Typical cable length: 3000 m
	Optical: Plastic fiber-optic   - Inner fiber-optic cable 2 strand (DUPLEX) HPZ/PUR   - Inner fiber-optic cable 1 strand (SIMPLEX) HPS/PUR	Typical cable length: 30 m Maximum cable length: 40 m   Suitable for star bus only.
Transmitter and receiver modules	Optical: Glass fiber-optic cable Tx: hp HFBR-1402 Rx: hp HFBR-2402	
	Optical: Plastic fiber-optic cable   Tx: hp T-1524   Rx: hp R-2524	
Plug types	Electrical: SUB-D9 plug	
	Optical: Glass fiber-optic cable SMA plug HITRONIC SMA-125 ST plug HITRONIC ST-125	
	Optical: Plastic fiber-optic cable hp plug - grey HFBR 4503   hp plug - blue HFBR 4503	
Data transmission rate	9600 baud ASCII	
Slave answer time	Max. 50 ms	Depends on the complexity of the query
Time synchronization	$0.001 \ldots 59.999$ s	Signal transmitted by master

### 3.4.7.2 MVB as interbay bus

The MVB (Multifunction Vehicle Bus) was originally developed for railway technology and its highly synchronous characteristics make it particularly suitable for applications in control systems for substations.

The REF542 function as slaves; they only transmit when queried by the bus master. The bus master scans the data from the slaves in accordance with a configurable list.
The diagram below shows the typical, star-shaped design with the MVB interbay bus. The COM581 in the ABB Pyramid automation control system operates as a gateway to the higher-order control system. One REF542 will support up to three gateways. The gateways are used to adapt the protocols. A special bus master administers the bus. In the ABB Pyramid ${ }^{\circledR}$ automation control system the RER581 is used for this purpose.


Figure 33: Bus structure of the MVB interbay bus

## Sporadic transmission of message data

Message data have event characteristics and are therefore transmitted only as required, not cyclically. Examples are the event messages and the fault record data generated by the REF542.

The bus master allows the slaves to send message data in specified cycles. Message data is addressed to the control system by the REF542 at the available gateway. The other devices on the bus have no access to this data.

## Periodic transmission of process data

Process data is items such as position messages from switches, starting and tripping data and measured values. It is transmitted in datasets.

Datasets are bit sequences that have the corresponding application-specific information and are cyclically scanned by the bus administrator. The content and meaning of the dataset must be the same for both sender and receiver.

The length and cycle time of the dataset is configurable. The REF542 provides three datasets:

- Dataset 1: Position messages and starting and tripping data. Transmission every 128 ms .
- Dataset 2 and 3: Analog measured values. Transmission every 512 ms .

If a dataset is sent over the bus, the content is visible for every device. Therefore, the other devices can take information relevant to them from the dataset.

## Schematic layout

The diagram below shows the schematic layout of the board. The sections relevant for this documentation are labeled.


Figure 34: Schematic design of the MVB board

Caution Observe the precautions necessary when handling components that might be damaged by electrostatic discharges.

Table 19: Technical data of the SPA bus
Communications board SPA bus (optional)

Communications processor	MC 68332	
Transmission media	Glass fiber-optic cable $62.5 / 126 \mu \mathrm{~m}$	Maximum cable length: 2000 m
Transmitter and receiver modules	Tx: HFBR-1414 TC   Rx: HFBR-2412 TC	
Plug types	SMA plug HITRONIC SMA-125   ST plug HITRONIC ST-125	
Data transmission rate	serial 1.5 Mbit/s	

### 3.4.8 Process bus system

The LON connector on the power supply board is available for the process bus system. Chapter "3.4.3 Power supply and process bus (LON)" on page 3-18 shows the schematic layout.
The process bus allows a LON sensor that can record temperatures to be connected. Its data can also be processed by the REF542.

The operation of a LON sensor must first be input in the configuration program when configuring the unit. A LON function block can then be added to the function chart. This enables the measurement data to be used in the function chart.
${ }^{4}$ Chapter "5.3.3 Hardware" on page 5-5
«Chapter "5.4.6.5 LON sensor" on page 5-85

## Interface assignment

$-\mathrm{XO}:$ LON process bus	
Terminal	Assignment
1	+24 V output
2	-24 V output
3	+ LON process bus
4	- LON process bus

### 3.5 Principles of LCU control

A number of REF542 functions are controlled through the user-oriented operator view, the LCU (Local Command Unit). This consists of the following components:


Figure 35: REF542 control panel

1: Operating LED,
2: Red alarm LED,
3: Interlocking status LED,
4: 7 three-color LEDs,
5: Protective function status LED,
6: RS232 interface,
7: Key for selecting message texts <?>,
8: Danger-Off keys,
9: Key for selecting switchgear < $\boldsymbol{y}>$,
10: Key for opening the selected switchgear < $\mathbf{O}$ >,

11: Key for closing the selected switchgear < O >,

12: Keyswitch "local/remote",
13: LC display screen,
14: Keyswitch "operation/input",
15: Acknowledgment key,
16, 17: Page up/page down keys < $\boldsymbol{\uparrow}>,\langle\boldsymbol{\psi}\rangle$

## LC display screen (13)

The LC display screen (LC is Liquid Crystal and describes the functional principle of the display screen) is subdivided into three sections in standard operation (operating mode: local/operation or remote/operation). The status line (foot of screen) shows messages in plain text. The central, largest section shows the mimic diagram (singleline diagram) of the substation components that are controlled and monitored by the bay control and protection unit. The mimic diagram shows the current switchgear settings. The upper section of the LC display screen also shows a current operational measured value as a numeric value with the module and as a bar graph. For example, a line current maximum value from a configurable time interval can be queried there. This maximum value can also be displayed in the bar graph as a "trailing pointer".

The LC display screen is also used to show the LED message texts. The language in which the messages appear on the LC display screen may be selected in the configuration program. In addition, the basic texts can be adapted to the specific requirements with an editor.

The LC display screen is backlit. In the event of a high ambient temperature, the backlighting automatically switches off to prevent damage. If the temperature continues to increase, the LC display screen is also switched off. This does not influence the functions of the REF542. Once the temperature is reduced, the LC display screen and the backlighting function normally again.

The mimic diagram and operational measured values are not displayed in the local/input operating mode. Instead, a list of the available pages in this operating mode is shown. The following pages are available and each one enables specific functions:

- List of pages
- Page for defining and selecting the active parameter set
- Pages on which the parameters of the configured protective functions can be seen
- Pages on which the parameters of the configured protective functions can be changed
- Reset page for trailing pointer function, maximum values, energy, switching cycles etc.
- Page for defining and selecting the automatic restart mode (if configured)
- Entry point to test mode (if configured).


## Operational status LED (1)

The LED that shows the operational status (READY) is lit when the auxiliary voltage is switched on. It is also wired to the watchdog circuit. If this continuous self-test reports an error, a restart is forced and the LED goes out briefly.

## Alarm LED (2)

This LED indicates alarms (ALARM). In the standard configuration it lights when a protective function is tripped or at the occurrence of other, freely definable events. When the event that tripped it is no longer active, the alarm LED may go out or go into a selfholding status (configurable). In this case an alarm must also be acknowledged.

## Interlocking status LED (3)

This LED, which shows the interlocking status of the switching objects, shows red for a few seconds in the event of an illegal switching attempt. It is then automatically reset to "green" (no interlocking violation).

This LED is not lit when the protection and controller functions of the REF542 are not in operation (e. g. when loading a configuration into the unit from a PC).

## Configurable LEDs (4)

The configurable LEDs may be programmed with the configuration software. The LED function block in the function chart of the configuration program has two inputs that enable the LEDs to be set to show red, green or orange or not to light. A message text may be input for every LED in the configuration dialog of the LED function block. This is activated on the LC display screen by pressing the <? > key.

## Protective function status LED (5)

This LED displays the general status of the protective functions:

- Green (protective function not tripped; standard operation),
- Amber/orange (protective function activated but not yet tripped) and
- Red (protective function tripped). The status "protective function tripped" must be acknowledged.

The status line of the LC display screen also shows the name of the protective function that tripped first.

This LED is not lit when the protection and controller functions of the REF542 are not in operation (e. g. when loading a configuration into the unit from a PC).

## RS232 interface (6)

This interface is for communication between the bay control and protection unit and a PC (personal computer). For example, the configuration is transferred (in both directions) or measured values or other data are read from the REF542. In addition, data exchange with the fault recorder (if configured in the FUPLA) uses this interface.

## Keyswitch $(12,14)$

The operating mode of the REF542 can be selected with the two keyswitches. Each of the three operating modes provides specific functions. The two modes "local/operation" and "remote/operation" are for use in "standard" REF542 operations. In these modes all configured functions are active, and the unit can be controlled locally or remotely from a higher-order control station. For example, the operational data (measured and calculated quantities that are important for tripping the protective functions) can be scanned, maximum values can be displayed, switching operations conducted and alarms acknowledged.
The "local/input" operating mode enables various settings to be scanned and changed. The protective function parameter sets can be checked and if necessary another may be selected. In addition, the test mode, in which all interlockings are deactivated, can be activated. The test mode can only be selected if it has been released in the application.
${ }^{4}$ ) Chapter "5.3.2 Global Settings" on page 5-2
$\stackrel{n}{ } \Rightarrow$ Chapter "8.1.6.7 Entry point to test mode" on page 8-23

### 3.6 Overview of the technical data

The table gives an overview of the most important technical data. Additional information, particularly on the boards and electronic equipment racks, can be found in the relevant sections.
${ }^{4}$ ) Chapter "3.4 Components: Function and Technical Data" on page 3-12
A list of the various protective functions can be found in "Table 2: REF542 protective functions" on page 3-7.
Table 20: Overview of the most important technical data

Processor Board		
Digital Signal Processor	DSP 56002	
Microcontroller	MC68332	
LON process bus	LON Neuron	(optional)
Analog inputs	7	
	Rated frequency: 50 Hz or 60 Hz	Operating ranges of protective functions: $49.5 \mathrm{~Hz} \ldots 50.5 \mathrm{~Hz}$ or $59.5 \mathrm{~Hz} \ldots 60.5 \mathrm{~Hz}$
	Rated current: 150 mV    1 A or 5 A	when sensors are used when signal converters are used
	Permissible load of current circuit sustained: $4 \cdot I_{n}$   during $1 \mathrm{~s}: 100 \cdot \mathrm{I}_{\mathrm{n}}$ dynamic (1 half-period): $250 \cdot I_{n}$	(peak value)
	Rated voltage: $2 \mathrm{~V} / \sqrt{3}$    100 V or 110 V	when sensors are used when signal converters are used
	Consumption per conductor:   In the current circuit: $<0.1 \mathrm{VA}$   $<0.3$ VA   In the voltage circuit: $<0.25 \mathrm{~A}$	at $I_{n}=1 \mathrm{~A}$   at $I_{n}=5 \mathrm{~A}$   at $U_{n}$
Communications board (optional)		
Communications processor	SPA bus: MC 68HC11	
	MVB: MC 68332	
Transmission media	SPA bus:Electrical or   optical	(for LON-SPA gateway)   (glass or plastic; plastic for star bus only!)
	MVB: optical (glass)	
Analog output board (optional)		
Number of analog outputs	4	
Output current	$\begin{aligned} & 0 \ldots 20 \mathrm{~mA} \text { or } \\ & 4 \ldots 20 \mathrm{~mA} \end{aligned}$	with $20 \%$ overload in each case
Output voltage	< 15 V	
Permissible burden	$500 \Omega$	

Table 20: Overview of the most important technical data

## Binary input/output board with conventional relays

Max. number	2	Short housing
	3	Deep housing
Number of inputs	14 per board	
Input voltage	$48 \ldots 265$ V DC	
Voltage ON state	> 35 V	
Input current ON state	1.2 mA	
Voltage OFF state	$<25 \mathrm{~V}$	
Input current OFF state	$0 \mathrm{~mA} \mathrm{(0V)}$	
Minimum impulse time (filter time)	15 ms	Type-specific filter time
Configurable delay	$0 \ldots 65000 \mathrm{~ms}$	Additive to min. impulse time
Number of power outputs	5 per board	
Relay type	SF2	
Operating voltage	265 V DC or 250 V AC	
Switch-on peak current	20 A	
Load current	12 A	
Shutdown current	6 A	
Switching power	300 W for max. 100 ms	
Switching cycles   Number of signal outputs	$\stackrel{\text { H }}{4}$ "Table 13: Maximum switching   2 per board	the conventional power relays" on page 3-28
Relay type	DS2E	
Operating voltage	220 V DC or 250 V AC	
Max. current	2 A	
Switching cycles	Electrical max. 100000	
	Mechanical max. 10000000   1 per board	
Relay type	DS2E	
Operating voltage	220 V DC or 250 V AC	
Max. current	2 A	
Switching cycles	Electrical max. 100000	
	Mechanical max. 10000000	
Total inputs	14 per board	
Total outputs	8 per board (7 freely configurable)	

REF542 bay control and protection unit (SCU)
Handbook

Table 20: Overview of the most important technical data

Binary input/output board with transistor relay		
Max. number	2	Short housing
	3	Deep housing
Number of inputs	14 per board	
Input voltage	$48 . . .265$ V DC	
Voltage ON state	> 35 V	
Input current ON state	1.2 mA	
Voltage OFF state	$<25 \mathrm{~V}$	
Input current OFF state	$0 \mathrm{~mA} \mathrm{(0V)}$	
Minimum impulse time	15 ms	
Configurable delay		Additive to min. impulse time
Number of power outputs	2 per board	
Transistor relay type	IRGPC50S	
Operating voltage	$48 . . .265$ V DC	
Impulse current	12 A	Maximum of 10 switching operations with a switching duration $<30 \mathrm{~s}$ within 10 min .
Phase fault current		Switching duration $<10 \mathrm{~ms}$
Number of power outputs	4 per board	
Transistor relay type	IRFP350	
Operating voltage	$48 . . .265 \mathrm{~V}$ DC	
Impulse current	10 A	Maximum of 10 switching operations with a switching duration < 30 s within 10 min .
Phase fault current	16 A	Switching duration $<10 \mathrm{~ms}$
Number of signal outputs	2 per board	
Transistor relay type	AQZ204	
Operating voltage	$48 . . .265$ V DC	
Load current	0.3 A	
Phase fault current	1 A	Switching duration < 100 ms
Number of watchdog relays	1 per board	
Transistor relay type	AQZ204	
Operating voltage	$48 \ldots 265$ V DC	
Load current	0.3 A	
Phase fault current	1 A	Switching duration < 100 ms
Total inputs	14 per board	
Total outputs	9 per board (8 freely configurable)	

Table 20: Overview of the most important technical data

General Data		
LEDs   on the control panel of the REF542	1 Ready LED not configurable color:   green	Signals that the REF542 is ready for operation
	1 protective function status LED not configurable color:   green   orange   red	No protective function activated One protective function activated One protective function tripped
	1 interlocking status LED not configurable color:   green   red	No interlocking violation interlocking violation; illegal switching operation
	1 ALARM LED freely configurable   color: black (off) or red	
	```7 LEDs freely configurable color: black (off), green, orange or red```	
Remote communications	Interface: RS232 (9-pole)	
	Transmission speed: 9600 bit/s Event buffer: 50 events	
	Protocol: SPA or MVB	
Power supply	$\begin{aligned} & \text { Voltage range } \mathrm{V}_{\mathrm{CC}} \text { : } \\ & 48 \ldots 240 \mathrm{~V} \mathrm{DC} \end{aligned}$	Oscillation amount: max. $10 \%=U_{t} / U_{n} \cdot 100 \%$
	Earth connection on housing	
	Override time: at least 50 ms	
	Power input: $<40 \mathrm{~W}$ $<50 \mathrm{~W}$	Short housing Deep housing
	Surge resistance: 300 V	Surge arrester/varistor
	Switch-on peak current I_{p} : - 15 A at $\mathrm{V}_{\mathrm{CC}}=48 \mathrm{~V}$ - 36 A at $\mathrm{V}_{\mathrm{CC}}=110 \mathrm{~V}$ - 73 A at $\mathrm{V}_{\mathrm{CC}}=230 \mathrm{~V}$	$>10 \mathrm{~A}$ for $100 \mu \mathrm{~s}$ >15 A for $100 \mu \mathrm{~s}$ $>20 \mathrm{~A}$ for $100 \mu \mathrm{~s}$
Temperature Range	Operation: $-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$ Storage: $-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$ Transport: $-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$	Humidity without condensation < 95\%
Earthquake safety	DIN IEC 60068-3-3 DIN IEC 60068-2-6 DIN IEC 60068-2-59 CEI IEC 61166 CEI IEC 60980	
Insulation voltage	IEC 60255-5/2 kV, 1 min., 50 Hz	Except for input power supply
Fast Transient Test	IEC 60801-4/4 kV	
Electrostatic discharge (ESD)	IEC 60801-2	
Resistance against electromagnetic fields	IEC 60801-3/30 V/m	
Environmental Conditions	IEC 60255-4	
Durability MTBF	MIL 217 E	

REF542 bay control and protection unit (SCU)

Handbook

Table 20: Overview of the most important technical data

Design		
Weight	Short housing: $5 \mathrm{~kg} \ldots 6 \mathrm{~kg}$	Depending on equipment
	Deep housing: $5.5 \mathrm{~kg} \ldots 7 \mathrm{~kg}$	Depending on equipment
Installation type	Semiflush, terminal above	Terminals for core-balance current transformer are on the side
Connections:	DIN 41612	
Dimensions	$240 \times 330 \times 228 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$	Short housing
	$240 \times 330 \times 271 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})$	Deep housing
Panel cutout for semiflush mounting	$233 \times 322 \mathrm{~mm}$ (W x H)	
Protection class	Housing: IP 30 or IP 54	When using special keyswitches
	Connection: IP 20 or IP4X	When using special covers
Configuration Program		
Personal computer	IBM compatible, min. 80386SX processor, min. 8 MB RAM, 3.5 " disk drive, mouse 5 MB free hard disk space	
Operating system	min. DOS 3.3 and Microsoft Windows ${ }^{\circledR} 3.1 \mathrm{x}$ or Microsoft Windows ${ }^{\circledR}$ NT 3.5x or NT 4.0	
Control Program	1 diskette 3 1/2 " 1.44 Mbytes	Includes the English, German, Italian and Czech version

4 Configuration Program

In this section you will find the following information:

- How to install the configuration program onto your PC
- How to start the configuration program
- The basic steps in creating or editing a function chart
- The individual menu items of the configuration program
- How to uninstall the configuration program from the computer.

4.1 Safety Information

Testing the application

Warning!
 Every application must undergo a function test with the bay for which it was created. The protective functions must be thoroughly checked in this test!

REF542 function when importing the application

Warning! So far as possible, avoid loading an application into the REF542 when the bay is operating.
 The bay control and protection unit is out of commission while an application is being loaded from a PC into the REF542.
 REF542 function when exporting the application into the PC

Note If the application is exported from the REF542 into a PC while the unit is operating, the REF542 functions are not affected.
However, local control is not possible during this period.

4.2 System Requirements

- IBM compatible personal computer, min. 80386SX processor
- min. 8 MB RAM
- 3.5 " disk drive
- Mouse
- Min. DOS 3.3 and Microsoft Windows ${ }^{\circledR} 3.1 \mathrm{x}$ or Microsoft Windows ${ }^{\circledR}$ NT $3.5 x$ or NT 4.0
- Hard drive space: 5 MB free

4.3 Installation

The REF542conf configuration program installation is controlled by a menu in the Microsoft Windows ${ }^{\circledR}$ operating system. To start the installation program, please proceed as follows:

- Start your Microsoft Windows ${ }^{\circledR}$ Version.
- Insert the installation disk.
- Display the disk contents in the file manager (Microsoft Windows ${ }^{\circledR} 3.1 \mathrm{X}$ and NT 3.5X) or in the Explorer (Microsoft Windows ${ }^{\circledR}$ NT 4.0).
- \quad Start the file setup.exe (e.g. double-click the left mouse button when the mouse cursor is over the file) on the diskette. Help can be found in the Microsoft Windows ${ }^{\circledR}$ online help or the manuals.

The installation program, when started, first offers a choice of the language (US. English or German) used to guide the user through the installation process. Please follow the instructions and observe the information provided by the installation program.

Every step in the installation process can be reversed or the entire program can be canceled. If the installation has been canceled, any already installed files should be deleted from the directory where they were installed.

Installing a new version of the program

Note First uninstall the program if you intend to retain the target directory or group names of an older installation.

Several program versions on one computer

Note Windows should be restarted between starting different program versions to avoid problems with previously installed DLLs.

Restart after an installation

Note At the end of the installation you are prompted to decide whether Windows should be restarted. This is recommended if a different version of the configuration program has been run since the last time Windows was started.

4.4 Starting the program

After the installation has been completed as described above, the program can be started in various ways. The method of starting depends on the operating system.
Microsoft Windows ${ }^{\circledR} 3.1 \mathrm{X}$ and NT 3.5X

- The installation program has assigned the icon for the configuration program to the desired program group.
The desired group can be displayed in the program manager and the REF542conf program is started in the usual manner.

Microsoft Windows ${ }^{\circledR}$ NT 4.0

- The program groups here are accessed through the start button. After starting Microsoft Windows ${ }^{\circledR}$ NT this button can be found at the lower left side of the screen.
The program group with the REF542conf program will be found in the opened menu or in one of the following submenus.

Additional information can be found in Microsoft Windows ${ }^{\circledR}$ online help or in the manuals.

4.5 Using the configuration program

The following subsections provide basic information on using the configuration program. The most important activities in creating or editing an application are described.

Another section explains the menu items in the main menu and the character menu in the sequence in which they appear.

Please note that the limitations of the customer version that are described below are not explained any further in the configuration program documentation.

Customer version

The customer version of the configuration program has the following limitations:

- Additional protective functions cannot be added to your application. (Important: if a protective function in the application is deleted, it cannot be added again later.)
- You cannot save your application under another name. (The menu item Save as... cannot be selected)
- The device address of the REF542 cannot be changed.

4.5.1 First steps in creating or editing an application

Not all functions of the configuration program are described in the following section. It is intended to introduce only the basic functions. While working with the configuration program you will certainly learn additional functions. All menu items in the configuration program are also described in a separate section.
$\left.{ }^{4}\right)$ Chapter "4.5.2 Description of the menu items" on page 4-16
The sequence of the following subsection corresponds to the sequence of steps required when creating a new application. When an existing application is opened, all basic settings are of course already specified. The function chart is also complete. However, the procedure for editing an application is the same as for creating it.
Some steps are explained in more detail at other points in the documentation; cross references are given in this case.

4.5.1.1 Working with projects

The set of files that belong to an application in connection with the configuration program is referred to as the project. Projects can be created, opened and saved in the configuration program. After starting the configuration program, a new project with the name new. edt is created.

Note When saving a new project for the first time, always select the menu item Main Menu/File/Save as F7. Otherwise the name "new.edt" will be retained.

The table on the next page describes the set of files associated with a project. Not all them will be created in every application. In addition, the table shows when the files are created or updated.

Table 21: Overview of the files belonging to a project

File	Contents	Created	Updated
*.edt	Application comprising: - Drawing - Parameter - LCU configuration - LCU texts All other files can be recreated from this file, with the exception of the fault record files.	When saving.	When saving.
*.bak	Application backup file.	When opening.	When opening.
*.doc	- Device configuration - Rated value of the analog inputs - Configured protective function with setting values	When opening.	When opening.
${ }^{*}$.wir	All connections in use are counted and the connection number and the associated text is given. The connections are sorted by the object number to which they are connected and by the number of the connector pin. As well as the object number, the object type to which the connection is connected is also written to this file.	When opening.	When opening.
*.Ist	All events generated by the application are listed here.	When opening.	When opening.
*.Icu	The mimic diagram configuration of the current application.	When exporting a mimic diagram.	When exporting the mimic diagram again.
*.ri1	The setting parameter set 1 of the impedance protection. The Omicron test set uses this file for automatic testing.	When saving an application with impedance protection.	When saving an application with impedance protection.
*.ri2	The setting parameter set 2 of the impedance protection. The Omicron test set uses this file for automatic testing.	When saving an application with impedance protection.	When saving an application with impedance protection.
*.cfg	Configuration file for the fault recorder module	When exporting a fault record from the REF542.	
*.dat	Fault record file with the recorded data	When exporting a fault record from the REF542.	

Only files with the names *.edt can be directly opened in the configuration program. There is a set of files describing the functioning of the REF542 for every item of equipment or bay that requires monitoring.

4.5.1.2 Selecting the language version

To have the menu bars, dialogs and messages of the configuration program appear in the desired language, select the menu item Main Menu/Options/Language/ [English, German, Italian, Czech]. Because the English version appears first after installing the program, please select the menu item Main Menu/Options/ Language/ [English, German, Italian, Czech]. The desired language version will be marked in the menu and set immediately. This setting is also retained after closing the program.

4.5.1.3 Setting the PC-REF542 connection

To import the completed application from the PC to the REF542 or to export an application or other data from the REF542, the connection must be established first. They are connected with a 9-pin RS232 cable. One end is plugged into the labeled socket on the REF542 control panel. The other end is plugged into the serial RS232 interface of the PC.

To enable data to be transferred over this connection, the dialog Main Menu/Trans fer/Serial Port must be started in the configuration program.
${ }^{4}$) Chapter "5.3.1 Serial Port" on page 5-2

Note Ensure that the parameters of the dialog Serial Interface ... as set in the configuration program also conform to the parameters for the serial interface, which can be configured in the operating system.

4.5.1.4 Configuring the REF542

- To be able to configure an application at all, the equipment installed in the REF542 must be entered into the configuration program. To do this, start the dialog window Main Menu/Configure/Global Settings and Main Menu/Configure/ Hardware.
${ }^{4}$) Chapter "5.3.2 Global Settings" on page 5-2
7)Chapter "5.3.3 Hardware" on page 5-5
- The analog inputs and outputs should be defined before making the application settings. Start the dialog window Main Menu/Configure/Terminals/Analog Inputs and if necessary Main Menu/Configure/Terminals/Analog Outputs. If an analog output board is not used, this menu item cannot be selected.
${ }^{\text {r }}$ Chapter "5.3.4 Analog inputs" on page 5-6
${ }^{4}$, Chapter "5.3.5 Analog outputs" on page 5-11
- After defining the analog inputs, the dialog Main Menu/Configure/Calculated Values may also be selected.
${ }^{4}$) Chapter "5.3.6 Calculated values" on page 5-12
- It is best not to define the settings for the display unit and the display language until the function chart has been created.
${ }^{4}$) Chapter "5.3.7 Display" on page 5-13
$\left.{ }^{4}\right)$ Chapter "5.3.8 Display language" on page 5-18

4.5.1.5 Creating a function chart (FUPLA)

To create the function chart, start the function chart editor with the menu item Main Menu/Configure/Drawing.

Note Before the function chart editor can be started, make the settings for a new application in the configuration dialogs Main Menu/Configure/Global Settings and Main Menu/Configure/Hardware.

The first page of the application will appear. To make an application more manageable, it can be distributed over several pages. One page is larger than the PC screen. All areas of the current page can be viewed by using the scroll bars to the right and at the bottom of the drawing editor window. The arrow keys (cursor keys) on the keyboard can also be used for this.

The current working mode is shown in the left upper corner of the screen:

- DrawMode: draw mode. Function blocks can be added, moved, configured and deleted here. Connections can also be configured or deleted.
- WireMode: Connection mode. Connections can be added and changed in the function chart. Connections and function blocks can also be configured or deleted here. If a function block is added in connection mode, the view switches automatically to draw mode.

4.5.1.6 Add or move function blocks

Function blocks can be added in either working mode. If you are in connection mode, draw mode is automatically selected. Moving is possible only in draw mode.

Add function block

Select Drawing Menu/Insert. A submenu with various function groups appears. Selecting a function group brings up another submenu listing the individual function blocks. The selected function block is placed on the top left of the page.

Example: Select Drawing Menu/Insert/Control Panel/Indication LED to select the indication LED function block.

Move function block

To move hold the left mouse button down when the cursor is on the function block and drag it with the mouse.

4.5.1.6.1 Restrictions

Note that not all function blocks can be combined with one another.
${ }^{4}$, "Table 40: Use of the protective functions depending on the configuration of the analog measuring inputs" on page 5-89

There are also additional restrictions for function blocks and connections, which are listed in the table below.

Table 22: Restrictions in the FUPLA

Function block	Restriction
Protective functions	\bullet • Max. 12 protective functions and
	\bullet Max. 120 protective parameters and
Fault recorder	• Max. 1 fault recorder
	\bullet Min. 1 configured protective function
Store object	Max. 1
Energy counter	Max. 15
Switching object	Max. 62
Analog Threshold object	Max. 10 threshold objects per analog input
Direct write-read command	Max. 100
Connections	Max. 512, while 502 numbers can be assigned
Indication LEDs	Max. 7
LON sensors	Max. 15

Determining the cycle time

Note Once a new application has been created and loaded into the REF542, its cycle time must be checked. Set the "keyswitch local/remote" on the REF542 control panel to "local" and the "keyswitch input/operation" to "input". Press the <?> key and read off the cycle time on the LC display screen.

Warning! The cycle time of an application must be less than 30 ms to ensure proper functioning of the REF542.

4.5.1.7 Add or move connection

To link the function blocks with one another, switch to connection mode:

- Select Drawing Menu/Edit/Mode/Wire Mode F3 OR
- Press the F3 function key on the PC keyboard.

Now position the mouse cursor over a connection point on a function block or at the beginning or end point of a connection. The mouse cursor will change to the shape of a soldering iron.

A total of 512 connections can be added. There are 502 numbers available for connections (11 ... 512). Connection numbers $0 \ldots 10$ are for internal use.

Add connection

When the soldering iron appears, hold the right mouse button down and drag the mouse to make a connection. The connection will end when the mouse button is released.

The terminals of two function blocks can be connected in this way. The connection can also end in the FUPLA without connecting to a terminal. The connection number is automatically 1 or 2 in this case to indicate that it does not connect two function blocks. Now use the configuration dialog to assign a previously used connection number to the connection. Connections with the same connection number are considered to be connected even if they do not contact each other.

Connections run at right angles or in a straight line (therefore, also diagonally), depending on their setting. The relevant setting is made with the menu item Drawing Menu/ View/Wires/Right-angled or Drawing Menu/View/Wires/Straight.

Move connections

When the soldering iron appears, hold the left mouse button down and drag the mouse to move a connection point. When the mouse button is released, the connection point will remain at this position.

Note When a connection point is dragged or moved from one function block terminal to another function block terminal, ensure that the connection is properly positioned at the function block.

Check connections after a move

There are two options for carrying out the above check:

- Move the mouse pointer over the function block. Double-click the left mouse button to start the configuration dialog for the function block. The terminal information area shows the number of the connection that is properly terminated. The numbers 1 and 2 indicate that there is still no connection. OR
- Move the function block in draw mode. If the connections are moved with it, the connection is correct.

4.5.1.8 Starting configuration dialogs

A dialog window can be opened for all function blocks and connections. To start it move the mouse cursor over the function block or the connection in draw mode or connection mode. The configuration dialog appears after double-clicking the left mouse button.

Configuration dialog function block

This enables the function block to be configured and/or provides information on the terminated connections.
${ }^{4} \downarrow$ Chapter "5.4 Function and configuration of the function blocks" on page 5-20

Configuration dialogue connection

Figure 36: Configuration dialogue for a connection
Entry field Net number: Enter the connection number here. The currently assigned connection number will appear, a 1 or a 2 . The numbers 1 or 2 only appear when the connection ends with a terminal point in the FUPLA.
To find the currently assigned connection number, the configuration program searches the connection numbers from 11 upwards for a free connection.

The connection number is also shown in the function chart beside the connection.
Setting range: 11 ... 512 (Steps: 1)
Default: Currently assigned connection, 1 or 2
Information field Next unused net number: The next free connection is assigned here. The configuration program searches the connection numbers from 11 upwards for a free connection.

Information field Maximum Number of Wires: This shows the maximum possible number of connections in the current function chart. A total of 512 connections can be used. There are 502 connection numbers available.

Information field used: This shows how many connections are already set up in the function chart.

Input field Comment: Enter a comment, a name, for the connection here. The name will also appear in the function chart beside the connection. This name will be assigned to
all connections with the same connection number.
Setting range: $0 \ldots 21$ characters of the standard character set
Default: Empty
Button Choose next free: Click on this button to assign the next free connection number to the connection. The dialog window is then closed, and the connection has the corresponding number.

OK: All settings are saved in the configuration program. The dialog window is closed. Cancel:Settingsarenotsavedintheconfigurationprogram. Thedialogwindowisclosed.

4.5.1.9 Deleting objects in the function chart

Various options are available here:

- Delete a function block: Move the mouse pointer over the function block that is to be deleted. Double-click the right mouse button.
A confirmation query appears. Click the OK button to delete the function block or Cancel to retain the function block.
- Delete a connection: Move the mouse pointer over the connection which is to be deleted. Double-click the right mouse button.
A confirmation query appears. Click the ok button to delete the connection or Cancel to retain the connection.
- Delete the current page: Select the menu Draw Mode/Edit/Delete Page. A confirmation query appears. Click the OK button to delete the page or Cancel to retain the page.
- Delete all connections in the application: Select the menu Draw Mode/Edit/ Delete All/Wires. A confirmation query appears. Click the ok button to delete the connections or Cancel to retain the connections.
- Deleting all pages in the application: Select the menu Draw Mode/Edit/Delete All/Pages. A confirmation query appears. Click the OK button to delete the pages or Cancel to retain the pages.

4.5.1.10 Check function chart

The function chart can be checked both in draw mode and connection mode:

- Press the F9 function key on the keyboard or
- Select the menu item Drawing Menu/Utilities/Check Drawing F9 or
- Select the menu item Main Menu/Utilities/Check Drawing F9

The check routine of the configuration program runs the following tests:

- Binary inputs and outputs: Availability of the numbers of the binary inputs and outputs used in the application. The availability depends on the number and type of binary input and output boards in use.
- Device configuration: Availability of a device configuration. Has the configuration dialog in the menu item Main Menu/Configure/Hardware been processed?
- AR and power circuit-breaker: If the automatic restart has been configured, there must be a power circuit-breaker in the application.
- Function blocks: All function blocks must be linked to at least one connection.
- DSP load: The DSP load (load on the protection and measuring unit) can be a maximum of 100%, a maximum of 120 protective parameters can be used and a maximum of 12 protective functions can be used.
- Connections: The number of connections must not exceed 512.
- Double connections: Connections with the same number may only be connected to one function block output.
- Calculation of power: The configuration of the analog inputs must match the type of power calculation.
- Switching objects: A maximum of 62 switching objects may be configured. Every switching object must have its own interbay bus address and binary output represented by the switching object must be physically present.
- Direct write-read command: A maximum of 100 such function blocks are permitted.

4.5.1.11 Setting the LC display screen and display language

When the application has been set up, the mimic diagram for the LC display screen may be configured and the language in which the messages appear on the LC display screen selected. Select the menu items Main Menu/Configure/Display and Main Menu/Configure/Display Language.
${ }^{4}$) Chapter "5.3.7 Display" on page 5-13
$\left.{ }^{4}\right)$ Chapter "5.3.8 Display language" on page 5-18

4.5.1.12 Sending the application to the REF542

Sending an application to the REF542 is independent of the setting of the two keyswitches on the operator view of the REF542.

Warning!

Note

Note
If there is an alarm active, the application cannot be successfully exported from the PC to the REF542.

- The test routine of the configuration program is now automatically started again. If there is any error, the application cannot be exported.

While the application is being transferred, status messages are shown in the configuration program. They indicate which data is being transferred at any given point.

Messages on the data received are also output to the LC display screen on the REF542 in the status line.
During transmission the Ready LED and the protective function status LED on the operator view of the REF542 are out. This signals that the unit is not operating.

When the transmission is finished, a message indicating that it is complete appears in the configuration program. The REF542 restarts with the new application.
The mimic diagram then appears on the LC display screen, the Ready LED and the protective function status LED show green.

- Remove the RS232 cable.

Determining the cycle time

Note Once a new application has been created and loaded into the REF542, its cycle time must be checked. Set the "keyswitch local/remote" on the REF542 control panel to "local" and the keyswitch "input/operation" to "input". Press the <?> key and read off the cycle time on the LC display screen.

Warning! The cycle time of an application must be less than 30 ms to ensure proper functioning of the REF542.

4.5.1.13 Receiving an application from the REF542

Receiving an application from the REF542 is independent of the setting of the two keyswitches on the operator view of the REF542.

Warning! The functions of the REF542 are not affected while an application is being exported from the REF542 to the PC. However, local control is not possible during this period.

Note If the PC has several serial interfaces, ensure that the one set in the configuration program is used.

- Connect the RS232 interface of the REF542 to the PC serial interface with a 9-pin RS232 cable.
- Start the configuration program.
- Select the menu item Main Menu/Transfer/Load from REF542.

While the application is being transferred, status messages are shown in the configuration program. They indicate which data is being transferred at any given point. Messages on the data sent are also output to the LC display screen on the REF542 in the status line.
When the transmission is finished, a message appears in the configuration program. The application can now be viewed and edited.

- Remove the RS232 cable.

4.5.1.14 Exporting the fault recorder

If a fault recorder is configured in the application, its data can be exported from the REF542. The configuration program converts the raw data to the COMTRADE format. The fault events can then be displayed using the WINEVE or CMC X.X programs. WINEVE is an evaluation program from ABB and CMC X.X is a testing program supplied by Omicron.

The fault recorder data can also be forwarded to the higher-order control system over the interbay bus.

- Connect the RS232 interface of the REF542 to the PC serial interface with a 9-pin RS232 cable.
- Start the configuration program.
- Select the menu item Main Menu/Transfer/Read Faultrecorder If there are no fault records in the REF542, a message indicating that will appear in the configuration program.

Otherwise the following dialog window appears:

Figure 37: Example of a dialog window for exporting fault records
The fault records stored in the REF542 are shown in the left list window. The fault record with the highest number is the latest.
The right list window shows the default file names of the fault records that are to be loaded.

- Check the settings for saving the fault records on the PC in the Default settings information field.
The Path shows the memory location for the fault records.
The Prefix is the character combination that is placed in front of the four-digit fault record number in the file name.
The Format shows the format to which the fault record data from the REF542 will be converted.
Please read the information in the following subsection to change the defaults.
- Mark a fault record with the mouse and click the >> button. The file name under which the fault record will be saved on the PC will appear in the right list window. The characters >>> will appear in place of the moved fault record in the left list window.
Repeat this operation for additional fault records if they are also to be saved.
If the Shift key on the keyboard is held down while marking the fault records, several fault records can be marked simultaneously and then moved all at once to the right list window with the >> button.
The << button removes a marked fault record from the list of fault records to be loaded.
- Click the OK button to export the marked fault records with the displayed defaults from the REF542. The dialog window is closed and the user is returned to the main menu of the configuration program.
The Cancel button stops the export of fault records to the PC. Changes to the defaults are not saved. The dialog window is closed and the user is returned to the main menu of the configuration program.

Status messages are shown in the configuration program during export of the data from the fault recorder.

Changing the default

- Click the Modify Settings button to start the configuration dialog for changing the fault records. The following dialog window appears:

Figure 38: Example of a dialog window for setting the fault record defaults

- The list window, which indicates the current path, enables the memory location for the fault records to be selected. To make a selection, double-click on the memory location with the right mouse button. Then you can move through the directory trees of the memory media step by step.
- The input field Prefix allows the input of a maximum of 4 characters, which are placed before the four-digit fault record number in the file name.
E.g.: Fault record 0034 will become file XXXX0034.dat when saved
- Select the format in which the fault record should be saved in the file Format selection list. In this version of the configuration program the fault records can only be saved in the COMTRADE [ASCII] format. This format is read by programs such as WINEVE or CMC X.X, which process the fault record data and can display them graphically.
WINEVE is an evaluation program from ABB and CMC X.X is a testing program supplied by Omicron.

4.5.1.15 Exporting the input or output status

The current values of the binary inputs or outputs on the REF542 can be displayed. They can then also be printed and saved. Because the procedure and the structure of the dialog window are identical, the two processes are described in parallel.

It is also possible to export the status of the binary inputs and outputs regularly and automatically. Further information can be found in
Chapter "4.5.1.16 Exporting the operational measured values" on page 4-14.

- Connect the RS232 interface of the REF542 to the PC serial interface with a 9-pin RS232 cable.
- Start the configuration program.
- Select the menu item Main Menu/Transfer/Input Status or Main Menu/ Transfer/Output Status.
One of the following dialog windows will appear: However, no data are shown in the list field yet.

Figure 39: Examples of the dialog windows for displaying the status of the analog inputs or outputs

- Click the Get new dataset button. If the connection to the REF542 is correct, the current data of the first two binary input and output boards will be displayed in the corresponding list field after transmission:
The export date and time are followed by a list of the available binary inputs/outputs. Then the status of the specific input/output is given.
1: A logical 1 is contacted/can be tapped.
0 : A logical 0 is contacted/can be tapped.
--: The input/output has not been defined in the function chart.
xxx: A connection to the REF542 could not be established.
If it is not possible to connect to the REF542, an error message, which must be acknowledged, will appear first.

Note The date and time are set by the exporting PC. Please ensure that the system time is set correctly.

- If the Get new dataset button is clicked again, another list with the new data will be appended to the previous list.
- Select the save dataset button to start a standard operating system dialog. This enables the data to be saved in any directory under a name that can be freely selected. The data are saved as ASCII text with line breaks.

Note There is a danger that the application will be overwritten.
Therefore, do not select the name of the current application.

- Select the print dataset button to start a standard operating system dialog. This enables the data to be output to a printer.
- \quad Select OK button to close the dialog window and to return to the main menu of the configuration program.
The Cancel button closes the dialog window and returns the user to the main menu of the configuration program.

4.5.1.16 Exporting the operational measured values

Part of the operational measured values and the calculated values can be exported from the REF542. They can then also be printed and saved. Only the values that can also be found in the screenshot below are displayed. For example, the external phase-to-neutral voltages are not shown.
In addition, a configuration dialog that will display the operational measured values
and, if selected, the status of the binary inputs and outputs regularly and will automatically export them can be started.

- Connect the RS232 interface of the REF542 to the PC serial interface with a 9-pin RS232 cable.
- Start the configuration program.
- Select the menu item Main Menu/Transfer/Measurement.... The dialog window shown below appears. Part of the information window is still empty at this point and no data are shown.

Measurement upload		
Current IL1	617.0	A
Current IL2	619.0	A
Current IL3	617.0	A
Voltage ULIE	11.60	kV
Voltage UL2E	11.58	kV
Voltage UL3E	11.66	kV
not used	xx	*
Frequency	60.00	Hz
cos phi	0.33	
Active Power:	7111	KW
Reactivepower	- 20388	KVar
Realenergy	0.00	MWh
Operatinghours	0	h
get new dataset		
save dataset	print d	
Continously Measuring		

Figure 40: Examples of the dialog window for displaying the operational measured values

- Click the get new dataset button. If the connection to the REF542 is correct, the corresponding data will be displayed in the corresponding list field after transmission: This is the data current at the time of transmission.
If it is not possible to connect to the REF542, two error messages appear. After acknowledging them, the dialog window appears again with the empty information window.
- If the get new dataset button is clicked again, the content of the information window is updated.
- Select the save dataset button to start a standard operating system dialog. This enables the data to be saved in any directory under a name that can be freely selected. The data are saved as ASCII text with line breaks.

Note There is a danger that the application will be overwritten.
Therefore, do not select the name of the current application.

- Select the print dataset button to start a standard operating system dialog. This enables the data to be output to a printer.
- \quad Select Exit button to close the dialog window and to return to the main menu of the configuration program.
- Select the Continuously Measuring button to start the following dialog. It enables the operational measured values and the status of the binary inputs and outputs to be exported from the REF542 regularly and automatically.

Figure 41: Configuration dialog for the continuous measured value scan

- Enter the period between measurements in seconds into the input field get new dataset after.
Setting range: $3 \ldots 3600$ seconds (One step: 1 second)
Default: 15 seconds
- Mark the Binary Inputs and/or Binary Outputs checkboxes to include their status in the continuous measured value acquisition process.

The input field above the two buttons (measuring) has no function.

- Click the start button to begin continuous acquisition of the operational measured values (and the status of the binary inputs and outputs, if configured). The dialog window is closed. Click the stop button to close the dialog window and not start continuous acquisition of measured values.
- A standard operating system dialog window for file backup appears. The various settings required to back up the data from the continuous measured value acquisition are made here. The data are saved as ASCII text with line breaks with the corresponding time information; some data is separated by tabs. New data are always appended to previous data.
- The dialog window with the operational measured values appears. This always shows the last set of measured values transferred from the REF542. The ok button has now become the stop button.
- Click the stop button to stop continuous measured value recording. The Stop button then becomes the Exit button. Press the Exit button to close the dialog window and return to the main menu of the configuration program.

4.5.2 Description of the menu items

The following subsections provide a description of all menu items of the configuration program. They are subdivided into main and drawing menu.

The main menu is displayed after starting the configuration program. The drawing menu is displayed when the menu item Main Menu/Configure/Drawing has been selected in the main menu.

4.5.2.1 Main Menu/File

New

A new project under the name new.edt is created. Save it immediately under a different name, because this name is always reserved for new projects.

Open... F2

A standard operating system dialog window for opening a file opens. The default file ending for the file format is edt. If necessary, move through the disk and directory structure to open a configuration file.

The dialog for opening the file will also appear when the F2 key on the PC keyboard is pressed.

After the project has been opened, a drawing check is run. Any error messages must first be acknowledged before the project can be edited.

Save F6

The open application file is saved. If a new application file has been created, the file new. edt will be saved in the default work directory of the configuration program. In the case of a new file, use the menu item Save as ... when it is saved for the first time.

An application can also be saved by pressing the F6 function key on the PC keyboard.

Before saving, the configuration program runs a check of the application. Any messages that appear must be acknowledged before saving.

Save as... F7

A standard operating system dialog window for saving a file appears. The file can be given any desired name and location. The default file ending for the file format is edt.

The dialog can also be started by pressing the F6 function key on the PC keyboard.

Note Before saving the configuration program runs a check of the application. Any messages that appear must be acknowledged before saving.

Print

Another submenu is opened here where the information that is to be printed can be selected. A dialog window appears. Its appearance depends on the operating system and the installed printer. Additional inputs regarding the print process can be made here.

- Drawing

The function chart is printed out, on several pages if necessary.

- Parameters

A file is printed with a list of all the parameters input in the application sorted by their origin. For example, this includes the device settings and also the parameter sets for the protective functions.

- Eventlist

A file that lists all possible events that could be generated by the application is printed out. They are sorted by the function block that generated them.

- Connections

The connection numbers and the associated comments are printed out in list form.

- Print All

When this menu item is selected, all previously described printable information is printed out in sequence.

4.5.2.2 Main menu/Transfer

Serial Port

Starts the configuration dialog for the connection from the PC to the REF542 via the serial port.
${ }^{\mu}$) Chapter "5.3.1 Serial Port" on page 5-2

Send to REF542

Sends the data from the open application to the REF542.
$\left.{ }^{4}\right)$ Chapter "4.5.1.12 Sending the application to the REF542" on page 4-10

Load from REF542

Exports the application currently in the REF542 from the unit.
${ }^{\mu}$) Chapter "4.5.1.13 Receiving an application from the REF542" on page 4-11

Read Faultrecorder...

Exports the fault record data saved in the REF542 when the New Data button is pressed in the dialog window.

The data can be saved. If the MVB is being used as the interbay bus, the data will include the current time and date.
$\left.{ }^{4}\right)$ Chapter "4.5.1.14 Exporting the fault recorder" on page 4-11

Input Status...

Exports the current status of the binary inputs of the first two input/output boards of the REF542 when the New Data button is pressed in the dialog window. The data are marked with the current PC system date and time and can be saved and printed.
${ }^{\mu}$ Chapter "4.5.1.15 Exporting the input or output status" on page 4-13

Output Status...

Exports the current status of the binary outputs of the first two input/output boards of the REF542 when the New Data button is pressed in the dialog window. The data is marked with the current PC system date and time and can be saved and printed.
$\left.{ }^{\mu}\right)$ Chapter "4.5.1.15 Exporting the input or output status" on page 4-13

Measurement...

Exports the current status of the operational measured values from the REF542. These are certain values that can also be displayed in the LC display screen above the mimic diagram.
The continuous measured value transmission to the PC can be configured in the operational measured values dialog window. The operational measured values and, if desired, the values from the binary inputs and outputs, will then be regularly transmitted from the REF542 to the PC.

The data is marked with the current PC system date and time and can be saved and printed.
${ }^{4}$ Chapter "4.5.1.16 Exporting the operational measured values" on page 4-14

Version

Reads the current versions of the REF542 microcontrollers (MC) and the configuration program. The information is displayed in a dialogue window. If a connection to the REF542 cannot be established, an error message is shown.

4.5.2.3 Main menu/Configure

Global Settings...

Starts a configuration dialog in which the basic settings are made. Functions such as fault monitoring, coil monitoring and default values such as the general filter time and the device address are defined here. In addition, the system messages (events), which can be sent from the system itself to a higher-order control system, can be configured in two other dialogs.

Chapter "5.3.2 Global Settings" on page 5-2

Note This configuration dialog must be edited before an application can be created.
Hardware...
Starts a configuration dialog in which settings that describe the delivery variations of the REF542 can be made.
${ }^{4}$) Chapter "5.3.3 Hardware" on page 5-5

Note This configuration dialog must be edited before an application can be created.

Terminals

This menu item enables the selection of two submenu items. With them the analog inputs and outputs can be configured. Correct configuration of the analog inputs in particular is extremely important if the REF542 is to function properly.

Analog Inputs...

Starts a configuration dialog in which settings can be made to adapt the analog inputs of the REF542 to the sensors or transducers used. Information important for starting and tripping protective functions is sent to the bay control and protection unit via these inputs. Measured values are also recorded with these sensors or transducers.
$\left.{ }^{\Perp}\right)$ Chapter "5.3.4 Analog inputs" on page 5-6

The same measurement recorders are used for the protection and the measurement functions.

Analog Outputs...

Starts a configuration dialog in which settings that influence the REF542 analog outputs can be made. The operational measured values that must be output are selected and the dynamic range of the output signal can be influenced.
$\left.{ }^{4}\right)$ Chapter "5.3.5 Analog outputs" on page 5-11

Calculated Values...

Starts a configuration dialog in which settings for the calculated quantities are made. This includes items such as the selection of the metering system and the type of power calculation.
${ }^{\text {r }}$ Chapter "5.3.6 Calculated values" on page 5-12

Drawing

Starts the function chart editor. Function blocks can be added, connected and configured here to set the desired functions for the bay control and protection unit.

The menu bar with the drawing menu appears. The menu items of the drawing menu are described in Chapter "4.5.2.7 Drawing menu/File" on page 4-21.

Display...

Starts the editor for the LC display screen. The mimic diagram can be set up here. Its elements are connected to the corresponding function blocks.
$\left.{ }^{4}\right)$ Chapter "5.3.7 Display" on page 5-13

Display Language...

Starts the dialog that sets the language version for the texts displayed on the LC display screen. At the same time the correct message texts for the application are selected.
${ }^{\text {r }}$ Chapter "5.3.8 Display language" on page 5-18

4.5.2.4 Main menu/Utilities

Check Drawing F9

Starts the program routine that checks the drawing according to specific criteria. If necessary, relevant error messages appear after the check.
$\left.{ }^{4}\right)$ Chapter "4.5.1.10 Check function chart" on page 4-9

4.5.2.5 Main menu/Options

Language

Only one more submenu needs be selected to select the language version of the configuration program. All menu items, dialogs and messages will then appear in the selected language. This setting is retained every time the program is started in future.
${ }^{\Perp}$) Chapter "4.5.1.2 Selecting the language version" on page 4-4

4.5.2.6 Main menu/Help

Function Keys F1

Opens an information window that shows the assignment of the function keys on the PC keyboard. The appropriate function key is also shown with the corresponding menu items.

The following table shows the assignment of the function keys in the main menu and in the drawing menu.
Table 23: Assignment of the function keys

Key	Main menu	Drawing menu
F1	Help on function keys	Information dialog function keys
F2	Open existing file	-
F3	-	Wire mode: Connect FUPLA symbols
F4	-	Draw mode: Move FUPLA symbols
F5	-	Refresh drawing (screen refresh)
F6	Save	Save
F7	Save as...	-
F8	-	Repeat last add action (only for logic symbols)
F9	Check Drawing	Check drawing
F10	-	Sequences ON/OFF

About...
Opens an information window with copyright and version information of the configuration program.

4.5.2.7 Drawing menu/File

Save F6

The open application file is saved. If a new application file has been created, the file new. edt will be saved in the default work directory of the configuration program. In the case of a new file, use the menu item save as ... when it is saved for the first time.

A project can also be saved by pressing the F6 function key on the PC keyboard.

Note Before saving, the configuration program runs a check of the application. Any messages that appear must be acknowledged before saving.

Exit Edit

The editor used to create and edit the function chart is closed. The function chart display disappears and the main menu menu bar appears again.

4.5.2.8 Drawing menu/Edit

Mode

The function chart editor working mode can be selected in this submenu.

- Design Mode (Draw Mode): Function blocks can be added, moved, configured and deleted here. Connections can be configured or deleted.
- Wire mode (Connection Mode): Connections can be added and changed in the function chart. Connections and function blocks can also be configured or deleted here.
If a function block is added in connection mode, the view switches automatically to draw mode.

Insert Page...

Starts a dialog with which a page can be added. The number of the page is entered in the input field before an empty page is added. An information window shows the last page that has been used in the application.
The Accept and Cancel buttons are used to add the page or to cancel the procedure. The dialog window is closed and the user is returned to the drawing menu.
The configuration program provides a maximum of 99 pages for one application.

Delete Page...

Starts a dialog with which the current page can be deleted. The Accept and Cancel buttons are used to delete the page or to cancel the procedure. The dialog window is closed and the user is returned to the drawing menu.

Delete All

This menu item has two submenu items. They provide the option of deleting all connections or all pages.
After making the selection, a confirmation window appears. Click the ok button to confirm the deletion or Cancel to delete nothing. The dialog window is closed and the user is returned to the drawing menu.

Search Wire...

Opens a dialog window where all connections with the same number can be found. The connection number is entered into the appropriate input field.

The OK button closes the dialog window and the connections with the number input are marked red on all pages of the function chart.

The Cancel button closes the dialog window and returns the user to the drawing menu.

Search Object...

This menu item has two submenu items. They enable a function block (referred to as an object here) to be searched either by its interbay bus address or its object number.

A dialog window appears after making the selection. The interbay bus address or the object number can be entered into the input field.
The ok button closes the dialog window and the object with the interbay bus address or the object number that was entered is displayed in the function chart.

The Cancel button closes the dialog window and returns the user to the drawing menu.

4.5.2.9 Drawing menu/view

Sequences F10

This menu item shows and hides all labels on the function blocks and connections. The F10 function key on the PC keyboard does the same thing.

Wires

This menu item has two submenu items. This enables the user to select whether connections can run only at right angles (perpendicular and horizontal) or in straight lines (perpendicular, horizontal and diagonal).

This setting may be changed at any time and affects all connections.

Next page PgDn

Shows the next page in the function chart. The PgDn (Page Down) key or Screen \downarrow on the PC keyboard does the same thing.

Previous page PgUp

Shows the previous page in the function chart. The PgUp (Page Up) key or Screen \uparrow on the PC keyboard does the same thing.

Go to page...

Starts a dialog with which any page of the function chart can be displayed. The number of the page wanted is entered into the input field. An information window shows the last page that has been used in the application.
The OK and Cancel buttons show the page or cancel the procedure. The dialog window is closed and the user is returned to the drawing menu.
The configuration program provides a maximum of 99 pages for one application.

Zoom...

Opens a dialog window with which the page view can be enlarged. The percentage factor is entered into the appropriate input field. It is always based on the default size of 100%.

Redraw F5

Refreshes the display on the screen. The size and the markings of searched objects remain as before.

Reset

Removes the markings on searched objects and resets the size to the default factor of 100%. Page 1 of the application also appears.

4.5.2.10 Drawing menu/Insert

A menu with all possible function blocks arranged by function groups appears. The various submenus are used to select the corresponding function blocks. The selected one is then added to the function chart.

The description of every function block can be found in Chapter "5.4.1 Control panel" on page 5-21 to Chapter "5.4.14 Other components" on page 5-206. The sequence of descriptions there corresponds to the menu structure of the Insert menu described here. Therefore, a list of the function groups with their function blocks is not given here.

4.5.2.11 Drawing menu/Utilities
 Check drawing F9

Starts the program routine for checking the drawing according to specific points. If necessary, relevant error messages appear after the check.
${ }^{〔} \downarrow$ Chapter "4.5.1.10 Check function chart" on page 4-9

Switching objects...

An information dialog appears. It lists the interbay bus addresses available for the switching objects. Additional information is also shown adjacent:

- ----------: The interbay bus address is not used by a switching object.
- "EXAMPLE TEXT":Text from the Comment input field in the configuration dialog of the switching object.
- "empty": The interbay bus address is used by a switching object. However, no comment text has been entered.

Note When the mouse cursor is placed over a line with the data of a switching object and the left mouse button is double-clicked, the dialog is closed and the switching object is marked in the function chart.
${ }^{\text {² }}$ Chapter "5.4.2 Binary IO (switching objects)" on page 5-26
Protection functions...
The dialog window shown below appears. It lists the protective functions in the application.

Figure 42: Dialog drawing menu/Utilities/protection functions...
A protective function can be marked with the option fields. If the search button is clikked, the dialog window is closed and the protective function (of the function block) is marked in the FUPLA.

The DSP load information field shows the percentage load on the protection and measurement unit (DSP: digital signal processor) resulting from the configured protective functions. A maximum of 100% is permitted. No more than 120 protective parameters and 12 protective functions may be used simultaneously.

The close button ends the dialog.

Wires...

An information dialog with the numbers of the connections in use opens. The number of connections with this number is shown adjacent in parentheses. At the end the text that was entered into the comment field of the configuration dialog of the connection follows.

Note When the mouse cursor is placed over a line with the data of a connection and the left mouse button is double-clicked, the dialog is closed and all relevant connections are marked in the function chart.

4.5.2.12 Drawing menu/options

Block Moving of Objects

This menu item can be marked by selecting it. A $<\checkmark>$ then appears beside the menu item. The function blocks in drawing mode are moved only when the Shift key is held down.
$\left.{ }^{4}\right\rangle$ Chapter "4.5.1.6 Add or move function blocks" on page 4-6

4.5.2.13 Drawing menu/Help

Function keys F1

Opens an information window that shows the assignment of the function keys on the PC keyboard. The function keys are also shown with the corresponding menu items.

The following table shows the assignment of the function keys in the main menu and the drawing menu.
Table 24: Assignment of the function keys

Key	Main menu	Drawing menu
F1	Help on function keys	Information dialog function keys
F2	Open existing file	-
F3	-	Wire mode: Connect FUPLA symbols
F4	-	Draw mode: Move FUPLA symbols
F5	-	Refresh drawing (screen refresh)
F6	Save	Save
F7	Save as...	-
F8	-	Repeat last add action (only for logic symbols)
F9	Check Drawing	Check drawing
F10	-	Sequences ON/OFF

[^0]
4.6 Uninstall

Windows 3.1x and Windows NT 3.5x

Open the uninstall program uninstall_REF542conf. It is in the same location (the same program group) as the configuration program. It is also important for the file install.log to be in the same directory. It was created when the program was installed. The program then guides the user through the uninstall process, which can be user-defined or automatic.

All references to an uninstalled file are automatically deleted in Windows 3.1x and Windows NT 3.5x (old user interface). Program groups that are left empty during this process are also deleted.

In Windows NT 3.5x personal program groups are not affected if there are general program groups with the same name.

Windows NT 4.0

In Windows NT 4.0 start the uninstall process with Start/Configure/System Settings/Software.

Note With the user-defined uninstall process note that a directory is always deleted, even if it is not empty. This may accidentally delete files.

5 REF542 Setup

In this chapter you will find the following information:

- On the options for adding required functions to your bay control and protection unit.
- On the settings that can be made in the configuration program to adapt the REF542 to the application.
- On connecting the function chart to the bay in which the unit is operating.
- On implementing the protective functions by using the associated function blocks.
- On all other function blocks that can be added to the function chart.

If the unit has been delivered with a custom application, this section will assist in understanding the function blocks with respect to their function and configuration.

5.1 Basic information

The variety of functions offered by the REF542 results mainly from the PLC-like programming option provided by the REF542 configuration program. Various function blocks are linked to one another in one function chart (FUPLA).
The objects that can be added to the function chart are referred to as function blocks. They are used to address binary and analog inputs and outputs and to define switching operations, interlocking and protective functions.
Each function block has inputs and/or outputs that can be used within the function chart. Double-click the left mouse button (Microsoft Windows ${ }^{\circledR}$ in the default setting) to open the configuration dialog of the function block on which the mouse cursor is resting.

Normally a configuration or application has been created to be precisely customized for the purpose and location of the REF542 bay control and protection unit. This configuration has been loaded into the REF542 and saved there. It specifies what protective functions are tripped under what conditions, when and what interlockings are activated and what initial variables are set for the analog and binary outputs of the REF542. The application implemented with the function chart provides exactly the protection, measurement, supervision and control functions that are required.

5.2 Connecting inputs and outputs

The REF542 receives a great variety of information on the equipment being monitored through its analog and binary inputs. These input quantities are digitally processed in the function chart. The REF542 outputs are addressed from the function chart, for example to trip the switching objects in the bay.
To enable the REF542 inputs and outputs to be used in the function chart, they are represented by function blocks, the switching objects. This enables several inputs and outputs to be combined.
${ }^{\mu}$)Chapter "5.4.2 Binary IO (switching objects)" on page 5-26

5.3 General settings

Before a function chart can be created and exported to the REF542, some settings must be made in the PC and the bay control and protection unit for which the application is to be programmed.

5.3.1 Serial Port

To enable the Serial Port (RS232) of the computer to be used to transmit the configuration/application, the applicable dialog window must be edited. After starting the configuration program, open the menu Main Menu/Transfer/Serial Port. The dialog window has five option fields where settings for the computer Serial Port can be made.

Configuration dialog

Option field ComPort: Here enter the active interface on the computer to enable communication from the PC to the REF542 over an RS232 cable.
Setting range: [COM1, COM2]
Default: COM 1

Note The following options are set.

- Option field BaudRate:

Default: 9600

- Option field Parity: Default: None
- Option field Data BITS: Default: 8
- Option field Stop BITS: Default: 1

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

5.3.2 Global Settings

The "Global Settings" dialog window is opened with the menu Main Menu/Configure/Global Settings. The desired general configuration inputs are made here. With the exception of those for trip circuit supervision, the inputs are independent of the REF542 model supplied.

Note It is absolutely essential to edit the configuration dialogs Main Menu/Configure/ Global Settings and Main Menu/Configure/Hardware before the drawing editor is opened.

Configuration

Figure 43: Configuration dialog for the REF542 Global Settings
Input field Node address: The Node address sets the addressing of the bay control and protection unit over the interbay bus. Every device installed on an interbay bus is assigned a unique device address.
Setting range: 1 ... 255
Default: 99
Input field Project: Enter a name for the project here. The name entered is only for a more precise description and has nothing to do with the name under which the application can be saved. One project can include several bays.
Setting range: $0 \ldots 21$ characters (standard character set)
Input field Feeder: Enter a name for the feeder for which the application will be created as part of the above project. The name entered is only for more precise description and has nothing to do with the name under which the application can be saved.
Setting range: $0 \ldots 21$ characters (standard character set)
Input field Global filter time:Time in ms required for an input signal to address the binary input to be detected as such. The general filter time is valid for all binary inputs and is added to a non-adjustable filter time that is set by the design of the unit (15 ms). The last is referred to as the hardware filter time.
Setting range: $0 \ldots 999 \mathrm{~ms}$ (Increment: 1 ms)
Default: 20
Input field active protection set: Parameter set of the protective parameter that is intended to be active when the REF542 is started. The active parameter set can be changed later with the local control on the REF542 operator view.
Setting range: $1 \ldots 2$ (Increment: 1)
Default: 1
Information field changes: A variable that shows the number of changes to the configuration for the service in encrypted form appears here.
Information field Name of configuration: This shows the name under which the application file/configuration file is saved.
${ }^{4}$) Chapter "4.5.1.1 Working with projects" on page 4-3

Input range coil supervision: There are four checkboxes here that enable trip circuit supervision (=coil supervision) to be activated for two trip circuits each for a maximum of two binary input and output boards.

- Checkbox board 1_1: Activates or deactivates trip circuit supervision for binary output 1 on the 1 st input and output board.
- Checkbox board 1_2: Activates or deactivates trip circuit supervision for binary output 2 on the 1st input and output board.
- Checkbox board 2_1: Activates or deactivates trip circuit supervision for binary output 1 on the 2 nd input and output board.
- Checkbox board 2_2: Activates or deactivates trip circuit supervision for binary output 2 on the 2 nd input and output board.
${ }^{5} \downarrow$ Chapter "3.4.4.1 Input and output board with transistor relay" on page 3-20
$\stackrel{\mu}{4}$ Chapter "3.4.4.2 Input and output boards with conventional relays" on page 3-25
${ }^{4}$ Information on the corresponding function block is in Chapter "5.4.2.17 IO-Supervision" on page 5-64

Checkbox Errorsupervision: Activate fault supervision here by checking the box. It monitors the switching of the controlled binary outputs. If the relays have not reacted to the switching command, an error message will appear on the REF542 LC display screen.

Checkbox Doubleswitching: This provides the option of activating double actuation. Then, after selecting a switching object once on the operator view of the REF542, the option of sending two switching commands to this switching object is available. In general, three seconds are available for sending a switching command after selecting a switching device. If double actuation is activated, another 10 seconds is available to send another switching command after the first switching command.

Checkbox events: Mark this checkbox to allow event data to be generally sent to a higher-order control system. See also the system messages 1 and 2 buttons.
Checkbox autoreclosure (AR) used: Mark this checkbox to enable the autoreclosure function in general.
${ }^{4}$) Chapter "5.5.1 Autoreclosure" on page 5-209
Option field test mode: Select whether entry to the test mode is generally allowed via the local input operating mode.
${ }^{4}$) Chapter "8.1.6.7 Entry point to test mode" on page 8-23
Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.
Button system events 1: Clicking on this button starts a dialog window in which various device-based events can be enabled. If they occur they are then sent to the hig-her-order control system.

See also button system events 2 and checkbox events. Events may also be enabled in the configuration dialogs of some function blocks and they are then based on these.

Button system events 2: Clicking on this button starts another dialog window in which various device-based events can be enabled. If these events occur they are then sent to the higher-order control system.

See also button system events 1 and checkbox events. Events may also be enabled in the configuration dialogs of some function blocks and they are then based on these.

5.3.3 Hardware

The hardware configuration dialog window is opened with the menu Main Menu/ Configure/Hardware. General inputs on the REF542 model for which the configuration/application is to be created may be made there.

Note It is absolutely essential first to edit the configuration dialogs Main Menu/Configure/Global Settings and Main Menu/Configure/Hardware to get to the drawing editor.

Figure 44: Dialog window for the REF542 hardware configuration
Input range REF542 housing: Various inputs regarding the type of housing in use can be made here:

- Options IO-slots: Specifies whether a short housing (2 input/output slots) or a deep housing (4 input/output slots) is in use.
- Checkbox with display (LCU) : Mark this checkbox when the REF542 has a LC display screen on the operator view (LCU - Local Command Unit).

Input range binary IO boards:

- <+> and <-> buttons: Increase or reduce the number of active binary input and output boards. The desired number is shown in the information field on the left.
- Options relay: Enter the type of relay that is used on the active binary input and output boards. Either conventional (mechanical) relays or Solid State (transistor) relays. Different boards cannot be combined.
- Information field binary inputs, binary outputs: This shows how many binary inputs and outputs are available depending on the number and type of boards in use.

Information field CPU board: Shows the number of analog inputs.
${ }_{4}^{4}$ Additional configuration options: Chapter "5.3.4 Analog inputs" on page 5-6
Input range analog output boards: Configure the number of analog output boards in use here. These boards can only be used in the deep housing.

The <+> and <-> buttons are used for settings. The information field shows the number of possible analog outputs.
${ }_{\wedge}>$ Additional configuration option: Chapter "5.3.5 Analog outputs" on page 5-11
Option field process bus: Mark whether the process bus is to be used or not.
Input range field bus:

- Use the button that opens the list field $\langle\boldsymbol{\downarrow}>$ to open the interbay bus variation selection list. Depending on the type of interbay bus the parameters button is then activated.
- Button parameters: When the MVB (Multi Vehicle Bus) is selected, the number of communications computers (number of higher-order control system gateways) can be entered with the familiar control components in the dialog window.
${ }^{\wedge}$) Chapter "3.4.7.2 MVB as interbay bus" on page 3-39
When the SPA bus is selected, use the control components to enter whether the interbay bus configuration (topology) is star or ring-type.
${ }^{4}$ h Chapter "3.4.7.1 SPA bus as interbay bus" on page 3-36
Button ok: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

5.3.4 Analog inputs

The menu Main Menu/Configure/Terminals/Analog Inputs opens the dialog window shown below. The analog measurement inputs of the REF542 can be configured and set for the transducers in use. The settings are particularly important for the safe and proper functioning of the unit.

Figure 45: Example of the configuration dialog for setting the analog inputs
The dialog window is initially identical for all analog inputs (no. $1 \ldots 7$). For this reason only one input and its configuration is described. Information on the setting ranges or representative settings can be found below in the window in the information field.
Selection list type: First, open the selection list of possible types be clicking the < $\downarrow>$ button for list selection. The type of the measurement recorder in use can be selected there. Sensors (voltage sensors and Rogowski coils) and transducers (current and voltage transformers) are available.

Input field calibration factor: This setting value only needs to be input when using the Rogowski coil. It is used to monitor manufacturing tolerances in making the coil. The calibration factor is printed on the Rogowski coil housing.

Caution Enter a calibration factor for the Rogowski coil only. With all other measurement recorders a calibration factor unequal to 1.0000 will result in incorrect measured values.

Input field nominal value of analog input: The nominal value at the analog input is entered here, depending on the measurement recorder in use.
Setting ranges:
${ }^{\text {nct }}$ Chapter "5.3.4.1 Setting the rated network values" on page 5-7
$\left.{ }^{4}\right)$ Chapter "5.3.4.2 The nominal values of the net and the protection settings" on page 5-9
n) Chapter "5.3.4.3 The nominal values of the net and the measured value display" on page 5-10

Input field nominal value of the net: The nominal value of the net is entered here, depending on the measurement recorder in use. The nominal values are always based on the network that is to be monitored. The nominal value is used for correct control of the bar graph on the REF542 LC display screen.
${ }^{n}$) Chapter "5.3.4.1 Setting the rated network values" on page 5-7
${ }^{4}$ Chapter "5.3.4.2 The nominal values of the net and the protection settings" on page 5-9
${ }^{4}$ Chapter "5.3.4.3 The nominal values of the net and the measured value display" on page 5-10

Information fields below in window: The applicable setting ranges are shown here again as an aid.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

5.3.4.1 Setting the rated network values

Setting the rated network values is known to cause problems and is therefore precisely explained again in the following section for the usable measurement recorders.

Current transformer

Figure 46: Nominal values for the current transformer

- Calibration factor: For proper functioning it must equal 1.0000.
- Nominal value of analog input: The primary rated current of the current transformer is entered here.
This is understood as the primary current that has to flow to generate a secondary signal 1 A or 5 A (depending on the type of transducer).
- Nominal value of the net: The load current that should actually be expected is entered here. At this value the bar in the bar graph on the LC display screen will be in the middle and indicates the rated load of the network.
${ }^{n}$ Chapter "5.3.4.3 The nominal values of the net and the measured value display" on page 5-10

Voltage transformer

Figure 47: Rated network values for the voltage transformer

Note The REF 542 only measures conductor-earth voltages. The external phase-to-neutral voltages are calculated and then displayed.
The voltage inputs are based on the phase-to-phase voltages (external phase-to-neutral voltages).

- Calibration factor: For proper functioning it must equal 1.0000 .
- Nominal value of analog input: The secondary voltage of the primary voltage transformers is entered here. Generally 100 V or 110 V .
- Nominal value of the net: The primary voltage of the network (external phase-toneutral voltage!) is entered here. The secondary voltage of 100 V or 110 V is generated at this value.
${ }^{7}$) Chapter "5.3.4.3 The nominal values of the net and the measured value display" on page 5-10
${ }^{n}$ chapter "5.3.4.2 The nominal values of the net and the protection settings" on page 5-9

Rogowski coil

Figure 48: Rated network values for the Rogowski coil

- Calibration factor: Entering the calibration factor eliminates the coil manufacturing tolerance. It is printed every Rogowski coil.
- Nominal value of analog input: The rated current of the Rogowski coil is entered here.
This is understood as the primary current that has to flow to generate a secondary signal of 150 mV .
- Nominal value of the net: The rated network current that should actually be expected is entered here. At this value the bar in the bar graph on the LC display screen will be in the middle and indicates the rated load of the network.
${ }^{4}$)Chapter "5.3.4.3 The nominal values of the net and the measured value display" on page 5-10

Voltage sensor

Figure 49: Rated network values for the voltage sensor

Note The REF 542 only measures the phas voltages. The line voltages are calculated and then displayed. The voltage inputs are based on the line voltages.
(4) Chapter "5.3.4.2 The nominal values of the net and the protection settings" on page 5-9

- Calibration factor: For proper functioning it must equal 1.0000.
- Nominal value af analog input: The voltage sensor divisor ratio based on its secondary output voltage of 2 V is entered here.
Voltage sensors with a rated voltage of 20 kV are currently in use. As an example, 10 kV primary voltage is mapped to a secondary voltage of 1 V .
- Nominal value of the net: The actual primary voltage of the network (external pha-se-to-neutral voltage!) is entered here.
${ }^{4}$ Chapter "5.3.4.3 The nominal values of the net and the measured value display" on page 5-10

5.3.4.2 The nominal values of the net and the protection settings

Voltage protective functions

Caution All voltage protective functions are always based on Un=2 V/ 3 , thus the voltage applied at the analog input at the rated load. Proper configuration of the analog inputs is therefore particularly important.

If a protective function is started at $X \cdot U n$, the protective function will actually be started if a voltage of $\mathrm{X} \cdot 2 \mathrm{~V} / \sqrt{ } 3$ is applied to the analog input.
Example: Overvoltage protective function U>
Starting value: $1.2 \mathrm{U}_{\mathrm{n}}$
The overvoltage protective function would start if a voltage of $1.2 \cdot 2 \mathrm{~V} / \sqrt{ } 3=1.38 \mathrm{~V}$ is applied to the analog input.

Current protective functions

All current protective functions are always based on 150 mV , thus the voltage applied at the analog input at the rated load in the monitored conductor. Proper configuration of the analog inputs is therefore particularly important.

If a protective function is started at $X \cdot I n$, the protective function will actually be started if a current is applied that initiates a voltage of $X \cdot 150 \mathrm{mV}$ at the analog input.

Example: Overcurrent protective function l>>>
Starting value: $25 \cdot I_{n}$
The overcurrent protective function would start if a current is applied that would initiate a voltage of $25.150 \mathrm{mV}=3.75 \mathrm{~V}$ at the analog input.

5.3.4.3 The nominal values of the net and the measured value display

The following table shows some actual examples of the connections between the inputs in the configuration dialog for the analog inputs and the display on the LC display screen on the REF542 control panel.
Table 25: Configuration examples of the measurement recorder

Settings in the configuration dialog				Simulated input quantity	Display on the REF542	
Measurement recorder type	Calibration factor	Nominal value of analog input	Nominal value of the net		Value	Bar
Current transformer	1.0000	300 A	300 A	150 mV	300 A	1/2
Current transformer	1.0000	300 A	150 A	150 mV	300 A	full
Current transformer	1.0000	300 A	150 A	75 mV	150 A	1/2
Current transformer	1.0000	150 A	300 A	150 mV	150 A	1/4
Current transformer	1.0000	150 A	300 A	75 mV	75 A	1/8
Voltage sensor	1.0000	10 000:1	10 kV	$2 \mathrm{~V} / \sqrt{ } 3$	$\begin{aligned} & \mathrm{U}_{\mathrm{LE}}=20 / \sqrt{3} \mathrm{kV} \\ & \mathrm{U}_{\mathrm{LL}}=20 \mathrm{kV} \end{aligned}$	full
Voltage sensor	1.0000	10 000:1	10 kV	$1 \mathrm{~V} / \sqrt{ } 3$	$\begin{aligned} & \mathrm{U}_{\mathrm{LE}}=10 / \sqrt{3} \mathrm{kV} \\ & \mathrm{U}_{\mathrm{LL}}=10 \mathrm{kV} \end{aligned}$	1/2
Voltage sensor	1.0000	10 000:1	20 kV	$2 \mathrm{~V} / \sqrt{ } 3$	$\begin{aligned} & \mathrm{U}_{\mathrm{LE}}=20 / \sqrt{3} \mathrm{kV} \\ & \mathrm{U}_{\mathrm{LL}}=20 \mathrm{kV} \end{aligned}$	1/2
Voltage sensor	1.0000	10 000:1	20 kV	$1 \mathrm{~V} / \sqrt{ } 3$	$\begin{aligned} & \mathrm{U}_{\mathrm{LE}}=10 / \sqrt{3} \mathrm{kV} \\ & \mathrm{U}_{\mathrm{LL}}=10 \mathrm{kV} \end{aligned}$	1/4
Rogowski coil	1.0000	300 A	300 A	150 mV	300 A	1/2
Rogowski coil	1.0000	300 A	150 A	150 mV	300 A	full
Rogowski coil	1.0000	300 A	150 A	75 mV	150 A	1/2
Rogowski coil	1.0000	150 A	300 A	150 mV	150 A	1/4
Rogowski coil	1.0000	150 A	300 A	75 mV	75 A	1/8
Voltage transformer	1.0000	100 V	10 kV	$2 \mathrm{~V} / \sqrt{ } 3$	$\begin{aligned} & \mathrm{U}_{\mathrm{LE}}=10 / \sqrt{3} \mathrm{kV} \\ & \mathrm{U}_{\mathrm{LL}}=10 \mathrm{kV} \end{aligned}$	1/2
Voltage transformer	1.0000	100 V	10 kV	$1 \mathrm{~V} / \sqrt{ } 3$	$\begin{aligned} & \mathrm{U}_{\mathrm{LE}}=5 / \sqrt{3} \mathrm{kV} \\ & \mathrm{U}_{\mathrm{LL}}=5 \mathrm{kV} \end{aligned}$	1/4
Voltage transformer	1.0000	100 V	20 kV	$2 \mathrm{~V} / \sqrt{ } 3$	$\begin{aligned} & \mathrm{U}_{\mathrm{LE}}=20 / \sqrt{3 \mathrm{kV}} \\ & \mathrm{U}_{\mathrm{LL}}=20 \mathrm{kV} \end{aligned}$	1/2
Voltage transformer	1.0000	100 V	20 kV	$1 \mathrm{~V} / \sqrt{ } 3$	$\begin{aligned} & \mathrm{U}_{\mathrm{LE}}=10 / \sqrt{3} \mathrm{kV} \\ & \mathrm{U}_{\mathrm{LL}}=10 \mathrm{kV} \end{aligned}$	1/4

In the following configuration note that the primary transformer generates a secondary voltage of 110 V . Because only signal converters with a rated voltage of 100 V are used in the REF542, the measurement results must be adapted by the program. This is done by changing the nominal value of analog input from 100 V to 110 V .
If such a special solution is used, please note the thermal durability of the signal converter and test the desired configuration beforehand.

Voltage transformer	1.0000	110 V	20 kV	$2.2 \mathrm{~V} / \sqrt{3}$	$\mathrm{U}_{\mathrm{LE}}=20 / \sqrt{3} \mathrm{kV}$ $\mathrm{U}_{\mathrm{LL}}=20 \mathrm{kV}$	$<1 / 2$
Voltage transformer	1.0000	110 V	20 kV	$1.1 \mathrm{~V} / \sqrt{3}$	$\mathrm{U}_{\mathrm{LE}}=10 / \sqrt{3} \mathrm{kV}$ $\mathrm{U}_{\mathrm{LL}}=10 \mathrm{kV}$	$<1 / 4$

5.3.5 Analog outputs

The menu Main Menu/Configure/Terminals/Analog Outputs opens the dialog window shown below. The analog outputs on the REF542 analog output board can be configured there.

Figure 50: \quad Configuration dialog for the analog outputs
Because all analog outputs are configured the same way, only one output is described here. All setting options for an analog output can be found on one index card:

- Selection list: A click of the mouse on the button opens the selection list \downarrow and a REF542 measured or calculated value can be selected. It can then be tapped at the corresponding analog output.

Note The selection list always shows all possible measured and calculated values. In fact only the following values can be output:

- Measured values applied to the analog inputs and
- calculated values required by a configured protective function.
- Input field $0 \mathrm{~mA}=/ 4 \mathrm{~mA}=$: Specify what multiple of the rated value of a measured or calculated value is mapped to the initial value of the analog output board. The initial value of the output range of the analog output changes here depending on the mode marked.
If 0 mA or 4 mA can be tapped at the analog output, the actual measured or calculated value will be $[-4.000 \ldots+4.000]$ multiplied by its rated value.
Default: +0.0000 (Increment: 0.0001)
Setting range: $-4.0000 \ldots+4.0000$
- Input field $20 \mathrm{~mA}=$: Specify what multiple of the rated value of a measured or calculated value is mapped to the final value of the analog output board.
If 20 mA can be tapped at the analog output, the actual measured or calculated value will be $[-4.000 \ldots+4.000]$ multiplied by its rated value.
Default: +0.0000 (Increment: 0.0001)
Setting range: $-4.0000 \ldots+4.0000$
- Option field mode: Mark the output mode here. This sets the output range to which the input range set above will be mapped.
The option with quiescent current allows a continuous quiescent current to flow through the line from the analog output board to the display device. This enables an error message to be generated by the display device if no signal is received over the line. However, this will limit the output range.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

5.3.6 Calculated values

The menu Main Menu/Configure/Calculated Values opens the dialog window shown below. Various settings that influence the calculation methods of certain calculated values in the REF542 are made here.

Figure 51: Configuration dialog for calculating some internal quantities
Option field Reference-arrow system: Activate the consumer or or generator metering system here. The two diagrams in the option field show the positively metered current direction.

The setting influences the sign of the values determined in the power calculation!

Note The choice of the metering system influences the sign in the power calculation. The choice of the metering system does not affect the directional protective functions.

Option field power handling: The type of power calculation is configured here. The three options are three-phase power calculation, power calculation by the Aron method and deactivation of the power calculation.
${ }^{4}$ Chapter "11.7.5 Power calculation" on page 11-33

Note Please remember that the choice of power calculation always requires specific wiring of the analog inputs with sensors or transducers.

Input field Maximal mesured value:This input window enables the length of a time window in minutes to be input. The average value of the line currents is mapped in this time window. The average value has a trailing pointer function. The maximum value is indicated in the bar graph on the LC display screen with a perpendicular line.
The setting value 0 deactivates this function.
Setting range: $0 \ldots 30 \mathrm{~min}$. (increment: 1 min .)
Default: 0
Option field netfrequency: Select the network frequency of the monitored network here.

Caution If the network frequency of 60 Hz is selected, the protective function distance protection will not be available.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

5.3.7 Display

The menu Main Menu/Configure/Display ... opens the dialog window shown below. This editor is used to configure the mimic diagram displayed on the LC display screen in standard operation. The editor is also used to configure the connection between the mimic diagram and the switching device.

5.3.7.1 User controls for the editor for the LC display screen

Figure 52: Editor for configuring the mimic diagram
The elements labeled in the above screenshot are described in the following paragraphs:

4. Drawing field:

- This area represents the area of the REF542 LC display screen usable for the mimic diagram. It has an area of 127×212 pixels. A mimic diagram configured here always fits between the measured value display and the status line on the LC display screen.

1. Coordinates of the cursor position:

- When mouse cursor is in the drawing field (4.), the location coordinates will be shown in the form x, y. Here the left upper corner corresponds to the coordinates 0,35 and right lower corner to the coordinates 127, 247.
This ensures compatibility to mimic diagrams configured with older software versions.

2. Buttons:

- Button close: This closes the editor. The mimic diagram is automatically saved with the configuration. When the editor is closed the user is prompted to save the mimic diagram.
- Buttons import and export: They offer the option of reusing a previously configured mimic diagram.
To do this the mimic diagram must first be exported. After clicking on the appropriate button, a standard Microsoft Windows ${ }^{\circledR}$ dialog for saving the file to be exported appears. The file name has the ending *.Icu.
If the user wishes to reuse or change a previously configured mimic diagram, click the import button. A standard Microsoft Windows ${ }^{\circledR}$ dialog in which the file to be imported can be selected appears. The file name must have the ending *.lcu.

Mimic diagrams that were not prepared with the editor described above cannot be imported.

- Button clear all: All elements on the drawing field (4.) will be deleted. If the configuration has been previously saved, the drawing as it stands at this point will be saved with it.

3. Tools:

The four buttons set the mode in which work on the drawing field (4.) is conducted. The appearance of the mouse cursor also depends on the mode.

Button edit: Elements can be selected, moved and deleted in this mode. The editing mode is always activated again after using other modes.

Button symbol: Any icon can be added and configured on the drawing field (4.) in this mode.

Button thin line: Use this mode to draw thin lines in the drawing field (4.).

Button thick line: Use this mode to draw thick lines in the drawing field (4.).

The exact usage of the buttons will be explained in more detail after the editor controls have been explained.

5. Option fields:

- Option field Enable Sloping Lines: When this field is marked, diagonal lines can be drawn on the drawing field (4.) as well as perpendicular and horizontal lines.
- Option field Block moving: Marking this field prevents unwanted movement of elements on the drawing field (4.). To move an element, hold down the shift key. This key must also be used for extending, shortening or changing the direction of lines.

6. Selected element:

- A selected element is shown inverted. All operations can only be conducted on the selected element. For this reason only one can be selected at any time.

7. Information field free Resources:

- This shows information on the number of icons and lines (the possible elements) that can still be drawn. A maximum of 8 icons and 40 lines can be drawn.

8. Information field marked element:

This shows information on the element that is to be selected:

- Lines: Coordinates of the start and finish points, the line thickness (thin, thick) and the line length in pixels.
- Switching objects: Coordinates of the lower left corner, Field bus address and comment for the function block that is represented.
- Other icons: Coordinates of the left lower corner.

Mouse cursor appearance

The mouse cursor can also appear differently depending on the specific mode in the drawing field (4.):

Standard appearance: Shown when the mouse cursor is not on any element.

Movement mouse cursor: Shown when the mouse cursor is on an element. Click the mouse button to select the element.

Drag mouse cursor: Shown when the mouse cursor is on the end of a selected line. The line can then be shortened or lengthened by dragging with the left mouse button held down.

Icon mouse cursor: This is used in icon mode. Click the mouse to open the configuration dialog for a new icon.

Line mouse cursor: This is used in line mode. Hold the left mouse button down and drag to draw perpendicular, horizontal or diagonal (if enabled) lines.

5.3.7.2 Working with the editor for the LC display screen

Select an element/deactivate selection

- Click the left mouse button when the mouse cursor is on an icon or a line.

The selected icon is shown inverted; the sizing handles at the ends of the line are emphasized.

- Click the left mouse button when the mouse cursor is not on an element in the drawing field.

Select sizing handle

- Select a line. The sizing handles will show.
- Move the mouse cursor to the sizing handle and hold the left mouse button down. Drag the sizing handle with the mouse.
OR:
- Mark one or the other sizing handle by using the key combination Ctrl+space several times. Then the cursor keys on the keyboard can be used to make very precise movements of the sizing handle.

Move element

- Select the element and drag the mouse with the element while holding the left mouse button down.
OR:
After selecting the element move it with the cursor keys on the keyboard.

Insert icon

- Click the symbol button.
- Move the mouse cursor to the position desired for the icon in the drawing field.
- Click the left mouse button to open the icon configuration dialog.

4. Chapter "5.3.7.3 Configuration dialog for icons" on page 5-17

Configure existing icon

- Move the mouse cursor over the icon and double-click the left mouse button. The configuration dialog then opens.
↔Chapter "5.3.7.3 Configuration dialog for icons" on page 5-17

Insert line

- Click the thin line or thick line button.
- Move the mouse cursor in the drawing field to the position desired for the beginning of the line.
- Click the left mouse button and hold it down to set the beginning point of the line. Drag the mouse with the button held down to the end point of the line. Release the mouse button.

Configure existing line

- Move the mouse cursor over the line and double-click the left mouse button. The configuration dialog then opens.
EChapter "5.3.7.4 Configuration dialogue for lines" on page 5-18

Delete element

- Select the element that is to be deleted.
- Click the Del key on the keyboard. The user is then prompted to confirm or cancel the deletion.

Change line size

- Select sizing handle
- Drag the mouse with the sizing handle while holding the left mouse button down. OR:
After selecting the sizing handle move it with the cursor keys on the keyboard.

Change the appearance of a switching object

- Click on the switching object icon while holding the Ctrl key down. Every switching object has four different appearances, which represent its switching status. OR:
Select the switching object and change its appearance with the key combination Ctrl+space.

Select elements one after the other

- Select an element
- Use the keys Ctrl+right cursor or Ctrl+up cursor to select the next or the previous element according to an internal sorting process.
- Use the keys Ctrl+left cursor or Ctrl+down cursor to select the next or the previous element in the opposite direction to the internal sorting process.

Copy drawing field to the clipboard

- Use the Ins key on the keyboard to copy the entire drawing field to the clipboard as a two-color bitmap graphic.

Open context-dependent popup menus

In addition to the options for conducting various operations described above, the editor for the LC display screen also has contect-dependent popup menus.
They are opened by clicking the right mouse button and the contents depend on where the mouse cursor is on the drawing field at that time (popup menus can only be opened there). A menu beside the mouse cursor opens in which various editing options can be selected. This offers faster access to the various functions. All functions offered there can also be accessed as described above.

5.3.7.3 Configuration dialog for icons

The configuration dialog for icons appears when a new icon is added or if it is opened as described in the previous subsection.

Figure 53: Configuration dialog for icons in the editor for the LC display
List field Shape: Click the button to open the list field that displays the selection menu for optional appearances of the icons. A description and the dimensions of the image (height, width) are adjacent to the image. In the case of the switching objects, please note that only one of four possible images is ever shown.

List field Field bus address: Set the connection between the element on the LC display and the function chart. The selected icon represents the switching object with the corresponding Field bus address on the LC display.
After clicking the button that opens the list field \downarrow, the selection of possible Field bus addresses that have been used in the function chart for switching objects appears. The comment that can be entered in the configuration dialog of that switching object is adjacent.

The list field Field bus address is opened automatically when an icon in the above list field image has been selected.

Input fields position: The x and y coordinates appear at the lower left corner of the icon. Other coordinates can be entered here to move the icon.

Option fields Single object/combined object: Here select whether the desired switching object will be represented by one or two icons. The second icon can be sel-
ected with the option fields earth switch/isolator. Only these two options are available for the second icon.

Example: A 3-position switch (with some exceptions) can be shown with an object combined of a earthing switch and a Isolator.

Option range selectability: Here select how the switching object can be selected locally directly at the REF542.

- privileged: It is the first switching object that will be selected.
- selectable: It can be selected.

The sequence in which the switching objects will be selected is set internally. Only the switching object that will be selected first can be set (see above).

- not selectable: This switching object cannot be selected locally on the REF542. (It can only be addressed from the higher-order control system.)

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

5.3.7.4 Configuration dialogue for lines

The configuration dialog for lines is opened as described in the subsection above.

Figure 54: \quad Configuration dialog for lines in the editor for the LC display
Input range start position: Enter the x and y coordinates of the starting point of the line into the two input fields. The current values appear there when the dialog window is opened.

Input range end position: Enter the x and y coordinates of the end point of the line into the two input fields. The current values appear there when the dialog window is opened.

Option field line thickness: Here mark whether the selected line should be drawn thick or thin. The current values appear there when the dialog window is opened.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

5.3.8 Display language

The menu Main Menu/Configure/Display Language ... opens the dialog window shown below. Select the language file from which the texts that appear on the LC display screen will be read.

Figure 55: Configuration dialog for selecting the language of the texts on the LC display screen

List field display language: Click with the mouse on the button < $\downarrow>$ to open a selection list with various files. The file is selected depending on the desired language and the configuration used. A set of six files is provided for every language. The files are in the following form: S_LB_AP.stc:

- L stands for the language used,
- LB for the type of power calculation and
- AP for the application used.

The following table shows an overview of the options available.

L: Language	LB: Power calculation	AP: Application
E: English	AA: Power calculation ac-	CA: Dependent thermal protection
G: German	cording to Aron	(thermal replica) for lines
I: Italian	3P: Three-phase power cal- culation	MO: Dependent thermal protection (thermal replica) for motors
C: Czech		TR: Dependent thermal protection S: Spanish
(thermal replica) for transformers		
P: Portuguese		
M: Mexican		

Note
A language file must be specifically selected if the protective function "dependent thermal protection" (thermal replica) and/or a form of the power calculation is used in the application.

Please follow the points below when selecting the desired language file.

- First decide what language is required on the LC display.
- What equipment is protected by the protective function "dependent thermal protection" (thermal replica)? Line, motor or transformer?

If the protective function "dependent thermal protection" is not used, only the selection according to the type of power calculation is still important.

- What method is used to calculate the power in the application? Three-phase or Aron?

Note If power calculation is not used, only the selection of the equipment protected with the protective function "dependent thermal protection" (thermal replica) is important. If this protective function is also not used, only the selection of the desired language is decisive.

Example: G_3p_CA.stc
Use this file if the following criteria must be met:

- Display language:German AND
- Calculation of the power: 3-phase OR no power calculation,
- Protection: dependent thermal protection for lines OR no dependent thermal protection used.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

5.4 Function and configuration of the function blocks

This section describes all function blocks that can be added to the function chart or that are already present in the function chart. The structure is adapted to the menu structure of the Add menu in the function chart editor. Every description has a similar structure.

Description of the function blocks

A diagram of a function block is followed by an explanation of its function, its connections and, if applicable, a typical application. This is followed by a screenshot of the configuration dialog associated with the function block if it is not an information dialog, which only has the OK or cancel buttons.

Finally, the various elements of the configuration dialog are explained. If input parameters are involved, the input range and its optional increment and the default are also given. To ensure that every function block has a complete description, even elements that occur repeatedly are always described.

Description of the switching objects

Only the sections where the switching objects are described have a different procedure. They are preceded by an additional section that describes a selected switching object in detail. This includes information on the appearance of a switching object in the function chart and its configuration dialog. All descriptions are somewhat shorter in the sections on every single switching object.

Object number

The number on the left above every function block is the sequential number (object number), which is assigned by the configuration program. It may be assigned several times in the images of the function blocks. Every object number is only assigned once in a correct application.

5.4.1 Control panel

The subsections contain the descriptions of the function blocks that are available via the menu Drawing Menu/Insert/Control Panel.

5.4.1.1 Indication LED

Figure 56: Function block indication LED

Function

This function block represents the configurable indication LEDs adjacent to the LC display screen on the local command unit (LCU). This function block can be used to address the LEDs (light-emitting diodes) from the function chart and appropriate message texts can be added. The LEDs can be in one of four states depending on the wiring of the two inputs: Off, green, red, orange (amber).

The configuration and numbering of the configurable LEDs (no. 3-9) can be found in the following figure:

Figure 57: Control panel of the LCU with the LEDs

Typical application

Use of the signaling LED to receive the status message for temperature supervision of a motor. A green LED stands for "OK", an orange LED stands for "critical status" (with the starting signal of a protective function) and a red LED stands for "fault: motor too hot" (with the trip signal of a protective function).

Connections:

Depending on the wiring of the two inputs, the LED has one of the four following states: OFF, green, red or orange. The following tables show the corresponding combinations.
Table 26: Connections on the function block signaling LED

Color	Connection Green input	Red input
Off	0	0
Green	1	0
Red	0	1
Amber	1	1

Configuration

Figure 58: Configuration dialog function block signaling LED
Input field number: Input of the number of the LED that is to be configured. The number is also input in the function block. The LED numbers can be found in Figure:57.
Setting range: $3 \ldots 9$ (increment: 1)
Default: [number of the next LED that is not configured]
Checkbox Signal latched: This checkbox must be marked if an acknowledgement is required after the LED status (off, red, green or orange) has changed. If the reason for the LED change of state is still in effect, the acknowledgement will have no effect.
Setting range: Marked/unmarked
Default: Unmarked
Input field text for display: Text that is shown in the REF542 LC display screen after the scan of the LED message texts when the LED is out. In the function chart the text is displayed above the function block.
Setting range: $0 \ldots 21$ characters (standard character set)
Default: [Empty]
Input field Green: In the function chart the text is displayed above the function block. It is provided only to enable the function of the LED in the function chart to be understood better and is not displayed on the LC display screen.
Setting range: $0 \ldots 21$ characters (standard character set)
Default: [Empty]
Input field Amber: In the function chart the text is displayed above the function block. It is provided only to enable the function of the LED in the function chart to be understood better and is not displayed on the LC display screen.
Setting range: $0 \ldots 21$ characters (standard character set)
Default: [Empty]

Input field Red: In the function chart the text is displayed above the function block. It is provided only to enable the function of the LED in the function chart to be understood better and is not displayed on the LC display screen.
Setting range: $0 \ldots 21$ characters (standard character set)
Default: [Empty]
Information field Pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

5.4.1.2 Alarm LED

Figure 59: Function block alarm LED

Function

This function block represents the alarm LED on the LCU control panel. This enables it to be controlled from the function chart.

Connections:

The function block connections are not labeled on the function block. They are described as the upper and lower connection.

There are two options for switching the alarm LED on and off:

- The LED is switched on if the upper connection is at logical 1 and
- the LED is switched off if the upper connection is at logical 0 .

OR

- the LED is switched on if the lower connection receives a logical 1 signal and
- the LED is switched off if there is no longer a logical 1 signal at the lower connection AND if the "alarm" is acknowledged at the REF 542 control panel.

Typical application

This LED or the "ALARM" text is on if a power circuit-breaker OFF command has been generated by a protective function being addressed and the power circuit-breaker was tripped.

Configuration

Only the function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.
The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

5.4.1.3 Alarm Reset

RLARM
REMOTE

REM 10 TE
LOCRL

Figure 60: Function block alarm reset

Function

This function block provides return confirmations on the alarm and where the alarm was acknowledged from in the function chart.

Connections:

ALARM output: Logical 1 if the alarm is still active and the ALARM LED is on (even after an attempted acknowledgement of the alarm)

REMOTE output: Logical 1 impulse if acknowledged from the higher-order control system.

LOCAL output: Logical 1 impulse if acknowledged "locally".

Typical application

The signals received can be used to reset flip-flops if an alarm (e.g. power circuit-breaker off) is acknowledged at the REF542 control panel.

Configuration

Only the function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

5.4.1.4 LR-Key

Figure 61: Function block LR-Key

Function

This function block provides information on the position of the "local/remote" keyswitch on the REF542 control panel at both of its outputs.

Connections:
Table 27: Connections at the function block local-remote switchover

	Function: Keyswitch setting	
Connection	Local	Remote
Local/at local output	1	0
Remote/from remote output	0	1

Typical application

A return confirmation of the keyswitch setting that can also be forwarded to a higherorder control system is possible with this function block. This enables switching authorizations to be assigned, e.g. no switching operations permitted at the LCU.

Configuration

Only the function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the OK button.

5.4.1.5 Emergency Buttons

Figure 62: Function block Emergency Buttons

Function

This function module represents the two danger-OFF switches on the LCU (local command unit). If a switch is actuated, a logical 1 can be tapped at the corresponding function block output.

Connections:

LEFT output: Logical 1 can be tapped if the left "danger off" key on the REF542 control panel is actuated.
RIGHT output: Logical 1 can be tapped if the right "danger off" key on the REF542 control panel is actuated.

Typical application

Actuation of the trip solenoids of the power circuit-breaker with the two danger-OFF switches. With an additional AND interconnection, it can be configured so the two switches have to be actuated simultaneously to trip the power circuit-breaker.

Configuration

Only the function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.
The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

5.4.1.6 Beeper

Figure 63: Function block beeper

Function

The function block beeper represents the buzzer, which is installed on the motherboard in the REF542. The LCU sounds a warning tone as long as there is a logical 1 at the function block input (left connection).

Configuration

Only the function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

5.4.2 Binary IO (switching objects)

The subsections contain the descriptions of the function blocks that are available via the menu Drawing Menu/Insert/Binary Io.

The function blocks described here are switching objects. A switching object represents one or more combined binary inputs and outputs in the function chart. A switching object enables signals at the binary inputs to be used in the function chart: For example, the message from a sensor that monitors the spring of a power circuit-breaker or the position messages of a switching device.

A switching object also enables signals to be sent to the binary outputs from the function chart. For example, a switching command can be sent to a switching device in this way. Both power and signal outputs can be addressed in the case of the outputs.

5.4.2.1 System of function blocks and configuration dialogs of the switching objects

All the switching objects described in the following subsections have identically structured FUPLA displays and configuration dialogs. To clarify the principle, a switching object 2-1 is described below. However, all elements of the FUPLA display and of the configuration dialog are explained with the individual switching objects. The explanation there is somewhat shorter.

The switching object labeling already shows the principal structure. The switching object 2-1 represents the logical combination of two binary outputs and one binary input.

Limit stop

If inputs and outputs are combined in one switching object and internally interconnected, the function block will include a limit stop, which functions as follows: When the desired position of a switch is reached and the return confirmation is received via a binary input, the switching impulse (can be tapped at P) is canceled, even if the configured impulse length has not yet been reached.

The combined inputs can also be addressed under an Field bus address..

Figure 64: Example of the display of a switching object in the function chart

Figure 65: Example of the switching object configuration dialog

Comment

Configuration dialog/FUPLA icon:
Remarks regarding the switching object may be input here. It is shown on the upper left of the switching object in the function chart.
Setting range: $0 \ldots 21$ characters (standard character set)
Default: Empty
Number of the switching object
Configuration dialog/FUPLA icon:
The sequential number appears to the upper left of the function block in the function chart. It is automatically assigned by the configuration program and updated when function blocks are deleted or new ones are added. It is used to localize the relevant function block in the event of error messages from the configuration program. It is also required in the internal processing of the function blocks in the REF542.

Connection comment/connection number
Configuration dialog/FUPLA icon:
Every connection drawn in the FUPLA is assigned a connection number. A comment should also be attached to the connection. Comment and number are displayed with every connection in the function chart and the connection number is also displayed in the configuration dialogs of the connected function blocks.

```
Number and type of the physical input
Configuration dialog/FUPLA icon:
```

Physical binary inputs are always placed in the right half of the FUPLA display of a switching object. Their connections are also on the right. The signal that is applied to the physical input can be tapped at the relevant connection.
The type (BI - binary input etc.) and the input number of the physical input are also shown in the FUPLA display. The explanation is adjacent to the relevant switching object.
In the configuration dialogue:
Setting range: $0 \ldots$ [number of binary inputs] (increment: 1) Default: 0

² Chapter "3.4.4 Binary input and output boards" on page 3-20

Input Filtertime [ms]
Configuration dialog:
Enter a period in ms during which an input signal at the binary input must be applied to be detected as such. The function block-dependent filter time entered here is added to the general filter time, which is specified in the configuration dialog REF542 Global settings, and to the hardware filter time, which is set by the design of the binary input/output board.

Hardware filter time

+ general filter time
+ function block-dependent filter time
total filter time
${ }^{4}$) Chapter "5.3.2 Global Settings" on page 5-2
${ }^{n}$) Chapter "3.6 Overview of the technical data" on page 3-45
Number and type of physical output Configuration dialog/FUPLA icon:
Physical binary outputs are always placed in the left half of the FUPLA display of a switching object. Their connections are also on the left. A logical signal to the appropriate connection starts, if authorized, an output relay switching operation. To enable this a logical 1 must be at the IL input and a logical 0 at the BL input. Otherwise, the interlokking status LED will show red or the switching operation will be suppressed.
The type (OP - Open or CL - close etc.) and the channel number of the physical input are also displayed in the FUPLA. The channel number is input in the configuration dialog.
Setting range: $0 \ldots$ [number of binary outputs] (increment: 1)
Default: 0
Note the different relay types.
${ }^{\mu} \downarrow$ Chapter "3.4.4 Binary input and output boards" on page 3-20
Setting range for parameter of the physical inputs Configuration dialog:
Various input fields appear here, depending on the type of physical binary input. Parameters that are important for configuring the input are entered into them.
Additional details can be found in the description of the switching object and in the following description of specific elements of the function chart display and the configuration dialog.

```
Setting range for parameters of the physical outputs
``` Configuration dialog:
Various input fields appear here, depending on the type of physical binary output. Parameters that are important for configuring the output are entered into them.
Additional details can be found in the description of the switching object and in the following description of specific elements of the function chart display and the configuration dialog.

Pulse output P FUPLA icon and
input field imp.length configuration dialog:
The connection pulse output is available only with switching objects that represent at least one physical input and output.
Because most switchgear can only switch with short impulses, a closing time of 0 to 65000 ms can be input in the configuration dialog under impulse length, which has exactly the same effect on the actual output. This "extended" switching signal can also be tapped as logical 1 at the pulse output \(P\) connection.
This logical 1 is canceled in the case of switching objects with a limit stop if a return confirmation regarding the successful switching operation has been transmitted over a binary input of the switching object.

Switching objects have a limit stop if they represent at least one physical input and output.

Input field number of cycles
Configuration dialog:
Enter the value of the mechanical switching cycle counter at the power circuit-breaker here. The value input is the starting value of the electronic switching cycle counter in the REF542.
When the configuration is exported to the PC from the REF542, the current value of the switching cycles is input at this position.

Note In this program version the input field is only used by the switching object 2-2 when used as a power circuit-breaker. It has no function with all other switching objects.
```

Time monitor output Time>

```

FUPLA icon:
The connection time monitor output is available only with switching objects that represent at least one physical input and output. A logical 1 can be tapped at the connection if the impulse time (at the pulse output \(P\)) has expired and a return confirmation regarding the successful switching operation has not yet been received over the binary input.

Blocking input BL
FUPLA icon:
The connection blocking input (blocking) is available only with switching objects that represent at least one physical output. If a logical 1 is applied to this connection, a switching operation can be blocked. A logical 1 at the BL connection will place the function block out of service.
If the interlocking input IL is set to logical 1, a switching operation would be allowed. However, this can be blocked by a logical 1 signal at the connection BL. If a signal for the switching operation is given to the connection of the physical output, no switching takes place and an "interlocking violation" error message (interlocking status LED) is also generated.

Interlocking input, IL
FUPLA icon:
The interlocking input (interlocking) connection is available only with switching objects that represent at least one physical output. To enable a switching operation, there must be a logical 1 at the connection IL. If a switching operation is started and the interlokking input IL is at logical 0 , an error message "interlocking violation" will be generated and displayed at the REF542 control panel using the LED provided for that purpose (interlocking status LED).

Input field bus address
FUPLA icon/configuration dialog:
The Field bus address is shown at the bottom left of the FUPLA beside the switching object: "Adr.: XX". It is automatically assigned in the configuration dialog so every Field bus address is only used once. Addresses that are freed (when a function block is deleted) are assigned again by the configuration program. As an alternative the Field bus address can also be assigned in the configuration dialog with the interbay bus selection list. The selection list is displayed by clicking the \(\downarrow\) button.
Setting range: \(5 \ldots 49\) and \(111 \ldots 127\) (increment: 1)
Default: The next free Field bus address automatically
Information field Pins
Configuration dialog:
List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Setting range for switching object-specific special functions Configuration dialog:
Checkboxes for activating or deactivating functions appear here. Further information may be found in the switching object description.

Button Events
Configuration dialog:
The events button cannot be selected if the transmission of events is generally suppressed in the REF542 Global Settings.
A dialog window opens when this button is clicked. Here the events are released that are then sent to the higher-order control system. The default is for all events to be released for sending.
An event that has been sent is a message to the higher-order control system regarding a change in status. Depending on the function block type, different events can be generated and released. The input can be accepted or canceled in the dialog field with the two buttons.
An overview of the possible events is given in the appendix.
\({ }^{\mu} \downarrow\) Chapter "11.2 Event list of switching objects" on page 11-4
Button OK
Configuration dialog:
All settings are incorporated into the configuration program. The dialog window is closed.

Button cancel
Configuration dialog:
No setting is changed in the configuration program. The dialog window is closed.

\subsection*{5.4.2.2 Switching object 0-1}

Figure 66: Function block switching object 0-1

\section*{Function}

The signal of a physical binary input is made available in the function block.

\section*{Connections:}

BI output: Connection at which the binary input signal of the represented physical input can be tapped.
Table 28: Connection labels switching object 0-1
\begin{tabular}{l|l|l}
\hline FUPLA display & \begin{tabular}{l}
Parameter setting range \\
of the configuration dialog
\end{tabular} & \begin{tabular}{l}
Connection label \\
in the configuration dialog
\end{tabular} \\
\hline BI & input & BI \\
\hline
\end{tabular}

\section*{Typical application}

Connection of a gas pressure monitor that sends a logical 1 or 0 to the relevant binary input.

\section*{Configuration}

Figure 67: Configuration dialog switching object 0-1
More detailed information on the layout of the FUPLA display and the configuration dialogs for the switching objects can be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26.

List field Field bus address: It is automatically assigned so every Field bus address is only used once. As an alternative the Field bus address can also be selected from the list field, which is displayed by clicking the \(\downarrow\) button.
Setting range: \(5 \ldots 49\) and \(111 \ldots 127\) (increment: 1)
Default: Next free Field bus address
Input field Input No. [Name] (once per represented input): Enter the number of the physical input that is to be represented. The assigned number, underlined in white, will also be shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary inputs] (increment: 1)
Default: 0
Input field Filtertime [ms] (once per represented input): Enter the time during which a signal must be applied at the physical binary input to be detected as a logical signal. The input filter time is added to the hardware and to the general filter time.

Input field comment: Enter remarks on the switching object here (e.g. purpose). The text will also appear in the FUPLA on the left above the switching object.
Setting range: \(0 \ldots 21\) characters (standard character set)
Default: Empty
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 Global Settings.
\(\left.{ }^{(}\right)\)Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{\mu}\))Chapter "11.2 Event list of switching objects" on page 11-4

\subsection*{5.4.2.3 Switching object 0-2}

Figure 68: Function block switching object 0-2

\section*{Function}

The signal of two physical binary inputs is made available in the function block. The two connections are addressed over one Field bus address.

\section*{Connections:}

OPEN, CLOSE outputs: Connections at which the binary input signals of the various represented physical inputs can be tapped.

Table 29: Connection labels switching object 0-2
\begin{tabular}{l|l|l}
\hline FUPLA display & \begin{tabular}{l}
Parameter setting range \\
of the configuration dialog
\end{tabular} & \begin{tabular}{l}
Connection label \\
in the configuration dialog
\end{tabular} \\
\hline OPEN & Input No. & BI open \\
\hline CLOSE & Input No. close & BI closed \\
\hline
\end{tabular}

\section*{Typical application}

Position confirmation signal from a manually operated switching device, e.g. a earth switch with two defined positions.

\section*{Configuration}

Figure 69: Configuration dialog switching object 0-2
More detailed information on the layout of the FUPLA display and the configuration dialogs for the switching objects can be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26
List field Field bus address: It is automatically assigned so every Field bus address is only used once. As an alternative the Field bus address can also be selected from the list field, which is displayed by clicking the \(\downarrow\) button.
Setting range: \(5 \ldots 49\) and \(111 \ldots 127\) (increment: 1)
Default: Next free Field bus address
Input field Input No. [Name] (once per represented input): Enter the number of the physical input that is to be represented. The assigned number, underlined in white, will also be shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary inputs] (increment: 1)
Default: 0
Input field Filtertime [ms] (once per represented input): Enter the time during which a signal must be applied at the physical binary input to be detected as a logical signal. The input filter time is added to the hardware and to the general filter time.

Input field comment: Enter remarks on the switching object here (e.g. purpose). The text will also appear in the FUPLA on the left above the switching object.
Setting range: \(0 \ldots 21\) characters (standard character set)
Default: Empty
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 Global Settings.
(4) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{\wedge} \downarrow\) Chapter "11.2 Event list of switching objects" on page 11-4

\subsection*{5.4.2.4 Switching object 0-3}

Figure 70:
Function block switching object 0-3

\section*{Function}

The signal of three physical binary inputs is made available in the function block. All connections are addressed over one Field bus address.

\section*{Connections:}

EARTH, OPEN, LINE outputs: Connections at which the binary input signals of the various represented physical inputs can be tapped.
Table 30: Connection labels switching object 0-3
\begin{tabular}{l|l|l}
\hline FUPLA display & \begin{tabular}{l}
Parameter setting range \\
of the configuration dialog
\end{tabular} & \begin{tabular}{l}
Connection label \\
in the configuration dialog
\end{tabular} \\
\hline EARTH & Input No. earth & BI earth \\
\hline OPEN & Input No. open & BI open \\
\hline LINE & Input No. line & BI line \\
\hline
\end{tabular}

\section*{Typical application}

Position confirmation signal from a manually operated switching device, e.g. a 3-position Isolator.

Configuration

Figure 71: Configuration dialog switching object 0-3
More detailed information on the layout of the FUPLA display and the configuration dialogs for the switching objects can be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26

List field Field bus address: It is automatically assigned so every Field bus address is only used once. As an alternative the Field bus address can also be selected from the list field, which is displayed by clicking the \(\downarrow\) button.
Setting range: \(5 \ldots 49\) and \(111 \ldots 127\) (increment: 1)
Default: Next free Field bus address
Input field Input No . [Name] (once per represented input): Enter the number of the physical input that is to be represented. The assigned number, underlined in white, will also be shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary inputs] (increment: 1)
Default: 0
Input field Filtertime [ms] (once per represented input): Enter the time during which a signal must be applied at the physical binary input to be detected as a logical signal. The input filter time is added to the hardware and to the general filter time.

Input field comment: Enter remarks on the switching object here (e.g. purpose). The text will also appear in the FUPLA on the left above the switching object.
Setting range: \(0 \ldots 21\) characters (standard character set)
Default: Empty
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only
be selected when the events function has been activated in the REF542 Global Settings.
\({ }^{〔}\))Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{\mu}\) Chapter "11.2 Event list of switching objects" on page 11-4

\subsection*{5.4.2.5 Switching object 1-0}

Figure 72: Function block switching object 1-0

\section*{Function}

Actuates a physical binary output from the function chart.

\section*{Connections:}

IL input: Interlocking input; a switching operation can only be conducted if there is a logical 1 here.

BL input: Blocking input; if there is a logical 1 signal here, the switching operations of the represented output will be blocked.

PO input: Signaling input for a physical output, a logical 1 initiates, if enabled, an output relay switching operation.

P output: Pulse output; a logical 1 can be tapped for the duration of the output relay switching operation.
Table 31: Connection labels switching object 1-0
\begin{tabular}{l|l|l}
\hline FUPLA display & \begin{tabular}{l}
Parameter setting range \\
of the configuration dialog
\end{tabular} & \begin{tabular}{l}
Connection label \\
in the configuration dialog
\end{tabular} \\
\hline PO & Output Nol & PO active \\
\hline IL & - & IL \\
\hline P & - & Pulse \\
\hline BL & - & BL \\
\hline
\end{tabular}

More information on specific outputs can also be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26.

\section*{Typical application}

Use as output for a general starting.

Configuration

Figure 73: Configuration dialog switching object 1-0
More detailed information on the layout of the FUPLA display and the configuration dialogs for the switching objects can be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26

List field Field bus address: It is automatically assigned so every Field bus address is only used once. As an alternative the Field bus address can also be selected from the list field, which is displayed by clicking the \(\downarrow\) button.
Setting range: \(5 \ldots 49\) and \(111 \ldots 127\) (increment: 1)
Default: Next free Field bus address
Input field Output No. [Name] (once per represented output): Enter the number of the physical output that is to be represented. The assigned number, underlined in white, will also be shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Input field imp.length [ms] (once per represented output): Enter the maximum duration of the output relay switching operation. In function blocks with limit stops the switching operation will be ended before if necessary.

Input field No. of cycles (once per represented output): Not used.
Input field comment: Enter remarks on the switching object here (e.g. purpose). The text will also appear in the FUPLA on the left above the switching object.
Setting range: \(0 \ldots 21\) characters (standard character set)
Default: Empty
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Checkbox use two step switch command: If two-stage switching is activated, a switching object must be selected with a command from the higher-order control system and switched with a 2nd command. This option does not refer to local switching.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 Global Settings.
\({ }^{4}\)) Chapter "5.3.2 Global Settings" on page 5-2
\(\left.{ }^{4}\right)\) Chapter "11.2 Event list of switching objects" on page 11-4

\subsection*{5.4.2.6 Switching object 1-1}

Figure 74: Function block switching object 1-1

\section*{Function}

Actuates a physical binary output from the function chart. The return confirmation is received via the physical binary input, which can be tapped in the function chart.

\section*{Connections:}

IL input: Interlocking input; a switching operation can only be conducted if there is a logical 1 here.

BL input: Blocking input; if there is a logical 1 signal here, the switching operations of the represented output will be blocked.
po input: Signaling input for a physical output. A logical signal to this function block input starts, if enabled, a corresponding switching operation of the represented output relay.
P output: Pulse output; a logical 1 can be tapped for the duration of the output relay switching operation.

BI output: Signal output at which the binary input signal of the represented physical input can be tapped.

Time > output: Time monitor output; if a logical 1 can be tapped here, the set impulse time is expired and a return confirmation regarding the correct switching operation is no longer received over the represented binary input.
Table 32: Connection labels switching object 1-1
\begin{tabular}{l|l|l}
\hline FUPLA display & \begin{tabular}{l}
Parameter setting range \\
of the configuration dialog
\end{tabular} & \begin{tabular}{l}
Connection label \\
in the configuration dialog
\end{tabular} \\
\hline IL & - & IL \\
\hline BL & - & BL \\
\hline PO & Output No. & PO active \\
\hline TIME> & - & Time > \\
\hline BI & Input No. & BI \\
\hline P & - & Pulse \\
\hline
\end{tabular}

More information on specific connections can also be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26

\section*{Typical application}

Using the physical output to actuate a tension motor for the spring of a power circuitbreaker. The return confirmation over the physical input then provides information on the spring status.

\section*{Configuration}

Figure 75: Configuration dialog switching object 1-1
More detailed information on the layout of the FUPLA display and the configuration dialogs for the switching objects can be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26

List field Field bus address: It is automatically assigned so every Field bus address is only used once. As an alternative the Field bus address can also be selected from the list field, which is displayed by clicking the \(\downarrow\) button.
Setting range: \(5 \ldots 49\) and \(111 \ldots 127\) (increment: 1)
Default: Next free Field bus address
Input field Output No. [Name] (once per represented output): Enter the number of the physical output that is to be represented. The assigned number, underlined in white, will also be shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Input field imp. length [ms] (once per represented output): Enter the maximum duration of the output relay switching operation. In function blocks with limit stops the switching operation will be ended before if necessary.

Input field No. of cycles (once per represented output): Not used.
Input field Input No. [Name] (once per represented input): Enter the number of the physical input that is to be represented. The assigned number, underlined in white, will also be shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary inputs] (increment: 1)
Default: 0

Input field Filtertime [ms] (once per represented input): Enter the time during which a signal must be applied at the physical binary input to be detected as a logical signal. The input filter time is added to the hardware and to the general filter time.

Input field comment: Enter remarks on the switching object here (e.g. purpose). The text will also appear in the FUPLA on the left above the switching object.
Setting range: \(0 \ldots 21\) characters (standard character set)
Default: Empty
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Checkbox use two step switch command: If two-stage switching is activated, a switching object must be selected with a command from the higher-order control system and switched with a 2nd command.
This option does not refer to local switching.
Button ok: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 Global Settings.
\({ }^{4}\)) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{\mu}\) Chapter "11.2 Event list of switching objects" on page 11-4

\subsection*{5.4.2.7 Switching object 1-2}

Adr.:10
Figure 76: Function block switching object 1-2

\section*{Function}

Actuates a physical binary output from the function chart. The return confirmation is received via two physical binary inputs, which can be tapped in the function chart.

\section*{Connections:}

IL input: Interlocking input; a switching operation can only be conducted if there is a logical 1 here.
BL input: Blocking input; if there is a logical 1 signal here, the switching operations of the represented output will be blocked.

Po input: Signaling input for a physical output. A logical signal to this function block input starts, if enabled, a corresponding switching operation of the represented output relay.

Time > output: Time monitor output; if a logical 1 can be tapped here, the set impulse time is expired and a return confirmation regarding the correct switching operation is no longer received over the represented binary input.

OP, CL outputs: Signal outputs at which the binary input signal of the represented physical input can be tapped.

P output: Pulse output; a logical 1 can be tapped for the duration of the output relay switching operation.
Table 33: Connection labels switching object 1-2
\begin{tabular}{l|l|l}
\hline FUPLA display & \begin{tabular}{l}
Parameter setting range \\
of the configuration dialog
\end{tabular} & \begin{tabular}{l}
Connection label \\
in the configuration dialog
\end{tabular} \\
\hline IL & - & IL \\
\hline BL & - & BL \\
\hline PO & Output No. & PO active \\
\hline Time> & - & Time > \\
\hline OP & Input No. open & BI open \\
\hline CL & Input No. closed & BI closed \\
\hline P & - & Pulse \\
\hline
\end{tabular}

More information on specific connections can also be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26

\section*{Configuration}

Figure 77: Configuration dialog switching object 1-2
More detailed information on the layout of the FUPLA display and the configuration dialogs for the switching objects can be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26

List field Field bus address: It is automatically assigned so every Field bus address is only used once. As an alternative the Field bus address can also be selected from the list field, which is displayed by clicking the \(\downarrow\) button.
Setting range: \(5 \ldots 49\) and \(111 \ldots 127\) (increment: 1)
Default: Next free Field bus address

Input field Output No. [Name] (once per represented output): Enter the number of the physical output that is to be represented. The assigned number, underlined in white, will also be shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1) Default: 0

Input field imp. length [ms] (once per represented output): Enter the maximum duration of the output relay switching operation. In function blocks with limit stops the switching operation will be ended before if necessary.

Input field No. of cycles (once per represented output): Not used.
Input field Input No. [Name] (once per represented input): Enter the number of the physical input that is to be represented.
The assigned number, underlined in white, will also be shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary inputs] (increment: 1)
Default: 0
Input field Filtertime [ms] (once per represented input): Enter the time during which a signal must be applied at the physical binary input to be detected as a logical signal. The input filter time is added to the hardware and to the general filter time.

Input field comment: Enter remarks on the switching object here (e.g. purpose). The text will also appear in the FUPLA on the left above the switching object.
Setting range: \(0 \ldots 21\) characters (standard character set)
Default: Empty
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Checkbox indicate intermediate position: If this checkbox is marked, an intermediate setting will be displayed on the LC display screen during the switching operation. This enables a visual return confirmation of the switching operation on the LC display screen.
Otherwise only the initial and final positions are displayed during a switching operation.
Checkbox use two step switch command: If two-stage switching is activated, a switching object must be selected with a command from the higher-order control system and switched with a 2nd command.
This option does not refer to local switching.
Button ok: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 Global Settings.
\({ }^{4}\)) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{\mu}\) Chapter "11.2 Event list of switching objects" on page 11-4

\subsection*{5.4.2.8 Switching object 2-1}

Adr.:11
Figure 78: Function block switching object 2-1

\section*{Function}

Actuates two physical binary outputs from the function chart. The return confirmation is received via the physical binary input, which can be tapped in the function chart.

\section*{Connections:}

IL input: Interlocking input; a switching operation can only be conducted if there is a logical 1 here.

BL input: Blocking input; if there is a logical 1 signal here, the switching operations of the represented output will be blocked.

OP, CL inputs: Signaling inputs for one physical output each. A logical signal to this function block input starts, if enabled, a corresponding switching operation of the represented output relay.

Time > output:Time monitor output; if a logical 1 can be tapped here, the set impulse time is expired and a return confirmation regarding the correct switching operation is no longer received over the represented binary input.

BI output: Signal output at which the binary input signal of the represented physical input can be tapped.

P outputs: Pulse output, one for each represented output; a logical 1 can be tapped for the duration of the switching operation of the output relay

Table 34: Connection label switching object 2-1
\begin{tabular}{l|l|l}
\hline FUPLA display & \begin{tabular}{l}
Parameter setting range \\
of the configuration dialog
\end{tabular} & \begin{tabular}{l}
Connection label \\
in the configuration dialog
\end{tabular} \\
\hline IL & - & IL open \\
\hline IL & - & IL closed \\
\hline BL & - & BL \\
\hline OP & Output No. open & PO open \\
\hline CL & Output No. closed & PO closed \\
\hline Time> & - & Time > \\
\hline BI & Input No. & BI \\
\hline P & - & Pulse open \\
\hline P & - & Pulse close \\
\hline
\end{tabular}

More information on specific outputs can also be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26

Configuration

Figure 79: \(\quad\) Configuration dialog switching object 2-1
More detailed information on the layout of the FUPLA display and the configuration dialogs for the switching objects can be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26
List field Field bus address: It is automatically assigned so every Field bus address is only used once. As an alternative the Field bus address can also be selected from the list field, which is displayed by clicking the \(\downarrow\) button.
Setting range: \(5 \ldots 49\) and \(111 \ldots 127\) (increment: 1)
Default: Next free Field bus address
Setting range for physical outputs Every input field exists once per represented output:
Input field Output No. [Name] (once per represented output): Enter the number of the physical output that should be represented here. The assigned number, underlined in white, is also shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Input field imp. length [ms] (once per represented output): Enter the maximum duration of the output relay switching operation. In function blocks with limit stops the switching operation will be ended before if necessary.
Input field No. of cycles (once per represented output): Not used.
Input field Input No. [Name] (once per represented input): Enter the number of the physical input that is to be represented. The assigned number, underlined in white, will also be shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary inputs] (increment: 1)
Default: 0
Input field Filtertime [ms] (once per represented input): Enter the time during which a signal must be applied at the physical binary input to be detected as a logical signal. The input filter time is added to the hardware and to the general filter time.

Input field comment [ms] (once per represented input): Enter remarks on the switching object here (e.g. purpose). The text will also appear in the FUPLA on the left above the switching object.
Setting range: \(0 \ldots 21\) characters (standard character set)
Default: Empty
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Checkbox use two step switch command: If two-stage switching is activated, a switching object must be selected with a command from the higher-order control system and switched with a 2nd command.
This option does not refer to local switching.
Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 Global Settings.
\(\left.{ }^{4}\right)\) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{\mu}\)) Chapter "11.2 Event list of switching objects" on page 11-4

\subsection*{5.4.2.9 Switching object 2-2}

Figure 80: Function block switching object 2-2
Function
Actuates two physical binary outputs from the function chart. The return confirmation is received via two physical binary inputs, which can be tapped in the function chart. This switching object can also actuate a power circuit-breaker. The power circuit-breaker checkbox is marked for this purpose.
\(\stackrel{\wedge}{ }{ }^{\wedge}\) Chapter "5.4.2.10 Switching object 2-2 as power circuit-breaker" on page 5-48

\section*{Connections:}

IL inputs: Interlocking inputs, one per represented output; a switching operation can be conducted if there is a logical 1 here.

BL input: Blocking input; if there is a logical 1 signal here, the switching operations of the represented output will be blocked.

OP, CL inputs (left): Signaling inputs for one physical output each. A logical signal to this function block input starts, if enabled, a corresponding switching operation of the represented output relay.

Time > output: Time monitor output; if a logical 1 can be tapped here, the set impulse time is expired and a return confirmation regarding the correct switching operation is no longer received over the represented binary input.

OP, CL outputs (right): Signal outputs at which the binary input signal of the represented physical input can be tapped.

P outputs: Pulse outputs, one per represented output; a logical 1 can be tapped for the duration of the switching operation of the output relay
Table 35: Connection labels switching object 2-2
\begin{tabular}{l|l|l}
\hline FUPLA display & \begin{tabular}{l}
Parameter setting range \\
of the configuration dialog
\end{tabular} & \begin{tabular}{l}
Connection label \\
in the configuration dialog
\end{tabular} \\
\hline IL & - & IL open \\
\hline IL & - & IL closed \\
\hline BL & - & BL \\
\hline OP (left) & Output open & PO open \\
\hline CL (left): & Output closed & PO closed \\
\hline Time> & - & Time > \\
\hline OP (right) & Input open & Bl open \\
\hline CL (right) & Input closed & BI closed \\
\hline P & - & Pulse open \\
\hline P & - & Pulse closed \\
\hline
\end{tabular}

More information on specific outputs can also be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26.

\section*{Typical application}

Use of the binary outputs to actuate a motor-driven Isolator. The position confirmation signal is received via the two binary inputs.

\section*{Configuration}

Figure 81: Configuration dialog switching object 2-2
More detailed information on the layout of the FUPLA display and the configuration dialogs for the switching objects can be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26

List field Field bus address: It is automatically assigned so every Field bus address is only used once.

As an alternative the Field bus address can also be selected from the list field, which is displayed by clicking the \(\downarrow\) button.
Setting range: \(5 \ldots 49\) and \(111 \ldots 127\) (increment: 1)
Default: Next free Field bus address
Input field Output No. [Name] (once per represented output): Enter the number of the physical output that is to be represented. The assigned number, underlined in white, will also be shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Input field imp.length [ms] (once per represented output): Enter the maximum duration of the output relay switching operation. In function blocks with limit stops the switching operation will be ended before if necessary.
Input field No. of cycles (once per represented output): Not used.
Input field Input No. [Name] (once per represented input): Enter the number of the physical input that is to be represented. The assigned number, underlined in white, will also be shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary inputs] (increment: 1)
Default: 0
Input field Filtertime [ms] (once per represented output): Enter the time during which a signal must be applied at the physical binary input to be detected as a logical signal. The input filter time is added to the hardware and to the general filter time.
Input field comment: Enter remarks on the switching object here (e.g. purpose). The text will also appear in the FUPLA on the left above the switching object.
Setting range: \(0 \ldots 21\) characters (standard character set)
Default: Empty
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Checkbox circuit breaker: Mark this checkbox to use this switching object to actuate the circuit breaker.
\(\stackrel{\mu}{4}\) Chapter "5.4.2.10 Switching object 2-2 as power circuit-breaker" on page 5-48
Checkbox display intermediate setting: If this checkbox is marked, an intermediate setting will be displayed on the LC display screen during the switching operation. This enables a visual return confirmation of the switching operation on the LC display screen.
Otherwise only the initial and final positions are displayed during a switching operation.
Checkbox use two step switch command: If two-stage switching is activated, a switching object must be selected with a command from the higher-order control system and switched with a 2nd command.
This option does not refer to local switching.
Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 Global Settings.
\({ }^{\text {r }}\) Chapter "5.3.2 Global Settings" on page 5-2
\(\left.{ }^{4}\right)\) Chapter "11.2 Event list of switching objects" on page 11-4

\subsection*{5.4.2.10 Switching object 2-2 as power circuit-breaker}

Adr.:12
Figure 82: Function block switching object 2-2 as power circuit-breaker

\section*{Function}

This switching object is used to actuate a power circuit-breaker. The power circuitbreaker checkbox is marked in the 2-2 switching object configuration dialog.

Configuration is identical to that of the 2-2 switching object. The relevant information can be found there.
\({ }^{〔}\)) Chapter "5.4.2.9 Switching object 2-2" on page 5-45

\section*{Notes}

This switching object is generated by inserting a \(2-2\) switching object into the function chart. Then the checkbox circuit-breaker must be checked in the configuration dialog.
The label CB (power circuit-breaker) appears in the middle of the FUPLA display. There are the following differences compared to the 2-2 switching object:
- The REF542 counts the switching cycles of the power circuit-breaker internally (the value that was entered in the configuration dialog under no. of impulses as the initial value)
- The switched current is recorded, totaled and can be retrieved from the REF542 operator view
- The 2-2 switching object power circuit-breaker is included in the autoreclosure (AWE) (exception: distance protection).

\subsection*{5.4.2.11 Switching object 2-2 with no power output}

Figure 83: Function block switching object 2-2 with no power output

\section*{Function}

The switching object 2-2 with no power output does not represent physical binary outputs. The functioning of all other inputs and outputs is identical to switching object 2-2.
\(\left.{ }^{4}\right)\) Chapter "5.4.2.9 Switching object 2-2" on page 5-45

\section*{Typical application}

If this switching object is also configured for the LC display screen, it will generate the corresponding events according to selection and switching command. For example, a station-level interlocking can be implemented if there is a higher-order control system.

This switching object also enables switching authorizations to be assigned if the REF542 can be operated from several locations.

Finally, this function block can be used to start automatic switching sequences, such as earthing sequences.

\subsection*{5.4.2.12 Switching object 4-3: Motorcard}

Figure 84: Function block switching object 4-3 motor

Note This switching object can only be used with the input/output board with conventional relays. One switching object 4-3 motor board or 6-5 magnet motor board per board can be used in the application.

\section*{Function}

Used to actuate two binary physical outputs, which are specially designed for the motor control unit. The required return confirmations are received via the three physical binary inputs.

\section*{Notes}

Because these functions are only available at specific binary outputs on the binary input/output boards, the output numbers have fixed assignments.
\({ }^{\mu} \boldsymbol{y}\) Chapter "3.4.4.2 Input and output boards with conventional relays" on page 3-25
\(\stackrel{\mu}{\wedge}\) Chapter "Conventional relay: power output to motor control unit" on page 3-27

\section*{Connections:}

IL inputs: Interlocking inputs, one per represented output; a switching operation can be conducted if there is a logical 1 here.

OPEN EARTH/ISOLATOR, CLOSE EARTH/ISOLATOR inputs (left): Signaling inputs for one physical output each. A logical signal to this function block input starts, if enabled, a corresponding switching operation of the represented output relay.

EARTH, OPEN, LINE outputs (right): Signal outputs at which the binary input signal of the represented physical input can be tapped.

PP outputs: Pulse outputs, one per represented output; a logical 1 can be tapped for the duration of the switching operation of the output relay

Table 36: Connection labels switching object 1-2
\begin{tabular}{l|l|l}
\hline FUPLA display & \begin{tabular}{l}
Parameter setting range \\
of the configuration dialog
\end{tabular} & \begin{tabular}{l}
Connection label \\
in the configuration dialog
\end{tabular} \\
\hline IL & - & I. earth open \\
\hline IL & - & IL earth close \\
\hline IL & - & IL isol. open \\
\hline IL & - & IL isol. close \\
\hline OPEN EARTH & open earth & open Earth \\
\hline CLOSE EARTH & close earth & close Earth \\
\hline OPEN ISOLATOR & open isolator & open Isolator \\
\hline CLOSE ISOLATOR & close isolator & llose Isolator \\
\hline EARTH & Input No. earth & Earth \\
\hline OPEN & Input No. open & Open \\
\hline LINE & Input No. line & Linae \\
\hline P & - & PP isol. close \\
\hline P & - & PP isol. open \\
\hline P & - & PP earth close \\
\hline P & - & PP earth open \\
\hline
\end{tabular}

More information on specific outputs can also be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26.

\section*{Typical application}

This enables a 3-position switch to be actuated with a motor drive. Additional auxiliary relays for activating and deactivating the motor are not required. Information on the switch status is received via the three free configurable binary inputs. The switching object itself assumes the subsequent control sequences:
- Checking the interlock conditions,
- Switch on pole reversal relay, depending on selection,
- Switch on motor relay
- Switch off motor relay after reaching the end position and
- Brake motor by short circuiting the motor windings.

This functions with special circuitry of two relays on the binary input/output board with conventional relays.
\({ }^{4}\) Chapter "Conventional relay: power output to motor control unit" on page 3-27
A 3-position Isolator is represented by two separate objects (Isolator and earth switch) on the REF542 LC display screen, which are then configured as a combined object.
\({ }^{4}\)) Chapter "5.3.7 Display" on page 5-13

Configuration

Figure 85: Configuration dialog function block switching object 4-3 motor

Note The impulse length that can be input is based on the switching operation from an end setting to the intermediate setting.
Please note that the output numbers of the physical outputs cannot be set, because this function is only enabled with two specially switched relays on the binary input/output board with conventional relays.

More detailed information on the layout of the FUPLA display and the configuration dialogs for the switching objects can be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26.

List field Field bus address: It is automatically assigned so every Field bus address is only used once.
As an alternative the Field bus address can also be selected from the list field, which is displayed by clicking the \(\downarrow\) button.
Setting range: \(5 \ldots 49\) and \(111 \ldots 127\) (increment: 1)
Default: Next free Field bus address
Input field open/close earth, open/close isolator (once per represented output): The number of the represented physical output is a fixed assignment.
It will also be shown in the function block underlined in white adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Input field imp. length [ms] (once per represented output): Enter the maximum duration of the output relay switching operation. In function blocks with limit stops the switching operation will be ended before if necessary. The impulse length is based on a switching operation from an end setting to the intermediate setting and therefore is only assigned once.

Input field No. of cycles (once per represented output): Not used.

Input field Input No. [Name] (once per represented input): Enter the number of the physical input that is to be represented. The assigned number, underlined in white, will also be shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary inputs] (increment: 1)
Default: 0
Input field Filtertime [ms] (once per represented input): Enter the time during which a signal must be applied at the physical binary input to be detected as a logical signal. The input filter time is added to the hardware and to the general filter time.

Input field comment: Enter remarks on the switching object here (e.g. purpose). The text will also appear in the FUPLA on the left above the switching object.
Setting range: \(0 \ldots 21\) characters (standard character set)
Default: Empty
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 Global Settings.
\({ }^{〔}\))Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{\mu}\) Chapter "11.2 Event list of switching objects" on page 11-4

\subsection*{5.4.2.13 Switching object 6-5: Magnetmotorcard}

Adr.:15
Figure 86: Function block switching object 6-5 magnet motor

Note This switching object can only be used with the input/output board with conventional relays. One switching object 4-3 motor board or 6-5 magnet motor board per board can be used in the application.

\section*{Function}

Used to actuate four binary physical outputs, which are specially designed for the motor control unit. The required return confirmations are received via the five physical binary inputs. The function block itself assumes the subsequent sequential control:

\section*{Notes}

Because these functions are only available at specific binary outputs on the binary input/output boards, the output numbers have fixed assignments.
\(\stackrel{\mu}{\wedge}\) Chapter "3.4.4.2 Input and output boards with conventional relays" on page 3-25
\({ }^{〔}\)) Chapter " Conventional relay: power output to motor control unit" on page 3-27

\section*{Connections:}

IL inputs: Interlocking inputs, one per represented output; a switching operation can be conducted if there is a logical 1 here.

OPEN EARTH/ISOLATOR, CLOSE EARTH/ISOLATOR BLOCK 1/2 inputs (left): Signaling inputs for one physical output each. A logical signal to this function block input starts, if enabled, a corresponding switching operation of the represented output relay. The BLOCK \(1 / 2\) inputs cannot be influenced, their function is implemented over the relay circuitry.

EARTH, OPEN, LINE, BLOCK 1/2 outputs (right): Signal outputs at which the binary input signal of the represented physical input can be tapped.

PP outputs: Pulse outputs, one per represented output; a logical 1 can be tapped for the duration of the switching operation of the output relay
Table 37: Connection label switching object 6-5 magnet motor
\begin{tabular}{l|l|l}
\hline FUPLA display & \begin{tabular}{l}
Parameter setting range \\
of the configuration dialog
\end{tabular} & \begin{tabular}{l}
Connection label \\
in the configuration dialog
\end{tabular} \\
\hline IL & - & IL earth open \\
\hline IL & - & IL earth close \\
\hline IL & - & IL isol. open \\
\hline IL & - & IL isol. close \\
\hline IL & - & IL BL1 \\
\hline IL & open Earth & IL BL2 \\
\hline OPEN EARTH & close Earth & open Earth \\
\hline CLOSE EARTH & open Isolator & close Earth \\
\hline OPEN ISOLATOR & close Isolator & open Isolator \\
\hline CLOSE ISOLATOR & Output BL 1 & close Isolator \\
\hline BLOCK 1 (left) & Output BL 2 & - \\
\hline BLOCK 2 (left) & Input No. earth & - \\
\hline EARTH & Input No. open & Earth \\
\hline OPEN & Input No. line & Open \\
\hline LINE & Input BL 1 & Line \\
\hline BLOCK 1 (right) & Input BL 2 & Block 1 \\
\hline BLOCK 2 (right) & - & Block 2 \\
\hline PP & - & PP isol. open \\
\hline PP & - & PP isol. close \\
\hline PP & - & PP earth close \\
\hline PP & - & PP earth open \\
\hline PP & - & PP BL1 \\
\hline PP & PP BL2 \\
\hline
\end{tabular}

More information on specific outputs can also be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26.

\section*{Typical application}

This enables a 3-position switch to be actuated with a motor drive. Additional auxiliary relays for activating and deactivating the motor are not required. Information on the switch status is received via the three free configurable binary inputs. In contrast to the switching object 4-3 motor, installed interlock magnets can be activated and deactivated at the 3-position Isolator. The return confirmation on the position of the interlock magnets via two binary inputs. In this way the motor can be prevented from running over a non-activated interlock magnet. The sequential control itself assumes the subsequent control sequences:
- Checking the interlock conditions,
- Unlock interlock magnets,
- Switch on pole reversal relay, depending on selection,
- Switch on motor relay
- Switch off motor relay after reaching the end position and
- Brake motor by short circuiting the motor windings.

This functions with special circuitry of two relays on the binary input/output board with conventional relays.
\(\stackrel{\mu}{\wedge}\) Chapter "Conventional relay: power output to motor control unit" on page 3-27
A 3-position Isolator is represented by two separate objects (Isolator and earth switch) on the REF542 LC display screen, which are then configured as a combined object.
\(\left.{ }^{4}\right)\) Chapter "5.3.7 Display" on page 5-13
Configuration

Figure 87: Configuration dialog function block switching object 6-5 magnet motor

Note The impulse length that can be input is based on the switching operation from an end setting to the intermediate setting.
Please note that the output numbers of the physical outputs cannot be set, because this function is only enabled with two specially switched relays on the binary input/output board with conventional relays.

More detailed information on the layout of the FUPLA display and the configuration dialogs for the switching objects can be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26

List field Field bus address: It is automatically assigned so every Field bus address is only used once. As an alternative the Field bus address can also be selected from the list field, which is displayed by clicking the \(\downarrow\) button.
Setting range: \(5 \ldots 49\) and \(111 \ldots 127\) (increment: 1)
Default: Next free Field bus address
Input field open/close earth, open/close isolator, output BL1/BL2 (once per represented output): The number of the represented physical output is a fixed assignment. It will also be shown in the function block underlined in white adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Input field imp.length [ms] (once per represented input): Enter the maximum duration of the output relay switching operation. In function blocks with limit stops the switching operation will be ended before if necessary. The impulse length is based on a switching operation from an end setting to the intermediate setting and therefore is only assigned once.

Input field No. of cycles (once per represented output): Not used.
Input field Input No. [Name] (once per represented output): Enter the number of the physical input that should be represented here. The assigned number, underlined in white, is also shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary inputs] (increment: 1)
Default: 0
Input field Filtertime [ms] (once per represented output): Enter the time during which a signal must be applied at the physical binary input to be detected as a logical signal. The input filter time is added to the hardware and to the general filter time.

Input field comment: Enter remarks on the switching object here (e.g. purpose). The text will also appear in the FUPLA on the left above the switching object.
Setting range: \(0 \ldots 21\) characters (standard character set)
Default: Empty
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 Global Settings.
\({ }^{〔}\) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{\Perp}\) Chapter "11.2 Event list of switching objects" on page 11-4

\subsection*{5.4.2.14 Switching object 2-2: H bridge Card}

Figure 88: Function block switching object 2-2 H bridge

Note This switching object can only be used with the input/output board with transistor relays. One switching object 2-2 H bridge or 4-4 H bridge can be used in the application per board.

\section*{Function}

Used to actuate four binary physical outputs, which are specially designed for the motor control unit. The required return confirmations are received via the three physical binary inputs.
Only two of the four physical outputs inn use can be actuated. The two others are used to implement the desired functions and are actuated internally.

\section*{Notes}

Because these functions are only available at specific binary outputs on the binary input/output boards, the output numbers have fixed assignments.
H Chapter "3.4.4.1 Input and output board with transistor relay" on page 3-20
HChapter "Transistor relay: Power output to motor control unit" on page 3-22

\section*{Connections:}

IL inputs: Interlocking inputs, one per represented output; a switching operation can be conducted if there is a logical 1 here.

BL input: Blocking input; if there is a logical 1 signal here, the switching operations of the represented output will be blocked.

LINE, EARTH inputs (left): Signaling inputs for one physical output each. A logical signal to this function block input starts, if enabled, a corresponding switching operation of the represented output relay. The unlabeled inputs cannot be influenced, their function is implemented over the relay circuitry.

Time > output: Time monitor output; if a logical 1 can be tapped here, the set impulse time is expired and a return confirmation regarding the correct switching operation is no longer received over the represented binary input.

LINE, EARTH outputs (right): Signal outputs at which the binary input signal of the represented physical input can be tapped.

PP outputs: Pulse outputs, one per represented output; a logical 1 can be tapped for the duration of the switching operation of the output relay

Table 38: Connection labels switching object 1-2
\begin{tabular}{l|l|l}
\hline FUPLA display & \begin{tabular}{l}
Parameter setting range \\
of the configuration dialog
\end{tabular} & \begin{tabular}{l}
Connection label \\
in the configuration dialog
\end{tabular} \\
\hline IL (left) & - & IL line \\
\hline IL (right) & - & IL earth \\
\hline LINE (left) & Line & Line \\
\hline EARTH (left) & Earth & Earth \\
\hline BL & - & BL \\
\hline LINE (right) & Input No. line & BI line \\
\hline EARTH (right) & Input No. earth & BI earth \\
\hline P (left) & - & PP earth \\
\hline P (right) & - & PP line \\
\hline TIME> & - & Time > \\
\hline
\end{tabular}

More information on specific outputs can also be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26.

\section*{Typical application}

This switching object can be used to control a motor-driven transfer circuit-breaker without an intermediate setting. This functions with special circuitry of two relays on the binary input/output board with conventional relays.
\(\stackrel{\mu}{\wedge}\) Chapter "Transistor relay: Power output to motor control unit" on page 3-22

\section*{Configuration}

Figure 89: Configuration dialog function block switching object 2-2 H bridge

Please note that the output numbers of the physical outputs cannot be set, because this function is only enabled with four specially switched relays on the binary input/ output board with transistor relays.

More detailed information on the layout of the FUPLA display and the configuration dialogs for the switching objects can be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26.

List field Field bus address: It is automatically assigned so every Field bus address is only used once. As an alternative the Field bus address can also be selected from the list field, which is displayed by clicking the \(\downarrow\) button.
Setting range: \(5 \ldots 49\) and \(111 \ldots 127\) (increment: 1)
Default: Next free Field bus address
Input fields line, earth: The number of the represented physical output is a fixed assignment. It will also be shown in the function block underlined in white adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Input fields time line to earth/earth to line: Enter the maximum duration of the output relay switching operation. In function blocks with limit stops the switching operation will be ended before if necessary.

Input field No. of cycles (available twice): Not used.
Input field braking time: Enter a time in ms here for which the motor windings will be short-circuited to brake the motor after reaching the end position.
Setting range: \(0 \ldots 65000 \mathrm{~ms}\) (increment: 1 ms)
Default: 100
Input field dead time: Enter a time in ms here during which no switching command may be sent to prevent overloading the transistors on the input/output board and the motor.
Setting range: \(2000 \ldots 65000 \mathrm{~ms}\) (increment: 1 ms)
Default: 2000
Input field Input No. [Name] (once per represented input): Enter the number of the physical input that is to be represented.
The assigned number, underlined in white, will also be shown in the function block adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary inputs] (increment: 1)
Default: 0
Input field Filtertime [ms] (once per represented input): Enter the time during which a signal must be applied at the physical binary input to be detected as a logical signal. The input filter time is added to the hardware and to the general filter time.

Input field comment: Enter remarks on the switching object here (e.g. purpose). The text will also appear in the FUPLA on the left above the switching object.
Setting range: \(0 \ldots 21\) characters (standard character set)
Default: Empty
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button ok: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 Global Settings.
\({ }^{5}\)) Chapter "5.3.2 Global Settings" on page 5-2
\(\left.{ }^{4}\right)\) Chapter "11.2 Event list of switching objects" on page 11-4

\subsection*{5.4.2.15 Switching object 4-4: H bridge Card}

Figure 90: Function block switching object \(4-4 \mathrm{H}\) bridge

Note This switching object can only be used with the input/output board with transistor relays. One switching object 2-2 H bridge or 4-4 H bridge can be used in the application per board.

\section*{Function}

Used to actuate four binary physical outputs, which are specially designed for the motor control unit. The required return confirmations are received via the five physical binary inputs. The function block itself assumes the subsequent sequential control: The VALID signaling output signals a valid position of the 3-position switch: Earth switch closed, intermediate setting (earth switch and Line open), line opened. The valid position is reached when the pulse outputs are logical 0 and the binary inputs signal one of the three above positions.
The binary input SUP/earth switch supervision enables sensors that also supervise the all-pole correct earthing to be connected. If this binary input is not used, the connection pin on the function block must be set to logical 1 or connected with the earth switch OFF connection pin.

\section*{Notes}

The binary inputs/outputs are only labeled with icons in this function block. For this reason the labeling has been inserted in the diagram.

Because these functions are only available at specific binary outputs on the binary input/output boards, the output numbers have fixed assignments.
\({ }^{4}\)) Chapter "3.4.4.1 Input and output board with transistor relay" on page 3-20
\(\stackrel{\mu}{\mu}\) Chapter "Transistor relay: Power output to motor control unit" on page 3-22

\section*{Connections:}

IL inputs: Interlocking inputs, one per represented output; a switching operation can be conducted if there is a logical 1 here.

BL input: Blocking input; if there is a logical 1 signal here, the switching operations of the represented output will be blocked.

BO: Earth switch ON/OFF, BO: Line ON/OFF inputs (left): Signaling inputs for one physical output each. A logical signal to this function block input starts, if enabled, a corresponding switching operation of the represented output relay. The unlabeled inputs cannot be influenced, their function is implemented over the relay circuitry.

TIME > output: Time monitor output; if a logical 1 can be tapped here, the set impulse time is expired and a return confirmation regarding the correct switching operation is no longer received over the represented binary input.

BI: Earth switch ON/OFF, BI: Line ON/OFF outputs (right): Signal outputs at which the binary input signal of the represented physical input can be tapped.

PP RIGHT/PP LEFT outputs: Pulse outputs, one per represented output; a logical 1 can be tapped for the duration of the switching operation of the output relay PP RIGHT is the pulse output for the busbar-intermediate setting-earth movement direction and PP LEFT is the pulse output for the earth-intermediate setting-busbar movement direction.

VALID output: Signaling output; if a logical 1 can be tapped here, the 3-position switch has reached a valid position.

SUP: Signaling output for a physical input. Used for additional supervision of the position earth switch all-pole closed.
Table 39: Connection labels switching object 1-2
\begin{tabular}{l|l|l}
\hline FUPLA display & \begin{tabular}{l}
Parameter setting range \\
of the configuration dialog
\end{tabular} & \begin{tabular}{l}
Connection label \\
in the configuration dialog
\end{tabular} \\
\hline BL & - & Block \\
\hline IL & - & IL close Earth \\
\hline IL & - & IL open Earth \\
\hline IL & - & IL close Line \\
\hline IL & - & IL open Line \\
\hline BO: Earth switch ON & Earth close & Close Earth \\
\hline BO: Earth switch OFF & Earth open & Open Earth \\
\hline BO: Line ON & Line close & Close Line \\
\hline BO: Line OFF & Line open & Open Line \\
\hline PP right & - & PP right \\
\hline PP left & - & PP left \\
\hline Time > & - & Time > \\
\hline valid & - & valid \\
\hline BI: Earth switch ON & Earth closed & BI Earth closed \\
\hline BI: Earth switch OFF & Earth opened & BI Earth opened \\
\hline BI: Line ON & Line closed & BI Line opened \\
\hline BI: Line OFF & Line opened & BI Line closed \\
\hline SUP & Earth switch supervision & Earth supervision \\
\hline
\end{tabular}

More information on specific outputs can also be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26.

\section*{Typical application}

This enables a 3-position switch to be actuated with a motor drive. Additional auxiliary relays for activating and deactivating the motor are not required. Information on the switch status is received via the three free configurable binary inputs. The switching object itself assumes the subsequent control sequences:
- Checking the interlock conditions,
- Switch on pole reversal relay, depending on selection,
- Switch on motor relay
- Switch off motor relay after reaching the end position and
- Brake motor by short circuiting the motor windings.
- Activate timing circuit for dead time.

This functions with special circuitry of two relays on the binary input/output board with conventional relays.
\({ }_{4} \Rightarrow\) Chapter "Transistor relay: Power output to motor control unit" on page 3-22
A 3-position Isolator is represented by two separate objects (Isolator and earth switch) on the REF542 LC display screen, which are then configured as a combined object.
\(\left.{ }^{\wedge}\right)\) Chapter "5.3.7 Display" on page 5-13

\section*{Configuration}

Figure 91: \(\quad\) Configuration dialog function block switching object 4-4 H bridge

Note Please note that the output numbers of the physical outputs cannot be set, because this function is only enabled with four specially switched relays on the binary input/ output board with transistor relays.

More detailed information on the layout of the FUPLA display and the configuration dialogs for the switching objects can be found in Chapter "5.4.2.1 System of function blocks and configuration dialogs of the switching objects" on page 5-26.
List field Field bus address: It is automatically assigned so every Field bus address is only used once. As an alternative the Field bus address can also be selected from the list field, which is displayed by clicking the \(\downarrow\) button.
Setting range: \(5 \ldots 49\) and \(111 \ldots 127\) (increment: 1)
Default: Next free Field bus address

Input fields earth close/open, line close/open: The number of the represented physical output is a fixed assignment.
It will also be shown in the function block underlined in white adjacent to the connection.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Input fields pulse length(once per represented output pair): Enter the maximum duration of the output relay switching operation. In function blocks with limit stops the switching operation will be ended before if necessary.

Input fields No. of cycles(once per represented output pair): Not used.
Input field brake time: Enter a time in ms here for which the motor windings will be short-circuited to brake the motor after reaching the end position.
Setting range: \(0 \ldots 65000 \mathrm{~ms}\) (increment: 1 ms)
Default: 100
Input field waiting time: Enter a time in ms here during which no switching command may be sent, to prevent overloading the transistors on the input/output board and the motor.
Setting range: \(2000 \ldots 65000 \mathrm{~ms}\) (increment: 1 ms)
Default: 2000
Input field Earth/Line closed/opened input (once per represented input):
Enter the number of the physical input that is to be represented. The assigned number, underlined in white, will also be shown in the function block adjacent to the connection. Setting range: \(0 \ldots\) [number of binary inputs] (increment: 1)
Default: 0
Input field Filter Time [ms] (once per represented input): Enter the time during which a signal must be applied at the physical binary input to be detected as a logical signal. The input filter time is added to the hardware and to the general filter time.

Note Enter a 0 as number of the represented input so as not to use the earth switch supervision (SUP) binary input.

Input field comment: Enter remarks on the switching object here (e.g. purpose). The text will also appear in the FUPLA on the left above the switching object.
Setting range: \(0 \ldots 21\) characters (standard character set)
Default: Empty
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 Global Settings.
hChapter "5.3.2 Global Settings" on page 5-2
\(\left.{ }^{4}\right)\) Chapter "11.2 Event list of switching objects" on page 11-4

\subsection*{5.4.2.16 Module for truck (witdrawable unit)}
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& 19 \\
& - \text { JUMP } \\
& -015 \mathrm{APF} .
\end{aligned}
\]} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

Figure 92: Function block module for truck

\section*{Function}

This function block is used to move or hide switch icons on the LC display screen. Fixed icons (transducers, motors, generators etc.) cannot be hidden or moved, because they do not have a unique Field bus address.

The interconnections of the switch icons on the LC display screen with the switching objects in the function chart are shown with the Field bus address. In the same way, the function block module for thrust is linked to the switching icon that is to be moved or hidden with the Field bus address.

\section*{Connections:}

Input jump (move): If this input is set to logical 1, an icon on the LC display screen is moved 11 pixels to the left.
If the input is set to logical 0 again, the icon on the LC display screen will resume its initial position.
Input disapp. : If the input is set to logical 1 again, the icon on the LC display screen will be hidden.
If the input is set to logical 0 again, the icon on the LC display screen will become visible again.

\section*{Typical application}

If the power circuit-breaker is on a trolley (thrust), it must also be possible to show its end positions on the LC display screen. The power circuit breaker icon must be correctly displayed depending on the actual position of the thrust (operating or test position).

In addition, if the power circuit-breaker is no longer connected with the other secondary technology, this status must be shown on the LC display screen. For example, this occurs when the icon is hidden.

\section*{Configuration}

Figure 93: Configuration dialog function block module for thrust
List field Field bus address: After clicking the button that opens the list field \(\underline{\downarrow}\), a selection list of the Field bus addresses used in the function chart appears. Select the Field bus address of the switching object whose icon is to be moved on the LC display screen.

Information fields jumpt/disappear: The connections of the function block with the connection number connected to it are shown here. Inputs are not possible.
If there are no connections on the function block yet, connection number 1 will appear. It indicates an input.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.4.2.17 IO-Supervision}

Figure 94: Function block trip circuit supervision

\section*{Function}

This function block provides the messages from the trip circuit supervision to the function chart. The REF542 Global Settings referring to trip circuit supervision and the FUPLA are linked in this way. The single messages can be blocked independently of one another. In addition, the entire function block can be blocked; a signal regarding that can be tapped at one of its outputs. The error messages from the trip circuit supervision cannot be suppressed on the LC display screen.

Up to two output channels can be monitored for the first two binary input/output boards (cards). The trip circuit supervision must be activated in the Global Settings of the REF542 configuration program for every channel.
\({ }^{\boldsymbol{\wedge} \text { Chapter "5.3.2 Global Settings" on page 5-2 }\)

\section*{Connections:}

Because the labeling of the inputs and outputs is partly abbreviated in the function block and in the configuration dialog, the list below expands the abbreviation if necessary.

BCS11/BI.Ca. 1 Co. 1 input:
Blocking Coil Supervision 11/blocking board 1 coil 1: If a logical 1 is set on this channel, the output signal will be blocked thereby generating the supervision function of this coil.

BCS12/BI.Ca. 1 Co. 2 input:
Blocking Coil Supervision 12/blocking board 1 coil 2: If a logical 1 is set on this channel, the output signal will be blocked thereby generating the supervision function of this coil.

BCS21/BI.Ca. 2 Co. 1 input:
Blocking Coil Supervision 21/blocking board 2 coil 1 : If a logical 1 is set on this channel, the output signal will be blocked thereby generating the supervision function of this coil.

BCS22/BI.Ca.2.Co. 2 input:
Blocking Coil Supervision 22/blocking board 2 coil 2: If a logical 1 is set on this channel, the output signal will be blocked thereby generating the supervision function of this coil.
B.A.S./BI. active superv.input:

Blocking Active Supervision/blocking input switch supervision: If a logical 1 is applied to this connection, switch supervision will be deactivated.

Coil supervision Card1 Coil1/St. Ca.1 Co.1 output:
Start board 1 coil 1: If a logical 1 can be tapped at this output, the trip circuit supervision for the corresponding coil has detected an error.

Coil supervision Card1 Coil2/St. Ca. 1 Co. 2 output:
Start board 1 coil 2: If a logical 1 can be tapped at this output, the trip circuit supervision for the corresponding coil has detected an error.
Coil supervision Card2 Coil1/St. Ca. 2 Co. 1 output:
Start board 2 coil 1: If a logical 1 can be tapped at this output, the trip circuit supervision for the corresponding coil has detected an error.

Coil supervision Card1 Coil2/St. Ca. 2 Co. 2 output:
Start board 2 coil 2: If a logical 1 can be tapped at this output, the trip circuit supervision for the corresponding coil has detected an error.

Active Supervision/St. active superv. output:
Start switch supervision: If a logical 1 can be tapped at this output, the switch supervision is operating. If a logical 0 can be tapped, the switch supervision is not active because it has been blocked via the B.A.S. input.

\section*{Typical application}

The trip circuit supervision can be used to detect defective trip solenoids on the power circuit-breaker. For example, the return confirmation over the function block trip circuit supervision can be used to generate an event for a higher-order control system. Interlocking of the power circuit-breaker is also possible.

\section*{Configuration}

Only the function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible. The names of the connections in the configuration dialog are German and in the FUPLA display English. Both labels can be found in the connection description.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.3 Digital logic 1}

The subsections contain the descriptions of the function blocks that are available via the menu Drawing Menu/Insert/Digital Logic 1.

\subsection*{5.4.3.1 Inverter}

Figure 95: Function block inverter

\section*{Function}

The inverter inverts the input signal and sends it to its output.

\section*{Logic table}
\begin{tabular}{l|l}
\hline On & Off \\
\hline 1 & 0 \\
\hline 0 & 1 \\
\hline
\end{tabular}

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.3.2 Constant 1/0}

Figure 96: Function blocks constant 1 and constant 0

\section*{Function}

The two function blocks continuously send a logical 0 and a logical 1 respectively at their outputs.

\section*{Logic table}
\begin{tabular}{l|l}
\hline \begin{tabular}{l}
Constant 0 \\
Output
\end{tabular} & \begin{tabular}{l}
Constant 1 \\
Output
\end{tabular} \\
\hline 0 & 1 \\
\hline
\end{tabular}

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.
The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.3.3 AND logic gate with inverted output}

Figure 97: Function block AND logic gate with inverting output

\section*{Function}

This AND logic gate inverts the output signal. Otherwise, the function is identical to the standard AND logic gate.

Logic table
\begin{tabular}{l|l|l}
\hline On 1 & On 2 & Off \\
\hline 0 & 0 & 1 \\
\hline 0 & 1 & 1 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & 0 \\
\hline
\end{tabular}

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.3.4 AND logic gate with an inverting input}

Figure 98: Function blocks AND logic gate with inverting inputs

\section*{Function}

These AND logic gates all have an inverting input. Because only the inverted input exchanged, only one function block is described here.

Logic table
\begin{tabular}{l|l|l}
\hline On 1 & On 2 & Off \\
\hline 0 & 0 & 0 \\
\hline 0 & 1 & 1 \\
\hline 1 & 0 & 0 \\
\hline 1 & 1 & 0 \\
\hline
\end{tabular}

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.3.5 AND logic gate}

Figure 99: Function blocks AND logic gate with varying input number

\section*{Function}

The AND logic gates execute a logical AND interconnection on their inputs (left on the function block). The result of this logical operation is available at the output (right on the function block).

Therefore a logical 1 appears at the output when all inputs are set to logical 1.
The AND logic gates shown above differ only in the number of inputs.

\section*{Logic table}

The logic table shown below shows as an example the function of the AND logic gate with two inputs.
\begin{tabular}{l|l|l}
\hline On 1 & On 2 & Off \\
\hline 0 & 0 & 0 \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 0 \\
\hline 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.3.6 OR logic gate}

Figure 100: Function blocks OR logic gate with varying output numbers

\section*{Function}

The OR logic gates execute a logical OR interconnection of their inputs (left on the function block). The result of this logical operation is available at the output (right on the function block).

Therefore a logical 1 appears at the output when one of the inputs is set to logical 1.
The OR logic gates shown above differ only in the number of inputs.

\section*{Logic table}

The logic table shown below shows as an example the function of the OR logic gate with two inputs.
\begin{tabular}{l|l|l}
\hline On 1 & On 2 & Off \\
\hline 0 & 0 & 0 \\
\hline 0 & 1 & 1 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.
The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.3.7 OR logic gate with inverting output}

Figure 101: Function block OR logic gate with inverting output (NOR logic gate)

\section*{Function}

This OR logic gate inverts the output signal. Otherwise, the function is identical to the standard OR logic gate.

\section*{Logic table}
\begin{tabular}{l|l|l}
\hline On 1 & On 2 & Off \\
\hline 0 & 0 & 1 \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 0 \\
\hline 1 & 1 & 0 \\
\hline
\end{tabular}

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.4 Digital logic 2}

The subsections contain the descriptions of the function blocks that are available via the menu Drawing Menu/Insert/Digital Logic 2.

\subsection*{5.4.4.1 Exclusive OR logic gate}

Figure 102: Function block exclusive OR logic gate with varying input number

\section*{Function}

The exclusive OR logic gates execute a logical exclusive OR interconnection of their inputs (left on the function block). The result of this logical operation is available at the output (right on the function block).

Therefore a logical 1 appears at the output when at least one of the inputs is set to logical 1. In contrast to the OR logic gate, a logical 0 appears at the output if all inputs are set to logical 1. The exclusive OR logic gates shown above differ only in the number of inputs.

\section*{Logic table}

The logic table shown below shows as an example the function of the exclusive OR logic gate with two inputs.
\begin{tabular}{l|l|l}
\hline On 1 & On 2 & Off \\
\hline 0 & 0 & 0 \\
\hline 0 & 1 & 1 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & 0 \\
\hline
\end{tabular}

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.4.2 Exclusive OR logic gates with inverting output}

Figure 103: Function block exclusive OR logic gate with inverting output and varying number of inputs

\section*{Function}

The exclusive OR logic gates with inverting output execute a logical exclusive OR interconnection of their inputs (left on the function block). The result of this logical operation is available in inverted form at the output (right on the function block).

Therefore, a logical 1 appears at the output if all inputs are set to logical 0 or logical 1. In contrast to OR logic gates with inverting output, a logical 1 appears at the output if all inputs are set to logical 1.

\section*{Logic table}

The logic table shown below shows as an example the function of the exclusive OR logic gate with two inputs.
\begin{tabular}{l|l|l}
\hline On 1 & On 2 & Off \\
\hline 0 & 0 & 1 \\
\hline 0 & 1 & 0 \\
\hline 1 & 0 & 0 \\
\hline 1 & 1 & 1 \\
\hline
\end{tabular}

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.5 Flip-Flops}

The subsections contain the descriptions of the function blocks that are available via the menu Drawing Menu/Insert/Flip-Flops.

Flip-Flops are memory elements with two stable states. Switching between the states is referred to as toggling. A suitable actuation (depending on the type of flip-flop) will switch it to the other state. Because this state remains effective at the outputs of the flip-flop if there are no input signals, they are referred to as memory elements. Some flip-flops are also actuated by a timing input.

To enable the time sequence to be taken into account in the logic tables as well, a time before toggling (switching) the flip-flop (\(t_{n}\)) and a time after toggling (\(t_{n+1}\)) is defined. Therefore, output signals before toggling are labeled as \(Q_{n}\) and as \(Q_{n+1}\) after toggling.

If the flip-flop also has a timing input, the state before the timing input is labeled as index n and the state after the timing input as index \(\mathrm{n}+1\). The change of state at the timing input from logical 0 to logical 1 or vice versa is decisive for the switching process. It is referred to as the rising or falling slope.

\subsection*{5.4.5.1 RS Flip-Flop}

Figure 104: Function block RS flip-flop

\section*{Function}

A logical 1 at the S-input results in a logical 1 at the \(Q\)-output. A logical 1 at the \(R\)-input results in a logical 0 at the Q-output.

If the input signals are reset to logical 0 , the signals will remain active at the outputs. If both inputs are at logical 1, the R-input is dominant. However, this state contradicts the basic flip-flop principle of two stable states and must therefore be avoided.

\section*{Logic table}
\(\bar{Q}\) is not included in the table below because the state is always set opposite to Q .
\begin{tabular}{l|l|l}
\hline \(\mathbf{R}\) & \(\mathbf{S}\) & \(\mathbf{Q}\) \\
\hline 0 & 0 & Qn \\
\hline 0 & 1 & 1 \\
\hline 1 & 0 & 0 \\
\hline 1 & 1 & 0 \\
\hline
\end{tabular}

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.5.2 RS flip-flop with timing input (clock)}

Figure 105: Function block RS flip-flop with timing input

\section*{Function}

A logical 1 at the S-input combined with a rising slope at the timing input (C) results in a logical 1 at the Q-output. A logical 1 at the R-input combined with a rising slope at the timing input (C) results in a logical 0 at the Q-output.

If the input signals are reset to logical 0 , the signals at the outputs will remain active if there is no longer a rising slope at the timing input. With the rising slope the signals at the inputs will be input.

If both inputs are at logical 1, both outputs are at logical 1 with the rising slope at the timing input. However, this state contradicts the basic flip-flop principle of two stable states and therefore must be avoided.

\section*{Logic table}
\(\overline{\mathrm{Q}}\) is not included in the table below, because the state is always set opposite to Q . \(\mathrm{t}_{\mathrm{n}}\) is the time before the rising slope at the timing input and \(\mathrm{t}_{\mathrm{n}+1}\) is the time after it.
\begin{tabular}{l|l|l|l}
\hline \(\mathbf{t}_{\boldsymbol{n}}\) & & \(\mathbf{t}_{\boldsymbol{n}+\boldsymbol{1}}\) & \\
\hline \(\mathbf{R}\) & \(\mathbf{S}\) & \(\mathbf{Q}\) & Remark \\
\hline 0 & 0 & \(Q_{\boldsymbol{n}}\) & \\
\hline 0 & 1 & 0 & \\
\hline 1 & 0 & 1 & \\
\hline 1 & 1 & - & illegal state \\
\hline
\end{tabular}

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.5.3 JK Flip-FIop}

Figure 106: Function block JK flip-flop with timing input (clock)

\section*{Function}

A logical 1 at the J-input (logical 0 at the K-input) combined with a falling slope at the timing input (C) results in a logical 1 at the Q-output. A logical 1 at the K -input (logical 0 at the J-input) combined with a falling slope at the timing input (C) results in a logical 0 at the Q-output.

If the input signals are reset to logical 0 , the signals will remain active at the outputs regardless of the timing input.

If both inputs are at logical 1 , the signals at the two outputs with the falling slope are inverted at the timing input.

\section*{Logic table}
\(\bar{Q}\) is not included in the table below, because the state is always set opposite to \(Q\). \(t_{n}\) is the time before the falling slope at the timing input and \(t_{n+1}\) is the time after it.
\begin{tabular}{l|l|l|l}
\hline \(\mathbf{t}_{\mathbf{n}}\) & & \(\mathbf{t}_{\mathbf{n}+\mathbf{1}}\) & \\
\hline \(\mathbf{J}\) & \(\mathbf{K}\) & \(\mathbf{Q}\) & Remarks \\
\hline 0 & 0 & Qn & The prior state remains. \\
\hline 0 & 1 & 0 & \\
\hline 1 & 0 & 1 & \\
\hline 1 & 1 & Qn & The prior state is inverted. \\
\hline
\end{tabular}

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.5.4 D Flip-Flop}

Figure 107: Function block D flip-flop

\section*{Function}

The signal at the D-input of the flip-flop is transferred with the next positive slope of the Q-output. The timing pulses (clock) cause the delayed output of the input signal at the output.

\section*{Logic table}
\(\bar{Q}\) is not included in the table below, because the state is always set opposite to \(Q\). \(t_{n}\) is the time before the rising slope at the timing input and \(\mathrm{t}_{\mathrm{n}+1}\) is the time after it.
\begin{tabular}{l|l}
\hline \(\mathbf{t}_{\mathbf{n}}\) & \(\mathbf{t}_{\mathrm{n}+\boldsymbol{1}}\) \\
\hline \(\mathbf{D}\) & \(\mathbf{Q}\) \\
\hline 0 & 0 \\
\hline 1 & 1
\end{tabular}

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.
The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.5.5 T Flip-Flop}

Figure 108: Function block \(T\) flip-flop

\section*{Function}

The signals at the outputs will be inverted with the positive slope at the timing input T . \(Q\) is logical 0 as the output state, to ensure that there is a defined state during the REF542 starting procedure. The signal at the output \(\bar{Q}\) is always opposite to the signal at the output Q .

This enables the T flip-flop to operate as a binary divider; the period duration of the signals at the outputs is double the length of the clock at the T-input. A constant frequency clock signal is required.

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.5.6 Monoflop retriggerable}

Figure 109: Function block retriggerable monoflop

\section*{Function}

The logical value at the D-input is directly incorporated (in practice with its own rising slope) into the Q-output. It remains there for the configurable time. Finally, the output falls back to the only stable state of logical 0 again. The Q-output is set immediately to logical 0 by a logical 1 on the reset input (RES or K). If a rising slope occurs at the D-input again while the output is also still at logical 1 , the timing circuit will be restarted.

The signal at the output \(\bar{Q}\) is always opposite to the signal at the output \(Q\).

\section*{Configuration}

Input field time [ms]: Enter the time in ms here for which the output signal should be retained after a rising slope of the input signal.
Setting range: \(15 \ldots 65000 \mathrm{~ms}\) (increment: 1 ms)
Default: 15
Information field pins: The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.4.5.7 Monoflop non-retriggerable}

\section*{}

Figure 110: Function block non-retriggerable monoflop

\section*{Function}

The logical value at the D-input is directly incorporated (in practice with its own rising slope) into the Q-output. It remains there for the configurable time. Finally, the output falls back to the only stable state of logical 0 again. The Q-output is set immediately to logical 0 by a logical 1 on the reset input (RES or K). If a rising slope occurs at the D-input again while the output is also still at logical 1 , this signal will be ignored.

The signal at the output \(\bar{Q}\) is always opposite to the signal at the output \(Q\).

\section*{Configuration}

Input field time [ms]: Enter the time in ms here for which the output signal should be retained after a rising slope of the input signal.
Setting range: \(15 \ldots 65000 \mathrm{~ms}\) (increment: 1 ms)
Default: 15
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button ok: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.4.5.8 Drop Delay/Rise Delay (slope delay)}

Figure 111: Function blocks slope delay rising and falling

\section*{Function}

These two function blocks delay the falling and rising slope of a logical signal at the input (left connection).

The delayed logical signal is then available at the output (right connection). The delay period may be input in the configuration dialog.

The diagram below shows how the two function blocks work.

Figure 112: Flow chart of the slope delay function blocks

\section*{Configuration dialogue}

Figure 113: Configuration dialog slope delay rising (and falling)
The setting options are identical in both configuration dialogs. Only the name of the function block in the window title is different.

Input field time [ms]: Input of the delay period in ms. The rising/falling slope of the output signal is delayed for this period relative to the input signal. The input period is also shown in the function chart below the FUPLA icon.
Setting range: \(15 \ldots 65000 \mathrm{~ms}\) (increment: 1 ms)
Default: 15
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.4.5.9 Counter}

2

Number:0
Figure 114: Function block counter

\section*{Function}

The function block counter sends a logical 1 at its output (right on the function block) after a preset No. of cycles has been sent to its CLOCK input (timing input, left on the function block). The output is set with the rising slope of the last required input impulse.

If a logical 1 is set to the RESET input (left on the function block), the output is reset to logical 0 or the counting process is stopped and the internal counter is set to 0.

\section*{Configuration dialogue}

Figure 115: Configuration dialog counter
Input field number: Input of the number of input impulses required to generate a logical 1 at the output of the function block (right on the FUPLA icon). Here, the rising slopes of the input signal are decisive for the function block. The number input is also shown in the function chart below the FUPLA icon.
Setting range: \(0 \ldots 65000 \mathrm{~ms}\) (increment: 1 ms)
Default: 0
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button ok: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.4.5.10 Pulse generator}

Hiah Time [mr] 15 mr
Lau Tims [mr] 15 mr
Figure 116: Function block pulse generator

\section*{Function}

The function block pulse generator sends a pulse sequence at its output (right on the function block). Logical 1 and logical 0 values alternate in this process. Their duration can be set in the configuration dialog.
The diagram below shows the setting options for the pulse generator:

Output signal

Figure 117: Output signal of the pulse generator
Output (right on the function block): The generated pulse sequence can be tapped here.

\section*{Configuration}

Figure 118: Configuration dialog pulse generator
Input field High Time (ms): The duration in ms of the logical 1 impulse (\(\mathrm{t}_{\mathrm{ON}}\)) is entered here. The input period is also visible in the FUPLA below the function block.
Setting range: \(15 \ldots 65000 \mathrm{~ms}\) (increment: 1 ms)
Default: 15
Input field Low Time (ms) : The duration in ms of the logical 0 impulse (\(\mathrm{t}_{\mathrm{OFF}}\)) is entered here. The input period is also visible in the FUPLA below the function block.
Setting range: \(15 \ldots 65000 \mathrm{~ms}\) (increment: 1 ms)
Default: 15
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button ok: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.4.5.11 Digital Store object}

Figure 119: Function block digital Store object

\section*{Function}

The digital store object continuously saves the current digital values at its input. If the auxiliary supply voltage fails, the last saved values are retained. In this event they will be available at the appropriate outputs after the REF542 has restarted. If the reset or RESET input is at logical 1 , the output signals will all be set to logical 0.

\section*{Typical application}

The signals, that, for example, have generated a switching authorization, are retained in this way after a power failure. Otherwise the switching authorization would be lost, because all outputs and inputs on the REF542 take a defined state.

\section*{Configuration}

The connections of the function block are shown in the configuration dialog with the connection numbers to which they are connected. Inputs are not possible.
The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.6 Analog components}

The subsections contain the descriptions of the function blocks that are available via the menu Drawing Menu/Insert/Analog Objects.

\subsection*{5.4.6.1 Analog Threshold}

Figure 120: Function block analog threshold

\section*{Function}

Each of the seven analog measuring inputs can be monitored to detect if it falls below or exceeds a threshold value. If the measured value falls below or exceeds the configurable trip threshold (threshold value), the supervision function is activated. If the trip threshold is exceeds or is below the threshold after a configurable period, a trip signal is generated. The trip threshold and the period for exceeding or falling below the measured value may be configured separately.

\section*{Connections:}

B > input: If there is a logical 1 at this input, the trip signal for signaling that the threshold value has been exceeded will be suppressed.
\(B<\) input: If there is a logical 1 at this input, the trip signal for signaling that the threshold value has not been reached will be suppressed.
\(S>\) output: The starting signal (logical 1) can be tapped here if the threshold value has been exceeded.
\(S<\) output: The starting signal (logical 1) can be tapped here if the threshold value has not been reached.
> output: The trip signal (logical 1) can be tapped here if the threshold value has been exceeded.
< output: The trip signal (logical 1) can be tapped here if the threshold value has not been reached.

\section*{Typical application}

The threshold values can be used to ascertain that a bay has no voltage. It makes sense to generate various interlock conditions with this signal. Please observe the restrictions regarding the threshold object:
- Maximum of 10 threshold objects per measuring input (=> 70 per configuration),
- Minimum reaction time: 500 ms ,
- The threshold objects cannot select a direct switching output.

\section*{Configuration}

Figure 121: Configuration dialog threshold object
Input field Field bus address: This is automatically assigned but can also be changed in the adjacent set limits. All (max. 10) threshold objects that refer to a measuring input have the same Field bus address. The Field bus address is used for addressing the function block in the event of interbay bus commands. It is also shown in the function chart below the function block.

Input field number: The sequential number of the threshold object is input here. It is also shown in the function chart below the function block. It is also used to distinguish a maximum of 10 threshold objects per analog measuring input.
Input field \(T R>\) : The trip threshold for exceeding the threshold is input here in multiples of the rated voltage or of the rated current.
Setting range: \(0.1 \ldots 10\) (increment: 0.01)
Default: 1.00
Input field time (under TR >): Enter the time in shere for which the measured value must exceed the threshold value before a trip signal is generated.
Setting range: \(0.5 \ldots 300 \mathrm{~s}\) (increment 0.01 s)
Default: 1.00
Input field TR <: The trip threshold for falling below the threshold is input here in multiples of the rated voltage or of the rated current.
Setting range: \(0.1 \ldots 10\) (increment: 0.01)
Default: 1.00
Input field time (under TR <): Enter the time in s here for which the measured value must fall below the threshold value before a trip signal is generated.
Setting range: \(0.5 \ldots 300 \mathrm{~s}\) (increment 0.01 s)
Default: 1.00
Option field selectability: Enter whether a specific measuring input is an input for current or voltage.
Setting range: [voltage, current]
Default: Current
Option field used sensors: The measuring input that is to be monitored by the threshold object can be marked here. Measuring inputs fitted with transducers can also be monitored.
Setting range: [Sensor 1 ... sensor 7]
Default: Sensor 1

Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.4.6.2 Energy management}
0
\(-\overline{\text { EHERKT }}\)
\(-\overline{\text { ERCK }}\)

Figure 122: Function block energy management

\section*{Function}

This function block is used to influence the internal energy calculations in the REF542. On one hand the count process can be stopped and on the other hand a return block can be activated. In this case the energy is not counted backwards if the energy direction changes.

Depending on the hardware configuration the power is calculated from the current and voltage values at the analog inputs. The internal REF542 time clock is then used to calculate the energy. The energy values can be displayed at the LCU.

Note The internal energy calculation only functions with configured power calculation.
\({ }^{\text {² }}\) Chapter "5.3.2 Global Settings" on page 5-2

\section*{Connections:}

COUNT/no count input: The count process is stopped if there is a logical 1 at this input.

BACK/no back input: If there is a logical 1 at this input, backwards counting is suppressed if the energy direction changes.

\section*{Typical application}

The energy count provides an overview of the generated/consumed bay-specific energy.

\section*{Configuration}

The function block connections with the connection numbers attached to them appear in the configuration dialog. Inputs are not possible.

The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made. These inputs are then confirmed with the ok button.

\subsection*{5.4.6.3 Energy counter}

Figure 123: Function block energy counter

\section*{Function}

This function block uses impulses to meter energy. Every impulse is assigned to a configurable energy value. The energy metered here is then displayed in the measured value display on the LC display screen of the REF542.

\section*{Typical application}

Use this function block if there is an energy measuring instrument in the bay that is being configured. Its impulses can be sent to the energy counter in the function chart over a binary input

\section*{Configuration}

Figure 124: Configuration energy counter
Information field Field bus address:The permanently assigned Field bus address is displayed here. All energy counters have the same address.

Input field number: Enter a number to distinguish several configured energy counters. The number is also shown in the function chart above the function block.
Setting range: \(1 \ldots 15\) (increment: 1)
Default: [The next free energy counter number]
Input field multiplicationfactor:The energy in kWh that represents an incoming impulse is entered here. The multiplier is shown in the function chart in the function block.
Setting range: 0.1 ... 1000 (increment: 0.1)
Default: 100
Input field text for display: Enter text here that is to be displayed on the LC display screen to enable several energy counters to be distinguished more easily.
Setting range: \(0 \ldots 18\) characters (standard character set)
Default: Default no. [number of the energy counter]
Information field BI: The number of the connection is shown here. If there is no connection yet, a 1 is shown.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.4.6.4 Energy pulse output}

Figure 125: Function block energy impulse output

\section*{Function}

This function block sends impulses that represent a specific energy quantity to its output (energy). The impulses are generated based on the internal energy calculations of the REF542.

The DSP calculates the energy and sends standardized energy packets to the microcontroller. This receives a number of standardized energy packets about twice a second and calculates the absolute energy amount from them according to the following formula:
Energy quantity \(=\) standardized energy packets \(\cdot I_{n} \cdot \begin{gathered}U_{n} \\ 953\end{gathered}\)
The energy amount is then converted to the corresponding No. of cycles. If there is a remainder after the conversion into pulses, it will be included in the next conversion.

The energy impulse output can send up to 70 pulses after a calculation. Additional pulses are ignored and the overflow output is then set to logical 1. If the number of calculated pulses is reduced below 65 again, the overflow output is reset to logical 0. Note that \(I_{n}\) and \(U_{n}\) in the above formula are the rated values of the sensors/transducers in use.

Note To add this function block, the power calculation must be activated.
\({ }^{\text {r }} \downarrow\) Chapter "5.3.6 Calculated values" on page 5-12

Note Use this function block only with binary input/output boards with transistor relays. The conventional relays are limited in their number of switching cycles and therefore are not suited for this.

\section*{Typical application}

Use this function block to control an external energy display with the impulses from the REF542.

\section*{Configuration}

Figure 126: Configuration dialog energy impulse output
Option field energy: Mark here whether the impulse should represent active or reactive energy.

Option field energy flow: Select the direction of the energy flow. Only energy of this direction will be converted to the corresponding impulse.

Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Input field pulse per kWh: Enter in kWh the calculated energy amount that an impulse represents.
Setting range: \(0.1 \ldots 1000\) (increment: 0.1)
Default: 1.0
Input field pulse length: The duration of the output impulse in ms can be varied here to ensure that the external energy display functions correctly.
Setting range: \(50 \ldots 150 \mathrm{~ms}\) (increment: 1 ms)
Default: 150
Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.4.6.5 LON sensor}

Figure 127: Function block LON

\section*{Function}

Note In this version of the configuration program only LON temperature sensors can be connected. Gas density and speed sensors cannot be connected at present.

This function block represents a LON sensor connected to the LON process bus. The two outputs each send a logical 1 signal so long as a specific, configurable threshold value is exceeded.

\section*{Typical application}

If the protective function "dependent thermal protection" for motor supervision is used, the LON sensor will provide the required temperature information.

Configuration

Figure 128: Configuration dialog LON sensor

Input field level \(1 /\) level 2 : Enter the temperature values here in \({ }^{\circ} \mathrm{C}\) from which the outputs level 1 or level 2 should send a logical 1.
Setting range: \(0 \ldots 65000^{\circ}\) (increment: \(1^{\circ} \mathrm{C}\))
Default: 0
Input field Hysteresis: Enter a percentage of the trip value from which the logical 1 of the output can be reset here. The percentage is valid for both trip values.
Setting range: \(0 \ldots 65\) 000\% (increment: 1\%)
Default: 0
Input field node sequence no.: Enter the node number of the LON network to which the LON sensor connected.
Setting range: \(1 \ldots 15\) (increment 1)
Default: 1
Input field sensor in this node: Enter the number of the sensor on the above node.
Setting range: 1 or 2
Default: 1
Input field name of sensor: Enter the name or description of the sensors to distinguish it from other configured sensors.
Setting range: \(0 \ldots 18\) characters (standard character set)
Default: Empty
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Option field sensortype: Mark the option temperature [\(\left.{ }^{\circ} \mathrm{C}\right]\). The other options are already integrated in the dialog for future use, but at present have no function.
Button ok: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.4.7 General Information on the protective functions}

Caution Note the following three restrictions when configuring the protective functions. If one of them is not taken into consideration, proper functioning of the REF542 cannot be guaranteed:
1) A maximum of 12 protective functions can be configured.
2) The load imposed on the protection and measuring unit (DSP) by the protective functions is a maximum of \(100 \%\).
3) A maximum of \(\mathbf{1 2 0}\) protective parameters can be configured.

All three requirements will also be checked by the configuration program. If specific protective functions cannot be configured, please check the basic setting and the device configuration in the configuration program. Some functions can only be used under specific conditions, which can be found in the function block descriptions.

Setting the delay periods in the protective functions
The configuration program adapts the initial value of the setting range of the delay periods to the binary input/output board in use. The configuration dialogs shown in the documentation may therefore have a different appearance from those displayed in your configuration program.

Therefore, the following will be found in the descriptions of the input fields in the documentation:

Setting range: [initial value \(+t_{\text {relay }}\)] ... end value (increment: \(x x\))
The time \(t_{\text {relay }}\) is the time from the output of the trip signal of a protective function over the direct output channel to the time at which this signal can be tapped at the terminals of the binary output board.

It is
- 15 ms for the transistor relay boards and
- 30 ms for the conventional relay boards.

Frequency ranges of the protective functions
Unless otherwise specified, all protective functions operate either at 50 or 60 Hz .

Caution If frequency variations of more than \(\pm 0.5 \mathrm{~Hz}\) occur in the protected network, the precision of the protective response will be reduced.

Please note that the above information is particularly applicable to networks with low frequency stability such as island networks. For example, the frequency imprecisions affect the power calculation as follows:

If the output frequency of 50 or 60 Hz deviates by 5 Hz up or down, a deviation of of \(\pm 10 \%\) in the power calculation will result.

\section*{Direct output channel}

One binary output channel each, over which, for example, the trip signal is fed to the power circuit-breaker, can be set in the configuration dialog for the protective functions. This guarantees the fastest possible tripping. For documentation purposes the output must also be made via a switching object in the function chart. If the trip signal is only forwarded over the FUPLA, the period between the generation of the trip signal and the tripping may be significantly longer. The operating time of the signal then depends directly on the cycle time of the application. The direct output channel is also referred to as the interrupt channel.

\section*{Combination options for the protective functions in connection with the analog measuring inputs}

The following table shows the required wiring for the analog measuring inputs for every protective function. A selection of standard circuits for the analog measuring inputs is shown in the header with the gray background. The numbers indicate the number of the analog input and the following letter indicates whether it is in use as a current input (I) or as a voltage input (U).

If the seventh analog input is used, the earth current \(I_{0}\) or the residual voltage \(U_{0}\) can be recorded. In the case of the other analog inputs, three are always used in combination for the three line currents or the three phase voltages.
If there is a sigma \((\Sigma)\) before the numbers of the analog measuring inputs in use, the three input quantities are added vectorially for this protective function. Therefore, either the neutral current \(\mathrm{I}_{0}\) or the neutral voltage \(\mathrm{U}_{0}\) is calculated.
\({ }^{4}\)) Chapter "11.7.2 Measurement or calculation of Uo, Io" on page 11-33
For this reason only protective functions that place the same demands on the wiring of the analog measuring inputs with sensors or transducers may be combined.

Table 40: Use of the protective functions depending on the configuration of the analog measuring inputs
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Protective function} & \multicolumn{6}{|l|}{Configuration of the analog measuring inputs} \\
\hline & \[
\begin{aligned}
& \text { 1-3: I } \\
& \text { 4-6: U } \\
& 7: \text { U }
\end{aligned}
\] & \[
\left\lvert\, \begin{aligned}
& 1-3: \mathrm{U} \\
& 4-6: \mathrm{I} \\
& 7: \mathrm{I}
\end{aligned}\right.
\] & \[
\begin{aligned}
& \text { 1-3: I } \\
& 4-6: ~ U \\
& 7: ~ U
\end{aligned}
\] & \[
\begin{aligned}
& \text { 1-3: U } \\
& \text { 4-6: I } \\
& 7: \mathrm{U}
\end{aligned}
\] & \[
\begin{aligned}
& \text { 1-3: I } \\
& \text { 4-6: I } \\
& 7: ~ U
\end{aligned}
\] & \[
\begin{array}{|l}
1-3: I \\
4-6: I \\
7: I
\end{array}
\] \\
\hline Inrush current blocking & 1-3 & 4-6 & 1-3 & 4-6 & 1-3 or 4-6 & 1-3 or 4-6 \\
\hline Overcurrent directional high & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & - \\
\hline Overcurrent directional low & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & - \\
\hline Overcurrent instantaneous & 1-3 & 4-6 & 1-3 & 4-6 & 1-3 or 4-6 & 1-3 or 4-6 \\
\hline Overcurrent high & 1-3 & 4-6 & 1-3 & 4-6 & 1-3 or 4-6 & 1-3 or 4-6 \\
\hline overcurrent low & 1-3 & 4-6 & 1-3 & 4-6 & 1-3 or 4-6 & 1-3 or 4-6 \\
\hline IDMT & 1-3 & 4-6 & 1-3 & 4-6 & 1-3 or 4-6 & 1-3 or 4-6 \\
\hline Eartfault high & \(\sum 1-3\) or 7 & \4-6 or 7 & \ 1-3 & \ 4-6 & \ 1-3 or \(\sum 4-6\) & \1-3 or \(\sum 4-6\) or 7 \\
\hline Eartfault low & \1-3 or 7 & \(\sum 4-6\) or 7 & \1-3 & \ 4-6 & 退1-3 or \(\sum\) 4-6 & \(\sum 1-3\) or \(\sum 4-6\) or 7 \\
\hline Eartfault directional high & \(\sum 1-3\) or 7 & \(\sum 4-6\) or 7 & \(\sum 1-3\) & \ 4-6 & - & - \\
\hline Eartfault directional low & \(\sum 1-3\) or 7 & \(\sum 4-6\) or 7 & \ 1-3 & \ 4-6 & - & - \\
\hline Earth fault IDMT & \(\sum 1-3\) or 7 & \(\sum 4-6\) or 7 & \1-3 & \ 4-6 & \ 1-3 or \(\sum 4-6\) & \(\sum 1-3\) or \(\sum 4-6\) or 7 \\
\hline Overvoltage instantaneous & 4-6 & 1-3 & 4-6 & 1-3 & - & - \\
\hline Overvoltage high & 4-6 & 1-3 & 4-6 & 1-3 & - & - \\
\hline Overvoltage low & 4-6 & 1-3 & 4-6 & 1-3 & - & - \\
\hline Undervoltage instantaneous & 4-6 & 1-3 & 4-6 & 1-3 & - & - \\
\hline Undervoltage high & 4-6 & 1-3 & 4-6 & 1-3 & - & - \\
\hline Undervoltage low & 4-6 & 1-3 & 4-6 & 1-3 & - & - \\
\hline Residual overvoltage high & \ 4-6 & \ 1-3 & \(\sum 4-6\) or 7 & \(\sum 1-3\) or 7 & 7 & - \\
\hline Residual overvoltage low & \ 4-6 & 之 1-3 & \(\sum 4-6\) or 7 & \(\sum 1-3\) or 7 & 7 & - \\
\hline Dependent thermal protection & 1-3 & 4-6 & 1-3 & 4-6 & 1-3 or 4-6 & 1-3 or 4-6 \\
\hline Motor start monitoring & 1-3 & 4-6 & 1-3 & 4-6 & 1-3 or 4-6 & 1-3 or 4-6 \\
\hline Blocking rotor & 1-3 & 4-6 & 1-3 & 4-6 & 1-3 or 4-6 & 1-3 or 4-6 \\
\hline Number of starts & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline distance protection (only in the 50 Hz network) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & - & - \\
\hline Thermal supervision \({ }^{1}\) & \multicolumn{6}{|l|}{only in connection with a LON temperature sensor} \\
\hline Unbalanced load & 1-3 & 4-6 & 1-3 & 4-6 & 1-3 or 4-6 & 1-3 or 4-6 \\
\hline Directional power & \multicolumn{4}{|l|}{requires three-phase power calculation} & - & - \\
\hline Low load & 1-3 & 4-6 & 1-3 & 4-6 & 1-3 or 4-6 & 1-3 or 4-6 \\
\hline Frequency supervision & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) & \(\checkmark\) \\
\hline Synchrocheck & - & - & \(\checkmark\) & \(\checkmark\) & - & - \\
\hline
\end{tabular}
1) This protective function requires a LON temperature sensor on the process bus

\subsection*{5.4.8 Current protective functions}

The following subsections describe the function blocks that are available with the menu Drawing Menu/Insert/Current Protection.

\section*{Application}

The overcurrent time protection, definite time or inverse time (IDMT), directional or non-directional, acts as the main protection for simple feeder fields. It switch off overcurrents that are above the maximum load current with a time delay. Which overcurrent time protection will be used depends on the operator's protection policy and also on the network configuration.

A non-directional definite time overcurrent protection is sufficient for a simple radial network with a defined power direction from one power supply to several consumers. The time delay set here depends on where the protection device is installed and is specified in the setting table. The shortest delay period is set on the overcurrent time protection that has the shortest distance to the end user. The delay period is adjusted to the smallest phase fault current or the largest load current. In the setting table the next higher-order overcurrent time protection contains a longer delay period and a higher tripping current.
\(\stackrel{y}{\wedge}\) Chapter "7.7.1 Testing the current protective functions" on page 7-11
In some countries the inverse time overcurrent protection (IDMT) is used instead of the definite time version. In this case, the delay period is inversely proportional to the flowing fault current; if the fault currents are increasing, the trip time decreases. Several hyperbolic (inverse time) time characteristics are available. To optimize the relay setting, the same time characteristic for all overcurrent relays should be set for the entire network.
\({ }^{\text {² }}\) Chapter "7.7.1 Testing the current protective functions" on page 7-11
If a ring or mesh network is being configured, definite time and inverse time (IDMT) can no longer be selectively graded. In this case, as a minimum, directional definite time overcurrent functions must be used. The protection system will then operate selectively. With complex mesh networks even the directional definite time overcurrent is no longer sufficient. Distance protection is required in this case.
\(\left.{ }^{4}\right)\) Chapter "5.4.11 Distance protection" on page 5-158
All overcurrent protective functions can also be implemented as backup protective functions in transformer and carrier feeders or cable feeders. This implementation is also referred to as an emergency overcurrent definite time with carrier and cable feeders.

In motor feeders the overcurrent definite time functions are included as permanent components of the motor protection.
\({ }^{\mu}\)) Chapter "5.4.10 Motor Protection" on page 5-143
The items described above refer to overcurrent time protective functions for phase to phase and also for phase to earth fault. In the latter case the analog measured quantities can be calculated from the total of the line currents or can be tapped as measured quantities at the seventh measuring input of the REF542.

The functioning and setting of the earth fault time protective functions depend, particularly with the directional protection, on how the system earthing of the network is handled. With low-resistance neutral point treatment the earth fault currents reach values in the range of the multiphase phase fault currents.
Therefore, the term "zero-sequence current" is used. If the network neutral point has a high-resistance earth resistance or even insulated, the earth fault current has very low values, and it is referred to as earth fault current.

Depending on whether the network neutral point is earthed directly, via a resistor or a coil or operated unearthed, the phase angle between the residual current and the zerosequence voltage changes. This must be observed with the earth fault directional function for locating earth faults.
\({ }^{4}\)) Chapter "11.8 Network neutral point earthing" on page 11-35

\subsection*{5.4.8.1 Inrush}

Figure 129: Function block inrush current blocking

\section*{Function}

The following current protective functions can be impeded by the inrush current blokking on tripping. Additional circuitry in the function chart is not required for this.
- Overcurrent definite time protection/overcurrent instantaneous
- Overcurrent definite time protection/overcurrent high
- Overcurrent definite time protection/overcurrent low
- Directional overcurrent definite time protection/overcurrent directional high
- Directional overcurrent definite time protection/overcurrent directional low

If other protective functions are impeded by the inrush current blocking on their tripping, their blocking must be implemented in the FUPLA.

Note To ensure that the inrush current blocking functions properly, the overcurrent definite time functions must be included in the application.

The inrush current blocking can be activated on the basis of the evaluation of the temporal course of the measured current (rms value). To represent a switch-on process, the measured current must exceed the configurable value \(\mathrm{M} \cdot \mathrm{I}>\) within 60 ms and then after another 100 ms fall to less than \(\mathrm{M} \cdot 0.65 \cdot \mathrm{l}>\). Overall, the inrush current blocking remains active during the parametrizable period (\(t_{\text {ESB }}\)). Here \(l>\) is the starting value of the overcurrent low protective function. If this function is not configured, a standard value of \(0.05 \cdot I_{N}\) is used.

The inrush current blocking itself is activated if the measured current exceeds the limit \(\mathrm{N} \cdot \mathrm{l} \gg\) in less than 20 ms after the starting procedure. If this limit remains exceeded for at least 60 ms after the starting process, the inrush current blocking is immediately tripped. In this case, the tripping of the surge short circuit protective function l>> would still be delayed by the delay period \(\mathrm{t} \gg\) set there.

The following two diagrams are not to scale and are provided solely for better understanding of the explanations of how the inrush current blocking functions. The variables M and N and also \(\mathrm{t}_{\text {ESB }}\) (time) may be set in the configuration program.

The first diagram describes a detected switch-on process. The three conditions required for this have been met. Therefore, the inrush current blocking prevents the protective functions from being tripped for the time \(t_{\text {ESB }}\).
- First condition: The current exceeds the M•I> limit within 60 ms .
- Second condition: The current falls below the \(0.65 \cdot \mathrm{M} \cdot 1>\) limit within the next 100 ms .
- Third condition: The current remains below the \(N \cdot \mid \gg\) limit within the period \(t_{\text {ESB }}\).

Figure 130: Current-time characteristic of the detected switch-on process when using inrush current blocking

The following diagram describes a detected fault. The three conditions required for detecting a switch-on process are not all met. The inrush current blocking prevents the protective functions described initially from being tripped for only 160 ms .
- First condition: The current exceeds the \(\mathrm{M} \cdot \mathrm{I}>\) limit within 60 ms .
- Second condition: The current does NOT fall below the \(0.65 \cdot \mathrm{M} \cdot \mathrm{I}>\) limit within the next 100 ms . Depending on the amount of the current, either the overcurrent high protective function or the overcurrent low \(\mathrm{I}>\) protective function is activated. It is then tripped after the 160 ms plus the relay period and the minimum delay period set in the protective function for which that of the fault current must flow.
- Third condition: The current remains below the \(N \cdot I \gg\) limit within the period \(t_{\text {ESB }}\).

The diagram shows the current paths that are possible in principle in which one of the two current protective functions is addressed.

Figure 131: Current-time characteristic of the detected fault when using inrush current blocking

The last diagram describes a detected fault (overload). The three conditions required for detecting a switch-on process are not all met. The inrush current blocking prevents other protective functions from being tripped for only 60 ms .
- First condition: The current does NOT exceed the M•l> limit within 60 ms . Depending on the height of the current, either the overcurrent high protective function or the overcurrent low \(l>\) protective function is activated. It is then tripped after the 60 ms plus the relay period and the minimum delay period set in the protective function for which that of the fault current must flow.
- Second condition: The current does NOT fall below the \(0.65 \cdot \mathrm{M} \cdot \mathrm{I}>\) limit within the next 100 ms . This condition is not evaluated by the inrush current blocking, because a current protective function has already been activated and if necessary tripped.
- Third condition: The current remains below the \(N \cdot l \gg\) limit within the period \(t_{\text {ESB }}\).

The diagram shows the current paths that are possible in principle in which one of the two current protective functions is addressed.

Figure 132: Current-time characteristic of the detected overload when using inrush current blocking

\section*{Connections:}

0

Figure 133: Function block inrush current blocking
BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Typical application}

When switching on transformers or starting large motors high switch-on inrush currents occur because of the non-linear magnetizing characteristic. These high currents are limited in time.

The inrush current blocking can also be used to prevent the current protective functions described at the beginning from being tripped.

\section*{Configuration}

Figure 134: Configuration dialog function block inrush current blocking.
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Entry field N : It is the multiplier for the trip threshold of the definite time high protective function overcurrent high.
Setting range: \(2.00 \ldots 8.00\) (increment 0.1)
Default: 2.0
Entry field m : It is the multiplier for the trip threshold of the definite time of the protective function overcurrent low.
Setting range: \(3.00 \ldots 4.00\) (increment 0.1)
Default: 3.0

Entry field time: The total time in ms in which the inrush current blocking is activated. It is referred to as \(\mathrm{t}_{\mathrm{ESB}}\) in the previous examples. Once this time has expired, the protective function is automatically deactivated and the previously blocked protective functions operate with their set parameters.
Setting range: [200 + trelay \(]\)... 100000 ms (increment 10)
Default: [200 + \(\mathrm{t}_{\text {relay }}\)] ms
Input field output channel: Input of the number of the binary output for the direct output signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of direct tripping.
The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.
Information field pins : List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4}\) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{\mu}>\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.8.2 Overcurrent directional high}

Figure 135: Function block overcurrent directional high.
Function of the directional definite time functions
There are two directional definite time functions in the REF542, each of which can be independently activated and have parameters set:
- Overcurrent directional low and
- Overcurrent directional high.

They can both be configured as two-phase or three-phase. Current and voltage quantities must be connected to the function to record the direction.

The directional phase fault current protective functions evaluate the measured rms value of the measured current and voltage value. If there is a minimum required voltage value (required for deciding the direction) and the set current response time is exceeded, the protective function will be activated. If the response time is exceeded at least during the set time delay, the protective function will be tripped.

Because the REF542 always processes the phase voltage, all three voltages must always be configured and connected with the directional functions. The protective function has a voltage memory, to enable a directional decision to be made even if a fault occurs in the immediate area of the voltage transformer/sensor.

A directional signal can be sent to the opposite station with the output (trip) and/or (BO). The content of a directional signal from the opposite station (BS output) can be used to release tripping of its own directional protective function. This enables a directional comparison protection to be established if there is a signal connection between the stations.

The forward direction of the directional phase-fault current functions is defined as an angle of -180 over -90 to 0 degrees between current and voltage. The symmetrical phase voltage is used as a reference quantity here. The REF542 connection is important here.
\(\stackrel{\mu}{\wedge}\) Chapter "7.7.1 Testing the current protective functions" on page 7-11
The one or two-stage, three-phase autoreclosure (AR) can be activated with the directional surge short circuit protection l>>dir.

². Chapter "5.5.1 Autoreclosure" on page 5-209
The following vector diagram clarifies the directional definition.

Figure 136: Vector diagram of the directional phase fault current protective functions

Figure 137: Function block overcurrent directional high.

\section*{Connections:}

BA input: A logical 1 signal at this input blocks the autoreclosure (AWE).
BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.
Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

AR output: A logical 1 signal appears at this output when an autoreclosure attempt is active and running.
BO output: If the protective function detects an activation in the opposite direction to the set tripping direction, a logical 1 signal will be output. It can be used for directional comparison protection.

\section*{Configuration}

Figure 138: Configuration dialog function block overcurrent directional high.
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.
Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.05 \ldots 40.00\) (increment: 0.01)
Default: 0.20

Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded and the tripping direction conforms to the parameter setting.
Setting range: [\(50 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)] ... 300000 ms (increment: 10)
Default: [\(50 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)]
Option field direction (once per parameter set/setting): The direction in which the protective function should trip is marked here. The angular definition between voltage and current and the connection of the REF542 are important here.
Setting range: Forward, backward
Default: backwards
4 Chapter "7.7.1 Testing the current protective functions" on page 7-11
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.
Input field output channel: Input of the number of the binary output for the direct output signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of direct tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Information field pins : List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.
Button OK: All settings are saved in the configuration program. The dialog window is closed.
Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.
Button autoreclosure: The configuration dialog for setting parameters for the autoreclosure is opened.
HChapter "5.5.1 Autoreclosure" on page 5-209
Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{\text {® }}\) Chapter "5.3.2 Global Settings" on page 5-2
\(\Perp\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.8.3 Overcurrent directional low}

Figure 139: Function block overcurrent directional low.
\({ }^{\text {H. }}\) Chapter "Function of the directional definite time functions" on page 5-97

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

BO output: If the protective function detects an activation in the opposite direction to the set tripping direction, a logical 1 signal will be output. It can be used for directional comparison protection.

\section*{Configuration}

Figure 140: Configuration dialog overcurrent directional low.
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.05 \ldots 40.00\) (increment: 0.01)
Default: 0.20
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded and the tripping direction conforms to the parameter setting.
Setting range: [\(\left.50 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\right] \ldots 300000 \mathrm{~ms}\) (increment: 10)
Default: [50 ms + trelay]

Option field direction (once per parameter set/setting): The parameters for the direction in which the protective function should trip are set here. The angular definition between voltage and current and the connection of the REF542 are important here. Setting range: Forward, backward
Default: backwards
\({ }^{\mu}\)) Chapter "7.7.1 Testing the current protective functions" on page 7-11
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.
Input field output channel: Input of the number of the binary output for the direct output signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of direct tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\(\stackrel{ }{ } \stackrel{ }{ })\) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{n} \Rightarrow\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.8.4 Overcurrent instantaneous}

0

Figure 141: Function block overcurrent instantaneous

\section*{Function of the definite time functions}

The REF542 has three independent overcurrent time protective functions, which can be independently activated and the parameters set:
- Overcurrent definite time low
- Overcurrent definite time high and Overcurrent definite time instantaneous.

Each one can be configured as two-phase or three-phase. The definite time functions evaluate the rms value and the initial phase-fault current function also evaluates the \(1 / \sqrt{2}-\) peak value of the measured current value. If the set response time is exceeded, the activation occurs first. If the response time is exceeded for at least the time setting parameter, it is tripped. It is phase-selective for these functions.

The three definite time functions enable an overcurrent time-step characteristic to be generated for one feeder, which is shown in the following figure.

Figure 142: Schematic view of the definite time tripping steps
The one or two-stage autoreclosure (AR) can be activated with the surge l>> and the initial l>>> phase-fault current function.
\(\left.{ }^{4}\right)\) Chapter "5.5.1 Autoreclosure" on page 5-209
Two parameter sets can be configured for each of the three independent overcurrent time protective functions.

\section*{Connections:}

BA input: A logical 1 signal at this input blocks the autoreclosure (AWE).
BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

AR output: A logical 1 signal appears at this output when an autoreclosure attempt is active and running.

\section*{Configuration}

Figure 143: Configuration dialog function block Overcurrent instantaneous l>>>
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the multiplier for \(I_{N}\) to specify the response time of the protective function.
Setting range: \(0.10 \ldots 40.00\) (increment: 0.01)
Default: 0.50
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [20 ms + trelay] ... 300000 ms (increment: 10)
Default: [\(50 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)]
Input field output channel: Input of the number of the binary output for the direct output signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of direct tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.

Information field pins : List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button autoreclosure: The configuration dialog for setting parameters for the autoreclosure is opened.
\(\left.{ }^{4}\right)\) Chapter "5.5.1 Autoreclosure" on page 5-209

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{\mu}\) Chapter "5.3.2 Global Settings" on page 5-2
\(\left.{ }^{4}\right)\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.8.5 Overcurrent high}

Figure 144: Function block overcurrent high
\({ }^{4}\)) Chapter "Function of the definite time functions" on page 5-102

\section*{Connections:}

BA input: A logical 1 signal at this input blocks the autoreclosure (AWE).
BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

AR output: A logical 1 signal appears at this output when an autoreclosure attempt is active and running.

\section*{Configuration}

Figure 145: Configuration dialog function block overcurrent high
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.05 \ldots 40.00\) (increment: 0.01)
Default: 0.05
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [20 ms + trelay] ... 300000 ms (increment: 10)
Default: [\(50 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)]
Input field output channel: Input of the number of the binary output for the direct output signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of direct tripping.

The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.
Information field pins : List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button autoreclosure: The configuration dialog for setting parameters for the autoreclosure is opened.
\({ }^{\text {n }}\) Chapter "5.5.1 Autoreclosure" on page 5-209
Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4}\)) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{\mu} \downarrow\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.8.6 Overcurrent low}

Figure 146: Function block overcurrent low
\({ }^{\Perp} \downarrow\) Chapter " Function of the definite time functions" on page 5-102

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Configuration}

Figure 147: Configuration dialog function block overcurrent low
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the multiplier for \(I_{N}\) to specify the response time of the protective function.
Setting range: \(0.05 \ldots 40.00\) (increment: 0.01)
Default: 0.05
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [20 ms + trelay] ... 300000 ms (increment: 10)
Default: [\(50 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)]
Input field output channel: Input of the number of the binary output for the direct output signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of direct tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0

Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.

Information field pins : List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.
Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4} \downarrow\) Chapter "5.3.2 Global Settings" on page 5-2
\({ }_{\wedge}{ }^{\circ}\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.8.7 IDMT}

Figure 148: IDMT protection

\section*{Function}

The REF542 enables an IDMT function in which the four current-time characteristics can be selected to be activated:
- Normal inverse,
- Very inverse,
- Extremely inverse
- and long-term inverse.

The function can be configured as single-phase or three-phase. The trip signal for the function is not phase-selective. Two parameter sets can be configured for the function.

The IDMT function evaluates the rms value of the measured current value. If the fault current factor is exceeded by 1.14 times the activation occurs first. If the response time is exceeded for at least the time setting, it will be tripped. The time delay depends here on the current quantity and the selected current-time characteristic. The formula for the trip time according to British Standard (BS) 142 and IEC 60255-3 is as follows:
\(t=\frac{k \cdot \beta}{\pi T_{E B}{ }^{\alpha}-1}\)
\(t=\frac{k}{\left(\left(G / G_{S}\right)^{\alpha^{-}}-1\right)}\)

BS 142
IEC 60266-3
t : Time until the protective function trips under sustained overcurrent
\(\mathrm{k}: \quad \quad\) Curve parameter \((0 \leq \mathrm{k} \leq 1)\) (BS 142) or time value (IEC 60255-3)
\(\alpha: \quad\) Constant according to the list below
\(\beta\) : \(\quad\) Constant according to the list below (BS 142)
\(\mathrm{I} / \mathrm{I}_{\mathrm{EB}}\) : Fault current factor
\(\mathrm{I}=\mathrm{G}: \quad\) Actual measured current; already transformed by the transducer/sensor
\(\mathrm{I}_{\mathrm{EB}}=\mathrm{G}_{\mathrm{S}}: \quad\) Base current setting value: Minimum current at which the protection is activated; already transformed by the transducer/sensor

The following table shows the two constants \(\alpha\) and \(\beta\) of the four different current-time characteristics. To retain the specific families of curves, the formula in accordance with BS 142 is used and the k-factor of 0.1 to 1 is increased in increments of 0.1 .
\begin{tabular}{l|l|l|l}
\hline Current-time characteristic & \(\alpha\) & \(\beta(\mathrm{BS} 142)\) & \(\mathrm{k}(\) IEC 60255-3) \\
\hline normal inverse & 0.02 & 0.14 & 0.14 \\
\hline very inverse & 1.0 & 13.5 & 13.5 \\
\hline extremely inverse & 2.0 & 80.0 & 80.0 \\
\hline long time inverse & 1.0 & 120.0 & 120.0 \\
\hline
\end{tabular}

The relay period must also be added to the trip times determined from the currenttime characteristics. (Binary input/output board with transistor relays: 15 ms , and with conventional relays: 30 ms)
(4) Chapter "11.5 IDMT protection and earthfault IDMT protection families of curves" on page 11-20

Figure 149: Function block dependent overcurrent timer protection

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Configuration}

Figure 150: Configuration dialog function block dependent overcurrent timer protection
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Option field IDMT type: The desired current-time characteristic for tripping is marked here.
Setting range: normal inverse, very inverse, extremely inverse, long-term inverse Default: normal inverse
\({ }^{〔}\) Chapter "11.5 IDMT protection and earthfault IDMT protection families of curves" on page 11-20

Input field I/ In (once per parameter set/setting): Input of the fault current factor (=I/ \(\left.\mathrm{I}_{\mathrm{EB}}\right)\). After reaching 1.14 times the value the protective function is activated.
Setting range: \(0.05 \ldots 40.00\) (increment: 0.01)
Default: 0.1
\({ }^{7}\) Chapter "11.5 IDMT protection and earthfault IDMT protection families of curves" on page 11-20

Input field \(k\) (once per parameter set/setting): Input of the curve parameter according to the BS 142 formula. One curve is selected from the family of curves with this. Setting range: \(0.05 \ldots 1.00\) (increment: 0.01)
Default: 0.05
Input field output channel: Input of the number of the binary output for the direct output signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of direct tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.

Information field pins : List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button ok: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4}\), Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{4}\)) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.8.8 Earth fault high}

Figure 151: Function block earthfault high

\section*{Function of the earthfault timer functions}

The REF542 has two earthfault timer functions, which can be activated and the parameters set independently of each other:
- Earthfault low and
- Earthfault high.

Each earthfault function is single-phase configured. This gives the option of calculating the earthfault current from the sum of the three phase currents. This can be done in networks with low-resistance neutral earthing in which large zero-sequence currents occur with no other settings.

The second option is to connect the earthfault current measuring input to a separate residual current transformer. This option should be used in networks with high-resistance, compensated or isolated neutral point. Very small earthfault currents occur here. A separate residual current transformer in the primary circuit for this purpose. This can be implemented very easily with cable feeders as a converted transformer.
\({ }^{\mu}\) Chapter "11.8 Network neutral point earthing" on page 11-35
The earthfault current timer functions evaluate the rms value of the measured residual current or the calculated neutral current. As soon as the response time is exceeded, the protective function is activated. If the response time is exceeded for at least the set time delay, the protective function will be tripped.

The one or two-stage autoreclosure (AR) can be activated with the Earthfault high protection
\({ }^{7}\) Chapter "5.5.1 Autoreclosure" on page 5-209
Two parameter sets can be configured for both earthfault stages.

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.
BA input: A logical 1 signal at this input blocks the autoreclosure (AWE).
AR output: A logical 1 signal appears at this output when an autoreclosure attempt is active and running.

St output: A logical 1 signal can be tapped here so long as the protective function is started.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Configuration}

Figure 152: Configuration dialog function block earth fault high
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.05 \ldots 40.00\) (increment: 0.01)
Default: 0.1
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [50 ms + trelay] ... 100000 ms (increment: 10)
Default: [200 + trelay]
Input field output channel: Input of the number of the binary output for the direct output signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of direct tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.

Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button autoreclosure: The configuration dialog for setting parameters for the autoreclosure is opened.
\({ }^{\wedge}\) Chapter "5.5.1 Autoreclosure" on page 5-209
Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4}\) Chapter "5.3.2 Global Settings" on page 5-2
\(\stackrel{ }{ } \stackrel{ }{ })\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.8.9 Earthfault Iow}

Figure 153: Function block earhfault low
\({ }^{4}\) Chapter " Function of the earthfault timer functions" on page 5-112

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Configuration}

Figure 154: Configuration dialog function block earthfault low
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.05 \ldots 40.00\) (increment: 0.01)
Default: 0.1
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [\(50 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)] ... 100000 ms (increment: 10)
Default: [200 + \(\mathrm{t}_{\text {relay }}\)]
Input field output channel: Input of the number of the binary output for the direct output signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of direct tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.

Information field pins : List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4}\)) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{4}\) C Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.8.10 Earthfault directional high}

Figure 155: Function block earth fault directional high

\section*{Function of the directional earthfault current timer functions}

The REF542 has two directional earth fault timer functions, each of which can be independently activated and the parameters set:
- Earthfault directional low
- Earthfault directional high.

Each earth fault current function is single-phase configured. This gives the option of calculating the earth fault current from the sum of the three phase currents, which can be done in networks with low-resistance neutral earthing in which large zerosequence currents occur with no other settings. The second option is to connect the earth fault current measuring input to a separate residual current transformer. This option should be used in networks with high-resistance, compensated or isolated neutral point. Very small earth fault currents occur here. A separate residual current transformer is included in the primary circuit for this purpose. This can be implemented very easily with cable feeders as a converted transformer.

Current and voltage quantities must be connected to the function to record the direction. The required zero-sequence voltage is calculated from the three phase voltages. The earth fault directional protective functions evaluate the rms values of the neutral current and the neutral voltage. Calculated or measured quantities may be used. In the case of the earth fault directional protection, all three voltages must always be configured and connected, because the REF542 uses the sum of the three phase voltage values.

\section*{\({ }^{\text {r C Chapter }}\) "11.8 Network neutral point earthing" on page 11-35}

To decide the direction for networks with permanent, low or high-resistance and with a compensated neutral point, the effective power proportion of the neutral system is calculated and evaluated. The reactive power proportion of the neutral system is used for networks with isolated neutral point.
A minimum neutral current and neutral voltage value is required to calculate the effective or reactive power proportion of the power of the neutral system. The minimum neutral current value corresponds to the earth fault current setting value of the function.
The minimum neutral voltage value is permanently set and equals \(10 \%\) of the conductor earth voltage value.
If the set earth fault current response time is exceeded and the minimum required voltage value for specifying the directional decision is present, the protective function will be activated. If it remains activated for at least the set time delay, the protective function will trip.
When measuring the effective power \((\cos \varphi)\), the forward direction of the functions is defined in an angular range of \(90^{\circ}\) over \(180^{\circ}\) to \(270^{\circ}\) between neutral current \(3 \cdot I_{0}\) and neutral voltage \(3 \cdot U_{0}\). The neutral voltage \(3 \cdot U_{0}\) is the reference quantity in this case.

\footnotetext{
\({ }^{4}\)) Chapter "7.7.1 Testing the current protective functions" on page 7-11
}

Two parameter sets can be configured for both protective functions.

The diagram below shows the directional definition for the directional earth fault protection (GFP) for earthed networks.

Forward direction
Figure 156: Vector diagrams of the directional earth fault protection
(earthed networks \((\cos \varphi)\))
When measuring the reactive power \((\sin \varphi)\), the forward direction of the functions is defined in an angular range of \(0^{\circ}\) over \(90^{\circ}\) between neutral current \(3 \cdot I_{0}\) and neutral voltage \(3 \cdot \mathrm{U}_{0}\). The neutral voltage \(3 \cdot \mathrm{U}_{0}\) is also the reference quantity. The connection of the REF542 to the transducers or sensors is very important here. The following diagram clarifies the directional definition.

Figure 157: Vector diagrams of the directional earth fault protection (isolated networks \((\sin \varphi)\))

0

Figure 158: Function block Eartfault directional high

\section*{Connections:}

BA input: A logical 1 signal at this input blocks the autoreclosure (AWE).
BI input: If there is a logical 1 at this input, the protective function trip signal will be suppressed. The functions on the tripping side will still be displayed.

St output: A logical 1 signal can be tapped here so long as the protective function is started.

BO output: If the protective function detects an activation in the opposite direction to the set tripping direction, a logical 1 signal will be output.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

AR output: A logical 1 signal appears at this output when an autoreclosure attempt is active and running.

\section*{Configuration}

Figure 159: Configuration dialog function block earth fault directional high
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.05 \ldots 40.00\) (increment: 0.01)
Default: 0.10
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded and the tripping direction conforms to the parameter setting.
Setting range: [20 ms \(\left.+\mathrm{t}_{\text {relay }}\right] \ldots 300000 \mathrm{~ms}\) (increment: 10)
Default: [200 + \(\mathrm{t}_{\text {relay }}\)]
Option field direction (once per parameter set/setting): The direction in which the protective function should trip is marked here. The angular definition between voltage and current and the connection of the REF542 are important here.
Setting range: Forward, backward
Default: backwards
\(\stackrel{y}{\wedge}\) Chapter "7.7.1 Testing the current protective functions" on page 7-11
Option field nettype: Specifies how the network neutral point is treated and what zero-power proportion (effective or reactive power) the function draw on to determine the direction.
Setting range: isolated \((\sin \varphi)\), earthed \((\cos \varphi)\)
Default: isolated \((\sin \varphi)\)
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.

Input field output channel: Input of the number of the binary output for the direct output signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of direct tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0

Information field pins : List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button autoreclosure: The configuration dialog for setting parameters for the autoreclosure is opened.
\({ }^{\wedge}\)) Chapter "5.5.1 Autoreclosure" on page 5-209
Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\(\stackrel{ }{ } \stackrel{ }{ }\) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{4}\)) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.8.11 Earthfault directional low}

Figure 160: Function block earthfault directional low
\({ }^{4}>\) Chapter " Function of the directional earthfault current timer functions" on page 5-116

\section*{Connections:}

BI Input: If there is a logical 1 at this input, the protective function trip signal will be suppressed. The functions on the tripping side will still be displayed.

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

BO output: If the protective function detects an activation in the opposite direction to the set tripping direction, a logical 1 signal will be output.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Configuration}

Figure 161: Configuration dialog function block earthfault directional low
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.05 \ldots 40.00\) (increment: 0.01)
Default: 0.10
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded and the tripping direction conforms to the parameter setting.
Setting range: [20 ms \(\left.+t_{\text {relay }}\right] \ldots 300000 \mathrm{~ms}\) (increment: 10)
Default: [200 + trelay]

Option field direction (once per parameter set/setting): The direction in which the protective function should trip is marked here. The angular definition between voltage and current and the connection of the REF542 are important here.
Setting range: Forward, backward
Default: backwards
\(\left.{ }^{\mu}\right)\) Chapter "7.7.1 Testing the current protective functions" on page 7-11
Option field nettype: Specifies how the network neutral point is treated and what zero-power proportion (effective or reactive power) the function draws on to determine the direction.
Setting range: isolated \((\sin \varphi)\), earthed \((\cos \varphi)\)
Default: isolated \((\sin \varphi)\)
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.
Input field output channel: Input of the number of the binary output for the direct output signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of direct tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Information field pins : List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.
Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\(\left.{ }^{4}\right)\) Chapter "5.3.2 Global Settings" on page 5-2
\(\stackrel{y}{4} \boldsymbol{y}\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.8.12 Earthfault IDMT}

Figure 162: Function block earthfault IDMT

\section*{Function}

The deopendent earth fault current timer protection, like the IDMT, is a time-delay function with a set of hyperbolic current-time characteristics. A earthfault IDMT function in which four current-time characteristics, may be selected, can be activated in the REF542:
- Normal inverse,
- Very inverse,
- extremely inverse and
- long-term inverse.

Two parameter sets can be configured for the dependent earth fault stage.
The function is single-phase configured. This gives the option of calculating the earth fault current from the sum of the three phase currents. This can be done in networks with low-resistance neutral earthing in which large zero-sequence currents occur with no other settings.

The second option is to connect the earth fault current measuring input to a separate residual current transformer. This option should be used in networks with high-resistance, compensated or isolated neutral point. Very small earth-fault currents occur here. A separate residual current transformer in the primary circuit for this purpose. This can be implemented very easily with cable feeders as a converted transformer.

\section*{\({ }^{4}\)) Chapter "11.8 Network neutral point earthing" on page 11-35}

If the fault current factor is exceeded by 1.14 the activation occurs first. If the response time is exceeded for at least the time setting, it will be tripped. The time delay depends here on the current quantity and the selected current-time characteristic. The formula for the trip time according to British Standard (BS) 142 and IEC 60255-3 is as follows:
\(t=\frac{k \cdot \beta}{\pi / I_{E B}{ }^{\alpha}-1} \quad t=\frac{k}{\left(\left(G / G_{S}\right)^{\alpha-1}\right)}\)
BS 142
IEC 60266-3
\(\mathrm{t}: \quad\) Time until the protective function trips under sustained overcurrent
\(\mathrm{k}: \quad \quad\) Curve parameter \((0 \leq \mathrm{k} \leq 1)\) (BS 142) or time value (IEC 60255-3)
\(\alpha: \quad \quad\) Constant according to the list below
\(\beta: \quad\) Constant according to the list below (BS 142)
I/IEB: Fault current factor
\(\mathrm{I}=\mathrm{G}: \quad\) Actual measured current; already transformed by the transducer/sensor
\(\mathrm{I}_{\mathrm{EB}}=\mathrm{G}_{\mathrm{S}}\) : Base current setting value: Minimum current at which the protection is activated; already transformed by the transducer/sensor

The following table shows the two constants \(\alpha\) and \(\beta\) of the four different current-time characteristics. To retain the specific families of curves, the formula in accordance with BS 142 is used and the k-factor of 0.1 to 1 is increased in increments of 0.1
\begin{tabular}{llll}
\hline Current-time characteristic & \(\alpha\) & \(\beta\) (BS142) & k (IEC 60255-3) \\
\hline normal inverse & 0.02 & 0.14 & 0.14 \\
very inverse & 1.0 & 13.5 & 13.5 \\
extremely inverse & 2.0 & 80.0 & 80.0 \\
long time inverse & 1.0 & 120.0 & 120.0 \\
\hline
\end{tabular}

Note The relay period must also be added to the trip times determined from the cur-rent-time characteristics. (Binary input/output board with transistor relays: 15 ms , and with conventional relays: 30 ms)
\({ }^{4}\) Chapter "11.5 IDMT protection and earthfault IDMT protection families of curves" on page 11-20

\section*{Connections:}

BS input: If a logical 1 acts on this input, the protective function trip signal will be suppressed. However, the functions on the tripping side will still be displayed.

Start output: In the residual current an activation occurs and is documented at this output with a logical 1 signal so long as the residual current function remains active.

TRIP output: An activation criterion together with expiry of the set time delay has resulted in a tripping and generated a logical 1 signal here so long as the tripping criterion is present. This signal is used to control the power circuit-breaker OFF command.

\section*{Configuration}

Figure 163: Configuration dialog function block earthfault IDMT
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Option field IDMT type: The desired current-time characteristic for tripping is marked here.
Setting range: normal inverse, very inverse, extremely inverse, long-term inverse Default: normal inverse
\({ }^{4}\) Chapter "11.5 IDMT protection and earthfault IDMT protection families of curves" on page 11-20

Input field I / In (once per parameter set/setting): Input of the fault current factor (=I/ \(\left.\mathrm{I}_{\mathrm{EB}}\right)\). After reaching 1.14 times the value the protective function is activated.
Setting range: \(0.05 \ldots 40.00\) (increment: 0.01)
Default: 0.1
\({ }^{\wedge}>\) Chapter "11.5 IDMT protection and earthfault IDMT protection families of curves" on page 11-20

Input field \(k\) (once per parameter set/setting):Yields the multiplication factor according to the BS 142 formula. One of the curves from the family of curves is selected with it. Setting range: \(0.05 \ldots 1.00\) (increment: 0.01)
Default: 0.05
Input field output channel: Input of the number of the binary output for the direct output signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of direct tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.

Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.
Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{\mu}\))Chapter "5.3.2 Global Settings" on page 5-2
\({ }_{4} \Rightarrow\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.9 Voltage supervision}

The following subsections describe the function blocks that are available with the menu Drawing Menu/Insert/Voltage Protection.

\section*{Application of the independent overvoltage timer protective functions}

If the generator or transformer voltage control fails, the downstream station components and users will be exposed to excess voltage from which they will have to be protected by trips.

In the case of long open-circuit overhead line and cable segments, excessive voltages caused by their capacitive load power may occur at the end of the lines. Overvoltage protective functions that monitor the station components and users are used to trip these overvoltages caused by operational conditions.

\section*{Application of the independent undervoltage timer protective functions}

As the result of a fault occurring in equipment, the voltage to the faulty object drops along the transmission components. This effect also occurs if the power supply is not readjusted in the event of increased user load. The voltage drop to the fault site can be used as a criterion for shutting off the fault by a undervoltage protective function. The undervoltage function is also used as a backup protective function for generators, transformers, carriers and cables.

In three-phase asynchronous motors a voltage drop causes an increase in the load current, because the motor attempts to drive the connected load machine at a constant speed. This causes an overload current that heats the motor. For this reason the voltage should not remain low for too long, otherwise the motor may overheat. It makes sense to use an undervoltage protective function to monitor the motor operation.

\section*{Application of the residual overvoltage protective function}

In the event of a earth fault, the neutral point to earth voltage occurs in the neutral system of the symmetrical components. If a earth fault occurs, this asymmetry will affect the compensated and isolated network so the zero-sequence voltage is very high and may increase to a maximum of three times the value of the phase voltage. This effect enables a earth fault in isolated, compensated and high-resistance earthed networks to be measured relatively easily by the high zero-sequence voltage at every point of the network. This enables relatively easy earth fault detection by measuring this zero sequence or residual voltage.

Measuring the residual voltage is therefore generally used only for reporting purposes or as backup protection for the earthing equipment, such as resistors and earth fault compensator coils.

\subsection*{5.4.9.1 Overvoltage instantaneous}

Figure 164: Function block overvoltage instantaneous

\section*{Function of the overvoltage timer protective function}

There are three overvoltage timer protective functions in the REF542, which can be activated and the parameters set independent of one another:
- Overvoltage low,
- Overvoltage high and
- Overvoltage instantaneous.

Every overvoltage timer protective function can be one, two or three-phase configured. All overvoltage timer protective functions evaluate the rms values, the overvoltage instantaneous function and also \(1 / \sqrt{ } 2\) times the peak value of the external phase-to-neutral voltages. If the response time is exceeded, it is first activated. If the response time is exceeded for at least the time set in the parameters, it will be tripped.
The overvoltage protective functions, like the overcurrent protective function, are used in a graded fashion in the response time and in the trip time. An example of grading is shown in the following diagram.

Figure 165: Overvoltage response grading.
Two parameter sets can be configured for each of the three overvoltage time protective functions.

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Configuration}

Figure 166: Configuration dialog function block overvoltage instantaneous
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.10 \ldots 3.00\) (increment: 0.01)
Default: 0.50
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [50 ms + trelay] ... 300000 ms (increment: 10)
Default: [\(50 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)]
Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping.
The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors are connected and to whose values the protective function should react.

Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
Ⓒhapter "5.3.2 Global Settings" on page 5-2
\(\stackrel{ }{ } \stackrel{ }{ })\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.9.2 Overvoltage high}

Figure 167: Function block overvoltage high
\({ }^{\mu} \downarrow\) Chapter " Function of the overvoltage timer protective function" on page 5-126

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Configuration}

Figure 168: Configuration dialog function block overvoltage high
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.10 \ldots 3.00\) (increment: 0.01)
Default: 0.50
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [\(50 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)] ... 300000 ms (increment: 10)
Default: [50 ms + trelay]
Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0

Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors are connected and to whose values the protective function should react.

Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{\mu}\), Chapter "5.3.2 Global Settings" on page 5-2
* \({ }^{4}\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.9.3 Overvoltage low}

Figure 169: Function block overvoltage low
\({ }^{4}\) ¢ Chapter " Function of the overvoltage timer protective function" on page 5-126

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Configuration}

Figure 170: Configuration dialog function block overvoltage low protection
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.10 \ldots 3.00\) (increment: 0.01)
Default: 0.50
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [50 ms + trelay] ... 300000 ms (increment: 10)
Default: [50 ms + trelay]
Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0

Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors are connected and to whose values the protective function should react.

Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{\mu}\), Chapter "5.3.2 Global Settings" on page 5-2
* \({ }^{4}\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.9.4 Undervoltage instantaneous}

Figure 171: Function block undervoltage instantaneous

\section*{Function of the undervoltage timer protective functions}

There are three undervoltage timer protective functions in the REF542, which can be activated and parameters set independently of one another:
- Undervoltage low,
- Undervoltage high and
- Undervoltage instantaneous.

Every undervoltage timer protective function can be one, two or three-phase configured. All undervoltage timer protective functions evaluate the rms values, the undervoltage instantaneous function and also \(1 / \sqrt{ } 2\) times the peak value of the external phase-to-neutral voltages.

If it falls below the set response time, the activation occurs first. If it falls below the response time for at least the time set in the parameters, it will be tripped.

The undervoltage protective functions are used in a graded fashion in the response time and in the trip time. An example of staging is shown in the following diagram.

Figure 172: Undervoltage protection response stages
Because a feeder has no voltage when switched off, an undervoltage timer protective function would remain activated. It would not be possible to switch the feeder on again. Therefore, the relevant configuration dialog provides the option of deactivating the undervoltage function if the monitored voltage is in the range of 0 to \(40 \%\) of the response time. The diagram below shows how this functions.

\(0.4 \cdot U_{\text {Start }} \underbrace{}_{\substack{U_{\text {Start }}}}\)

Figure 173: \(\quad\) Configuration of the undervoltage limit \(=0\)

If the voltage level of \(40 \%\) of the response time is too high, the undervoltage function can also be blocked via the circuit-breaker auxiliary contact. Then the entire duration for which the feeder was switched off will be shown on the tripping side. After the cir-cuit-breaker blocking is deactivated by the circuit-breaker auxiliary contact, activation of the undervoltage function must be delayed. Otherwise it would trip immediately, because its own time delay has long expired during the blocking process.

Two parameter sets can be configured for each of the three undervoltage time protective functions.

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Configuration}

Figure 174: Configuration dialog function block undervoltage instantaneous
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Option field lowest voltage \(=0\) used: If this is marked, the voltage range from 0 to \(40 \%\) of the start value will be taken into account.
\({ }^{\wedge}\)) Figure 173: „Configuration of the undervoltage limit = 0"
Input field startvalue (once per parameter set/setting): Input of the multiplier for \(I_{N}\) to specify the response time of the protective function.
Setting range: \(0.10 \ldots 1.20\) (increment: 0.01)
Default: 0.50
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [50 ms + trelay] ... 300000 ms (increment: 10)
Default: [\(50 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)]

Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors are connected and to whose values the protective function should react.
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{5}\)) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{4}\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.9.5 Undervoltage high}

Figure 175: Function block undervoltage high
(4)Chapter "Function of the undervoltage timer protective functions" on page 5-132

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.
SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Configuration}

Figure 176: Configuration dialog function block undervoltage high
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Option field lowest voltage \(=0\) used: If this is marked, the voltage range from 0 to \(40 \%\) of the start value will be taken into account.
\({ }^{n}\))Figure 173: „Configuration of the undervoltage limit = 0"
Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.10 \ldots 1.20\) (increment: 0.01)
Default: 0.50
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [50 ms + trelay] ... 300000 ms (increment: 10)
Default: [50 ms + trelay]

Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors are connected and to whose values the protective function should react.
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4}\)) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{4}\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.9.6 Undervoltage low}

Figure 177: Function block undervoltage low protection
\({ }^{4}\)) Chapter "Function of the undervoltage timer protective functions" on page 5-132

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Configuration}

Figure 178: Configuration dialog function block undervoltage low protection
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Option field lowest voltage \(=0\) used: If this is marked, the voltage range from 0 to \(40 \%\) of the start value will be taken into account.
\(\left.{ }^{(}\right)\)Figure 173: „Configuration of the undervoltage limit \(=0\) "
Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.10 \ldots 1.20\) (increment: 0.01)
Default: 0.50
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [\(50 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)] ... 300000 ms (increment: 10)
Default: [\(50 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)]

Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors are connected and to whose values the protective function should react.
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4}\)) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{4}\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.9.7 Residual overvoltage high}

Figure 179: Function block residual overvoltage high

\section*{Function of the residual (zero sequence) voltage protective functions}

There are two residual voltage protective functions in the REF542, which can be activated and parameters set independently of one another:
- Residual overvoltage low and
- Residual overvoltage high

Both functions use the rms value of the residual voltage, which is fed to them over an external neutral to earth voltage transformer (sensor). As an alternative they use the sum of the measured phase voltages.
\(\stackrel{H}{4}\) Chapter "11.8 Network neutral point earthing" on page 11-35
As soon as the response time is exceeded, the protective function is activated. If the response time is exceeded for at least the set time delay, the protective function will be tripped.

Two parameter sets can be configured for each of the two residual voltage protective functions.

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Configuration}

Figure 180: Configuration dialog function block residual overvoltage high

Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{U}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.05 \ldots 3\) (increment: 0.01)
Default: 0.50
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [20 ms + trelay] ... 300000 ms (increment: 10)
Default: [\(50 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)]
Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors are connected and to whose values the protective function should react.

Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.
Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4}\) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{\mu}\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.9.8 Residual overvoltage low}

Figure 181: Function block residual overvoltage low
\({ }^{〔} \downarrow\) Chapter "Function of the residual (zero sequence) voltage protective functions" on page 5-139

\section*{Connections}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Configuration}

Figure 182: Configuration dialog function block residual overvoltage low
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to specify the response time of the protective function.
Setting range: \(0.05 \ldots 3\) (increment: 0.01)
Default: 0.50
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [20 ms + trelay] ... 300000 ms (increment: 10)
Default: [50 ms + trelay]

Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors are connected and to whose values the protective function should react.
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4}\)) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{4}\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.10 Motor Protection}

The subsections contain the descriptions of the function blocks that are available via the menu Drawing Menu/Insert/Motor Protection.

Damage caused by defects in electrical drives risks not only complex repair work but also, and most important, loss of production.

To reduce the effects of faults to the minimum possible, overload and insulation defects must be detected promptly. For this reason, protection equipment, particularly for highvoltage motors, comes in the form of numerical protection devices - such as the REF542. This enables them to be closely adapted to the machine characteristics and they are also space-saving solutions.

In the case of AC motors, the following dangerous operating conditions may result in a fault:
- Mechanical overload
- Continuous overload
- Heavy starting
- Blocked rotor
- Irregularities in the power-supply network
- Phase asymmetry
- Overvoltage and undervoltage
- Faults in the electrical feeds and switchgear
- Phase breaks
- Failure of switchgear
- Insulation faults
- Internal motor faults
- Phase and earth faults
- Phase breaks in stator and rotor circuits

The protective functions described in the following subsections are provided for protection from the above overloads and faults.

Please also note the examples for setup of the various motor protective functions. Setting parameters on the basis of typical motor data is explained there.
(4) Chapter "11.9 Setup example for motor protection" on page 11-43

\subsection*{5.4.10.1 Thermal overload protection}

Figure 183: Function block thermal overload protection

\section*{Function}

The thermal overload protection in the REF542 operates with the thermal replica of the object that is being protected. The function block can operate with one, two or threephase current measured values. In addition, three time constants are used as follows:
- For invalid operating status (overload status),
- For faults or starting process
- For the cooling phase

The response times of the temperature for warning and tripping can be configured and if necessary a corresponding output signal will be sent. The ambient temperature is also taken into account in the thermal replica. The thermal replica of the object to be protected corresponds to an exponential curve of the thermal total time constant. The exponential change here is proportional to the square of the quotients of overload and rated operating current, corresponding to the thermal power dissipation on the motor. The time delay of the protective function is therefore dependent on the magnitude of the overload current. The time required for the warm-up phase can be calculated with the following formula:
\(\frac{\Delta \vartheta(t)}{\Delta \vartheta_{N}}=\frac{\vartheta(t)-\vartheta_{U}}{\vartheta_{N}-\vartheta_{U}}=\left(\begin{array}{l}\vartheta_{0}-\vartheta_{U} \\ \vartheta_{N}-\vartheta_{U}\end{array} e^{-\frac{t}{\tau}}\right)+\left[\left(\frac{1}{t_{M N}}\right)^{2} \cdot\left(1-e^{-\frac{t}{\tau}}\right)\right]\)
Therefore, for time \(t\) of the warm-up phase:
\(t=\tau \cdot \ln \left[\begin{array}{c}\binom{I}{t_{M N}}^{2}-\vartheta_{O}-\vartheta_{U} \\ \vartheta_{N}-\vartheta_{U} \\ \binom{I}{t_{M N}}^{2}-\begin{array}{l}v_{N}(t)-\vartheta_{U} \\ \vartheta_{N}-\vartheta_{U}\end{array}\end{array}\right]\)
The time required for the cooling phase can be calculated with the following formula:
\(\vartheta(t)=\vartheta_{U}+\left(\vartheta_{A B}-\vartheta_{U}\right) \cdot e^{-t}\)
Therefore, for time \(t\) of the cooling process:
\(t=\tau \cdot \ln \left[\begin{array}{l}\vartheta_{A B}-\vartheta_{U} \\ \vartheta(t)-\vartheta_{U}\end{array}\right]\)
The variables are defined as follows in all equations:
\(\Delta \vartheta(\mathrm{t})\) : Temperature difference to ambient temperature
\(\Delta \vartheta \mathrm{N}\) : Rated excess temperature
\(\vartheta(\mathrm{t})\) : Current temperature
\(\vartheta_{U}\) : Ambient temperature
\(\vartheta_{0}\) : Start temperature
\(\vartheta_{\mathrm{N}}\) : Rated operating temperature of motor
\(\vartheta_{\mathrm{AB}}\) : Start temperature of the cooling process
\(\mathrm{I}: \quad\) Current flowing motor current
\(\mathrm{I}_{\mathrm{MN}}\) : Rated motor current
\(\tau\) : Thermal total time constant of motor

The REF542 overload protective function operates in two stages to generate an alarm signal when the warning temperature is reached and a trip signal when the trip temperature is reached. In the REF542 the trip signal can also be delayed by an adjustable period. The thermal total time constant can be set separately for three current ranges in the REF542:
- The 1 st range is in the rated motor current range \(0.10 \cdot I_{\mathrm{MN}}<\mathrm{I}<2,00 \cdot I_{\mathrm{MN}}\) (time constant TC normal active)
- The 2nd range applies for the motor starting current range I \(>2.00 \cdot I_{M N}\) or in the event of a fault (time constant TC fault active)
- The 3rd range is for the cooling period

I \(<0.10 \cdot \mathrm{I}_{\mathrm{MN}}\) (time constant TC off active)
The 2nd range is designed for the star characteristics of rotor-critical motors. In this range the temperature time constant is dependent on the instantaneous current.

The current temperature at any time is saved in the REF542 until the set start temperature is reached during the cooling process. If a trip is caused by the thermal overload protective function, it remains activated until the warning temperature falls below the set value. A starting block can be implemented in the REF542 function chart (FUPLA) with the warning temperature signaling output.

Note If the auxiliary voltage fails, the current temperature value will be deleted. Once the bay control and protection unit has been restarted, the start temperature value parameter (T ini) will be applied. This value is also used after the standard device starting process.

Figure 184: Function block thermal overload protection

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

WARN output: A logical 1 signal can be tapped here so long as the warning temperature is exceeded.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Typical application}

Electrical equipment is subject to the following states during its life:
- Normal operation,
- Overload and
- Malfunction.

The overload status represents a transition between standard operation and malfunction. The thermal overload protective function is used to monitor the overload range. It can be used for all equipment, but is most frequently used with generators, transformers, chokes and three-phase asynchronous motors.

\section*{Configuration}

Figure 185: Configuration dialog function block thermal overload protection
\(\left.{ }^{4}\right)\) Chapter "11.9 Setup example for motor protection" on page 11-43
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field T nom: Input of the operating temperature in \({ }^{\circ} \mathrm{C}\) of the equipment to be protected.
Setting range: \(50 \ldots 400^{\circ} \mathrm{C}\) (increment: 1)
Default: \(100^{\circ} \mathrm{C}\)
Input field I nom: Input of the rated current of the equipment to be protected.
Setting range: \(1 \ldots 10000 \mathrm{~A}\) (increment: 1)
Default: 10 A
Input field ini. Temp.: Input of the start temperature as a percentage of the operating temperature of the equipment to be protected.
Setting range: \(50 \ldots 120 \%\). T nom (increment: 1)
Default: 50\%
Input field Time const. I < 0.1 Ie: Input of the cooling time constant of the equipment to be protected. It is active if the current \(\mathrm{I}<0.10 \cdot\) I nom.
Setting range: 10 ... 20000 s (increment: 1)
Default: 500 s
Input field Time const. normal: Input of the standard operating time constant of the equipment to be protected.
It is active if the current is in the range 0.10 to 2.00 . I nom.
Setting range: \(10 \ldots 20000 \mathrm{~s}\) (increment: 1 s)
Default: 500 s?
Input field Time const. I > 2 Ie : Input of the time constant for starting or malfunction. It is active if the current is \(\mathrm{I}>2.00 \cdot \mathrm{I}\) nom.
Setting range: \(10 \ldots 20000 \mathrm{~s}\) (increment: 1)
Default: 500 s
Input field max . temp. : Input of the trip threshold. If it is exceeded for at least the set delay period, a trip signal will be generated (Start).
Setting range: \(20 \ldots 400^{\circ} \mathrm{C}\) (increment: 1)
Default: \(100^{\circ} \mathrm{C}\)

Input field warn temp.: Input of the threshold for the warning event. If the threshold is exceeded, a logical 1 can be tapped at the WARN output.
Setting range: \(20 \ldots 400^{\circ} \mathrm{C}\) (increment: 1)
Default: \(100^{\circ} \mathrm{C}\)
Input field enviro. temp. : Input of the typical ambient temperature.
Setting range: \(20 \ldots \mathrm{~T}\) nom \(\cdot \mathrm{T}\) ini (increment: 1)
Default: 20
Input field op. time: Delay period in ms after which the protective function trips if the trip threshold T max remains exceeded.
Setting range: \(1 \ldots 1000 \mathrm{~s}\) (increment: 1)
Default: 1 s ?
Input field node sequence number: Shows the node number at which the function is registered in the LON process bus interface.

Input field sensor nr into node: Selects the sensor input to whose value the protective function is to react on the registered node in the LON process bus interface.
Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{\mu}\))Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{4}\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.10.2 Motor start}

Figure 186: Function block motor start

\section*{Function}

The three-phase asynchronous motor can be overloaded if the star duration or current increase. The motor star behavior depends on the switching torque of the specific load machine.

In general, these overloads are more critical for the rotor (rotor-critical motor) than for the stator. The manufacturer assigns an allowable current-time star integral I \({ }^{2}\).T for motors. As an alternative, information on the maximum allowable star current and the maximum allowable star time is provided.

The current-time star integral is proportional to the short-term thermal load on the motor. It is calculated by the integration of the current path \(i(t)\) in the time interval from 0 to \(\mathrm{T}_{\text {star }}\) :
\[
I^{2} \cdot T=\int_{0}^{T_{\text {MStart }}} i(t)^{2} d t
\]

In a simplified form the following applies:
\begin{tabular}{ll}
\(I^{2} \cdot T=I_{\text {MStart }}^{2} \cdot\) & \(T_{\text {MStart }}\) \\
\(\mathrm{I}:\) & Current rms value \\
\(\mathrm{T}:\) & Duration \\
\(\mathrm{i}(\mathrm{t}):\) & Temporal current path \\
\(\mathrm{I}_{\text {MStart: }}:\) & Motor star current rms value \\
\(\mathrm{T}_{\text {MStart }}:\) & Motor star time
\end{tabular}

The starting protective function in the REF542 monitors the motor star behavior with the values described. The current-time-starting integral is measured if the set starting current value \(I_{\text {starting }}\) is exceeded within the first 100 ms while the motor is starting and it is tripped, if the current-time integration exceeds the default \(\mathrm{I}^{2} . \mathrm{T}\) value.
A starting is registered when a step change increases from \(\mathrm{I}<0.10 \cdot \mathrm{I}_{\mathrm{n}, \mathrm{M}}\) (= rated motor current) to \(\mathrm{I}>\mathrm{I}_{\text {starting }}\) within 100 ms . The starting start signal is reset if I is \(<\mathrm{I}_{\text {starting. }}\). If the motor current falls below \(0.10 \cdot I_{n, M}\), the motor will shut down. The corresponding thermal total cooling time constant will be activated. The starting supervision can then react to the next motor start.
The starting supervision protective function totals the current-time-starting integrals of the three conductors, divides them by three and compares them to the product \(I^{2}\) MStart \(\cdot T_{\text {MStart }}\). The setting values start value and time of the active parameter set are used for this product.

The following diagram shows a graph of the function, with the time \(t\) standardized to \(\mathrm{T}_{\text {Start }}\) and the current I to \(I_{\text {Start }}\).
t/TStart

I/IStart

Figure 187: Standardized current-time characteristic of the starting supervision
The starting supervision function block has two output signals that can be used for control and blocking in the FUPLA. The protective function is activated (Start) if a motor start has been detected and the response time has been exceeded. If the response time is exceeded for at least the time set in the parameters, it will be tripped (Trip). Functions available in the event of a malfunction in the motor standard operating status can be blocked during the motor starting procedure with the starting output signal.

However, because blocked functions expire with the set time delays, they would trip immediately after the blocking signal stops if the activation criterion were still present. Therefore a delayed reset timing circuit (slope delay falling) should be installed downstream from the blocking signal. This will delay the blocking for the time range during which the motor current falls back from the starting response value \(I_{\text {starting }}\) to the rated motor current \(\mathrm{I}_{\mathrm{n}, \mathrm{M}}\). A setting of \(1 \%\) of the starting time of the motor is recommended as the reset delay time.

The cold and warm start are counted with the starting output signal (START) and they also have to be configured in the FUPLA.

Two parameter sets can be configured for the starting supervision function.

\section*{Typical application}

For example, starting supervision is used with three-phase asynchronous motors, because their starting characteristics have a special character in the current behavior. The starting current from the motor start phase to the rated speed is several times the rated current.

Figure 188: Function block motor start

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

BO output: A logical 1 signal can be tapped here so long as the motor starts correctly.
Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

Configuration

Figure 189: Configuration dialog function block motor start
\(\stackrel{4}{4}\) Chapter "11.9 Setup example for motor protection" on page 11-43
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field motor current \(I e\) : Input of the multiplier for \(I_{n}\) to specify the motor current \(\mathrm{I}_{\mathrm{e}}\).
Setting range: \(0.30 \ldots 1.20\) (increment: 0.01)
Default: 1.00
Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0

Input field start value Is (once per parameter set/setting): Input of the multiplier for le to specify the response time of the protective function. The upper limit of the setting range is set dynamically by the configuration program in accordance with the formula below.
Setting range: 1,0 \(\ldots\) [20 \(1 / \mathrm{I}_{\mathrm{e}}\)] (increment: 0.01)
Default: 1.00
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: [50 ms + trelay] ... 300000 ms (increment: 10)
Default: [10 000 + \(\mathrm{t}_{\text {relay }}\)]
Input field motor start (once per parameter set/setting): Input of the multiplier for le to specify the motor starting current from which the starting supervision protective function will be activated.
Setting range: \(1.0 \ldots\) 20.00(increment: 0.01)
Default: 1.00
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.

Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.
Button ok: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4}\), Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{4}\)) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.10.3 Blocking rotor}

Figure 190: Function block blocking rotor

\section*{Function}

The blocking rotor protective function on the BS input is blocked via a tachometer generator or a speed switch, which send a defined signal at a specified speed. If the rotor of the monitored motor is blocked, the missing speed signal will ensure that the overcurrent function integrated in the protective function will continue to remain active. If the set response time (start value) is exceeded, it will initially be activated. If the response time is exceeded for at least the delay period (Trip) set in the parameters, it will be tripped.

The protective function can also be used like this without a speed signal. However, in this case the trip threshold and the delay period must be selected so a standard starting procedure will not be deactivated. The advantage of the fast tripping is only available with the speed signal. The trip signal can then be sent after a shorter time than the set motor starting time if the speed signal is not received.

Note The signal of a tachometer generator or a rpm gauge should be available in the FUPLA for the blocking rotor protective function.

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page. This input is assigned by the speed indicator signal.

SL1, SL2, SL3 outputs: A logical 1 signal can be tapped here so long as the protective function is started through the L1, L2 or L3 conductors.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Typical application}

This protective function is used to monitor the starting characteristics of three-phase asynchronous motors to check whether the rotor braking is on and that is causing the motor to speed up. If this malfunction occurs, the starting current would flow permanently and the motor would be thermally overloaded.

\section*{Configuration}

Figure 191: Configuration dialog function block blocking rotor
\({ }^{\Perp}\)) Chapter "11.9 Setup example for motor protection" on page 11-43
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field motor current \(I e\) : Input of the multiplier for \(I_{n}\) to specify the motor current \(\mathrm{I}_{\mathrm{e}}\).
Setting range: \(0.30 \ldots 1.20\) (increment: 0.01)
Default: 1.00
Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Input field start value Is (once per parameter set/setting): Input of the multiplier for le to specify the response time of the protective function. The upper limit of the setting range is set dynamically by the configuration program in accordance with the formula below.
Setting range: \(1.0 \ldots\left[20 \cdot 1 / \mathrm{I}_{\mathrm{e}}\right]\) (increment: 0.01)
Default: 1.00
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded.
Setting range: \(50 \mathrm{~ms} . . .300000 \mathrm{~ms}\) (increment: 10)
Default: 10000
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.

Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{\mu}\) Chapter "5.3.2 Global Settings" on page 5-2
\(\left.{ }^{4}\right)\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.10.4 Number of starts}

Figure 192: Function block number of starts

\section*{Function}

The REF542 has an additional motor protective function that monitors the number of motor starts. It distinguishes between cold starts and warm starts, the allowable number of which is generally provided by the motor manufacturer. If this is not the case, in accordance with IEC 60034 and IEC 60050 three cold and two warm starts are recommended. The starting signal (Start output) of the starting supervision protective function is used to count the starts. This must be set and configured in the FUPLA.

The REF542 temperature calculation specifies whether a start is a cold or warm start. A temperature from which starts are classified as warm starts can be set. If the calculated temperature is below this value, a cold start will be assumed.

A reset period is also set. This has two tasks:
- If the start is successful only after several allowable attempts, the counted number of starts will be reset to one after expiry of the reset period (cooling period).
- If the set number of starts has been reached, the protective function will be activated and a logical 1 can be tapped at the WARN output. If there is another start, the protective function will trip. The trip signal (TRIP output) remains in effect until the reset period has expired. A starting block can be implemented in the FUPLA with this warning signal.
The manufacturer's information on the thermal cooling period is taken into account for the reset period.

Two parameter sets can be configured for the number of starts function.

\section*{Connections:}

BI input: A logical 1 at this input will suppress the protective function trip signal. The function on the tripping side will still be displayed.
BI input: A logical 1 signal at this input increases the number of cold or warm starts (depending on the evaluation) by one. The input reacts to the rising slope.

WARN output: A logical 1 signal can be tapped here so long as the protective function is activated.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Typical application}

Supervision the number of starts of three-phase asynchronous motors, because in most cases when the motor starts the rotor reaches a critical temperature.

\section*{Configuration}

Figure 193: Configuration dialog function block number of starts
\(\stackrel{\mu}{\wedge}\) Chapter "11.9 Setup example for motor protection" on page 11-43
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field No. of warm starts (once per parameter set/setting): The allowable number of warm starts is entered here.
No. setting range: \(1 \ldots 10\) (increment: 1)
Default: 1
Input field No. of cold starts (once per parameter set/setting): The allowable number of cold starts is entered here.
No. setting range: \(1 \ldots 10\) (increment: 1)
Default: 1
Input field time (once per parameter set/setting): Input of the reset period after the expiry of which the number of cold or warm starts is reduced by one.
Setting range: \(1 \ldots 7200\) s (increment: 1)
Default: 30 s
Input field temperature for warm start (once per parameter set/setting): Input of the temperature limit value for distinguishing between a cold or a warm start.
Setting range: \(20 \ldots 400^{\circ} \mathrm{C}\) (increment: 1)
Default: \(100^{\circ} \mathrm{C}\)
Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
«Chapter "5.3.2 Global Settings" on page 5-2
\(\Leftrightarrow\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.11 Distance protection}

Figure 194: Function block distance protection

\section*{Application}

The distance protection is intended to protect meshed medium-voltage networks and simple high-voltage networks. In this case it is irrelevant how the neutral point is treated. The distance protection comprises the following subordinate functions:
- Activation,
- Impedance determination,
- Directional memory and
- Tripping logic.

\section*{Function}

The starting is intended to check for the presence of a malfunction and selectively to detect the type of malfunction. The appropriate measured quantities for determining the impedance and the directional decision are selected depending on the type of malfunction. Once the direction and the zone of the malfunction have been determined, the tripping logic is used to determine the trip time in accordance with the set impedance time characteristic.

The distance protection also includes the autoreclosure function, also referred to below as AWE. This enables short disconnections (SDs or autoreclosure cycles) to be conducted. A maximum of two autoreclosures is possible. It must be noted that after the second autoreclosure the power circuit-breaker will require a longer dead time to be able to restore the complete On-Off cycle.

The underlying signal comparison protective function, with which a very short line unit can also be selectively protected, is also integrated. This requires a pair of pilot wires for signal exchange.

For network operation it is important to localize the fault as soon as possible after malfunction to repair the damage. Because medium-voltage networks are usually spread over wide areas, fault tracking information in km is desirable for network operation after the malfunction has caused a trip. For this reason, the fault locator, which can derive the fault distance from the measured fault impedance, is also implemented in the distance protection. It calculates the distance in km to the fault from the carrier or cable reactance.

Once the malfunction in the network has been deactivated and localized, it may also be of interest to network operation to run a fault analysis from the sequence of disturbance variables and signaling events. The fault recorder function for recording the faulty network variables is provided in the REF542 for this purpose.
\({ }^{4}\)) Chapter "5.4.13 Faultrecorder" on page 5-202
The fault recorder function is started either by an external signal (via a binary input) or by a signal from the distance protection. The general start, general starting or tripping outputs may be used for this purpose.

If the fault recorder is started with the general starting signal，the disturbance variables will be recorded for every fault that occurs in the network where the distance protection is in operated position on the basis of the set activation．However，if the recording should only be done in the event of faults in the protection zone of the distance protec－ tion，the fault recorder should be started with the tripping signal．

In networks with an isolated neutral point or with earth fault compensation，the direc－ tional earth fault supervision function can be added to the distance protection．
\({ }^{〔}\) ）Chapter＂5．4．8．10 Earthfault directional high＂on page 5－116
\({ }^{\text {r }}\) ）Chapter＂5．4．8．11 Earthfault directional low＂on page 5－120
The option of switching the protective function of the distance protection over to the IDMT is also provided．This procedure is generally referred to as emergency definite time and is required if the voltage input variables are not available because of an au－ tomatic device failure．The function chart programming（FUPLA）provided in the confi－ guration program must be used to block the distance protection with the aid of a binary input signal．
\({ }^{〔}\) ）Chapter＂5．4．8．4 Overcurrent instantaneous＂on page 5－102
\({ }^{〔}\) ）Chapter＂5．4．8．5 Overcurrent high＂on page 5－105
\({ }^{\mu}\) ）Chapter＂5．4．8．6 Overcurrent low＂on page 5－107
The FUPLA also aids in implementing any additional logic．This enables project－spe－ cific additional circuits to be implemented with relatively little effort．
\({ }^{4}\) ）Chapter＂4 Configuration Program＂on page 4－1
A fiber optic cable is provided for connection to a station control system．
\({ }^{n}\) ）Chapter＂3．4．7 Interbay bus system＂on page 3－36

\section*{Analog inputs}

Measured quantities proportional to the current or the voltage are required from the di－ stance protection to run the protective function．

The line currents and the phase voltages are always arranged in consecutive groups of three．The following combinations can be configured here：
－Measuring input 1，2，3：
current transformer or sensor in line L1，L2，L3，
－Measuring input \(4,5,6\) ：
voltage transformer or sensor in line L1，L2，L3，
or
－Measuring input 1，2，3：
voltage transformer or sensor in line L1，L2，L3，
－Measuring input 4，5，6：
current transformer or sensor in line L1，L2，L3，
The seventh measuring input is usually intended for acquisition of the current measu－ red quantities for the watt－metric directional earth fault supervision．

\section*{Activation}

The activation in the distance protection is there to detect faults in the network quickly and selectively．The activation must be capable of enabling the distance protection to function properly both in networks with high－resistance earthing and also in networks with low－resistance earthing．Here，high－resistance earthing means that the network is operated with an isolated neutral point or with earth fault compensation．The distance protection must also function properly when the network operation is switched over from earth fault compensation to low－resistance neutral earthing for a short time for the purpose of earth fault tripping．

The activation, with a suitable selection of measured quantities, must be capable of adapting to the variable phase-fault power in the network. During the day the minimum fault current is mostly very much greater than the maximum occurring load current, because of the high available phase-fault power. Over this period one overcurrent starting is sufficient to detect the fault quickly and selectively.

However, at night the phase-fault power can decrease to such an extent that the fault current may be less than the above-mentioned load current. Under these circumstances reliable fault detection is not possible without processing the voltage information.

To ensure fault-free function for the distance protection in all situations, the activation consists of:
- Overcurrent starting l>,
- Earthearth fault current starting \(\mathrm{I}_{\mathrm{E}}>\) or \(\mathrm{I}_{0}>\) and
- Voltage controlled overcurrent starting UF</ IF>

The overcurrent starting \(I>\) is used to monitor for the line currents exceeding the threshold values. The following diagram shows the associated signal processing.

Figure 195: Logic diagram of overcurrent starting
If the overcurrent criterion is exceeded in a conductor, the starting signals Start-R, Start-S and Start-T for the corresponding conductor appear. The Start-E signal is derived from the earth current supervision, which is calculated from the sum of all line currents. Then the General-Start signal is generated with the OR interconnection of all starting signals (optionally also with the Start-E signal). However, it is important to note that the setting for the Start-E starting must be selected to prevent a starting resulting from a earth fault occurring in the network with isolated neutral point or with earth fault compensation.

The voltage-controlled overcurrent starting is formed from the logical interconnection between the footing point current \(\mathrm{I}_{\mathrm{F}}>\) and the footing point voltage \(\mathrm{U}_{\mathrm{F}}<\). The system voltage in this case must be less than the footing point voltage \(U_{F}<\) setting and the associated line current must exceed the footing point current \(\mathrm{I}_{\mathrm{F}}>\).

As shown in the following diagram, the start signals for the two or three-pole malfunction without earth contact are formed from the combinations of two line currents each with the corresponding external phase-to-neutral voltage. Only one start signal is generated if the footing point currents are exceeded in the two conductors and the undervoltage condition of the external phase-to-neutral voltage is met.

Figure 196: Logic diagram of the voltage-controlled overcurrent starting
In the event of faults with earth contact, depending on the neutral treatment only the phase voltages or the line voltages are combined with the earth current. In this case the presence of the earth current is already sufficient to detect the faulty system status. The line currents are then not monitored at all. Finally, the undervoltage condition is used to detect the faulty conductor.
In networks with low-resistance earthing the signal from the earth current is connected to the signals from phase voltages.
In contrast, in networks with high-resistance earthing the signal from the earth current is logically combined with the signals from the external phase-to-neutral voltages. The combination with the external phase-to-neutral voltage enables starting to take place only with a cross-country fault.
The logical interconnections (Boolean algebra) of the signals for forming the corresponding start signals are formulated as below:

For networks with high-resistance earthing:
- Start \(\mathrm{R}=\mathrm{I}_{\mathrm{R}}>/\left\{\left(\mathrm{IF}_{\mathrm{R}}>\wedge \mathrm{IF}_{\mathrm{S}}>\wedge \mathrm{UF}_{\mathrm{RS}^{<}}<\right) \wedge\left(\mathrm{IF}_{\mathrm{T}}>\wedge \mathrm{IF}_{\mathrm{R}}>\wedge \mathrm{UF}_{\mathrm{TR}}<\right)\right\}\)
\(/\left\{\left(\mathrm{IE}>\wedge \mathrm{UF}_{\mathrm{RS}}<\right) \wedge\left(\mathrm{IE}>\wedge \mathrm{UF}_{\mathrm{TR}}<\right)\right\}\)
- Start \(S=\mathrm{I}_{\mathrm{S}}>/\left\{\left(\mathrm{IF}_{\mathrm{S}}>\wedge \mathrm{IF}_{\mathrm{T}}>\wedge \mathrm{UF}_{\mathrm{ST}}<\right) \wedge\left(\mathrm{IF}_{\mathrm{R}}>\wedge \mathrm{IF}_{\mathrm{S}}>\wedge \mathrm{UF}_{\mathrm{RS}}<\right)\right\}\)
\(/\left\{\left(\mathrm{IE}>\wedge \mathrm{UF}_{\mathrm{ST}}<\right) \wedge\left(\mathrm{IE}>\wedge \mathrm{UF}_{\mathrm{RS}}<\right)\right\}\)
- Start \(\mathrm{T}=\quad \mathrm{I}_{\mathrm{T}}>/\left\{\left(\mathrm{IF}_{\mathrm{T}}>\wedge \mathrm{IF}_{\mathrm{R}}>\wedge \mathrm{UF}_{\mathrm{TR}}<\right) \wedge\left(\mathrm{IF}_{\mathrm{S}}>\wedge \mathrm{IF}_{\mathrm{T}}>\wedge \mathrm{UF}_{\mathrm{ST}}<\right)\right\}\)
\(/\left\{\left(\mathrm{IE}>\wedge \mathrm{UF}_{\mathrm{TR}}<\right) \wedge\left(\mathrm{IE}>\wedge \mathrm{UF}_{\mathrm{ST}}<\right)\right\}\)
and for networks with low-resistance earthing:
- Start \(\mathrm{R}=\mathrm{I}_{\mathrm{R}}>/\left\{\left(\mathrm{IF}_{\mathrm{R}}>\wedge \mathrm{IF}_{\mathrm{S}}>\wedge \mathrm{UF}_{\mathrm{RS}}<\right) \wedge\left(\mathrm{IF}_{\mathrm{T}}>\wedge \mathrm{IF}_{\mathrm{R}}>\wedge \mathrm{UF}_{\mathrm{TR}^{<}<}\right)\right\}\)
\(/\left\{\left(\mathrm{IE}_{\mathrm{R}}>\wedge \mathrm{UF}_{\mathrm{RE}}<\right)\right\}\)
- Start \(S=I_{S}>/\left\{\left(\mathrm{IF}_{\mathrm{S}}>\wedge \mathrm{IF}_{\mathrm{T}}>\wedge U \mathrm{~F}_{\mathrm{ST}}<\right) \wedge\left(\mathrm{IF}_{\mathrm{R}}>\wedge \mathrm{IF}_{\mathrm{S}}>\wedge \mathrm{UF}_{\mathrm{RSRS}}<\right)\right\}\) \(/\left\{\left(\mathrm{IE}_{S}>\wedge \mathrm{UF}_{\mathrm{SE}}<\right)\right\}\)
- Start \(\mathrm{T}=\mathrm{I}_{\mathrm{T}}>/\left\{\left(\mathrm{IF}_{\mathrm{T}}>\wedge \mathrm{IF}_{\mathrm{R}}>\wedge \mathrm{UF}_{\mathrm{TR}}<\right) \wedge\left(\mathrm{IF}_{\mathrm{S}}>\wedge \mathrm{IF}_{\mathrm{T}}>\wedge \mathrm{UF}_{\mathrm{ST}}<\right)\right\}\)
\[
/\left\{\left(\mathrm{IE}_{\mathrm{T}}>\wedge \mathrm{UF}_{\mathrm{TE}}<\right)\right\}
\]
/: OR interconnection
\(\wedge\) : AND interconnection

Note In networks with short-term low-resistance earthing the "low-resistance earthing" network type should be selected.

\section*{Conductor preference/Phase selection}

Networks with isolated neutral point or with earth fault compensation, for reasons of supply dependability by the network operation, are required not to shut down a earth fault. However, if the earth fault develops into a cross-country fault, again because of the above-mentioned dependability reasons, only one of the two earth fault footing points may be shut down.

To coordinate the shutdown of the earth fault footing point, a "conductor preference" is programmed into the distance protection. This enables the distance protection to shut down the conductor with the earth fault according to a set sequence. The following conductor preferences can be set:
- Acyclical: L3 before L1 before L2
- Cyclical: L1 before L2 before L3 before L1
- Acyclical: L1 before L3 before L2
- Cyclical: L3 before L2 before L1 before L3

For example, if the acyclical conductor preference L3 before L1 before L2 is set in the distance protection, in the event of a L2-L3-E cross-country fault the earth fault footing point in conductor L3 will be shut down first. The earth fault in conductor L2 will remain active until it is shut down from the system control center after appropriate switchover action in the network.

To ensure correct functioning of the conductor preference, the measured quantities of the phase voltages must be correctly connected (correct phase sequence).

\section*{Determining the impedance}

After the starting has caught the fault and correctly detected it, the impedance is calculated. First, the discrete Fourier transformation (DFT) is used as an aid to calculate the associated real and imaginary components from the digitalized current and volta-ge-proportional measured quantities. The DFT is used here because the measured quantities are mostly superimposed by transient influences or disturbance variables of varying frequency. The DFT allows disturbance variables above the base frequency to be eliminated so effectively that the calculation of the impedance is improved.
The equation for calculating the real and imaginary component of a current variable with DFT is shown as an example:

Real component:
\[
\begin{aligned}
& \operatorname{Re}\{I\}=\frac{2}{n} \sum_{k=0}^{n-1} i_{k} \cdot \cos \left(\frac{k \cdot 2 \pi}{n}\right) \\
& \operatorname{Im}\{I\}=\sum_{n}^{2} \sum_{k=0}^{n-1} i_{k} \cdot \sin \left(\frac{k \cdot 2 \pi}{n}\right)
\end{aligned}
\]

The sampling frequency in the REF542 is 1.2 kHz . The number of sampling values n is 24 at a network frequency of 50 Hz .

After calculating the real and imaginary components, the fault impedance is determined with the following ratio for the two-pole fault without earth contact:
\(\underline{Z}_{L-L}=\frac{\underline{U}_{L-L}}{\underline{-L-L}}\)
\(\underline{Z}_{L-L}\) is the fault impedance to be determined and \(\underline{U}_{L-L}\) or \(\underline{\underline{L}}_{L-L}\) is the associated voltage or current variable. They are each formed from the geometrical difference of the voltage or the currents in the relevant conductors.

The following equation must be used with a fault with earth contact:
\(\underline{z}_{L-E}=\frac{\underline{U}_{L-E}}{\underline{\underline{t}} \underline{L}^{+} \underline{\underline{K}} \cdot \underline{I}_{E}}\)
\(\underline{Z}_{L-E}\) is again the fault impedance to be determined, \(\underline{U}_{L-E}\) or \(\underline{I}_{L}\) is the associated voltage or current variable of the relevant conductor and \(\underline{I}_{E}\) is the earth current resulting from the sum of all line currents.
\(\underline{l}_{E}=\underline{I}_{R}+\underline{I}_{S}+\underline{l}_{T}\)
However, for the final calculation of the impedance, the earth current must first be corrected with the complex earth factor \(\underline{k}\) as follows:
\(\underline{k}=\frac{1}{3} \cdot\left(\begin{array}{l}\underline{\underline{Z}}_{0} \\ \underline{\underline{z}}_{1}\end{array}-1\right)\)
In this case \(\underline{Z}_{0}\) is the impedance of the neutral system and \(\underline{Z}_{1}\) is the impedance of the positive-sequence system. Positive-sequence, negative-sequence and neutral system are defined in the theory of the symmetrical components.

To acquire all fault types correctly, six impedance loops must be calculated; three loops for faults without earth contact and three loops for faults with earth contact. The calculation of the impedance should be shown here based on the determination of the fault impedance for a fault between the conductors L2 and L3. Corresponding to the ratio previously shown, the external phase-to-neutral voltage \(\underline{U}_{23}\) and the delta current \(\underline{l}_{23}\) must first be derived from the difference of the two conductor-earth voltages and line currents.

External phase-to-neutral voltage \(\underline{U}_{23}\) :
\(\operatorname{Re}\left\{U_{L 23}\right\}=\operatorname{Re}\left\{U_{L 2}\right\}-\operatorname{Re}\left\{U_{L 3}\right\}\)
\(\operatorname{Im}\left\{U_{L 23}\right\}=\operatorname{Im}\left\{U_{L 2}\right\}-\operatorname{Im}\left\{U_{L 3}\right\}\)

Delta current \(\underline{I}_{23}\) :
\(\operatorname{Re}\left\{I_{L 23}\right\}=\operatorname{Re}\left\{I_{L 2}\right\}-\operatorname{Re}\left\{I_{L 3}\right\}\)
\(\operatorname{Im}\left\{I_{L 23}\right\}=\operatorname{Im}\left\{I_{L 2}\right\}-\operatorname{Im}\left\{I_{L 3}\right\}\)
Once the calculation operation has been completed, the ratio for calculating the real resistance R and the reactive resistance X is derived:
\(R=\frac{\operatorname{Re}\left\{U_{L 23}\right\} \cdot \operatorname{Re}\left\{I_{L 23}\right\}+\operatorname{Im}\left\{U_{L 23}\right\} \cdot \operatorname{Im}\left\{I_{L 23}\right\}}{\left(\operatorname{Re}\left\{I_{L 23}\right\}\right)^{2}+\left(\operatorname{Im}\left\{I_{L 23}\right\}\right)^{2}}\)
\(X=\frac{\operatorname{Im}\left\{U_{L 23}\right\} \cdot \operatorname{Re}\left\{I_{L 23}\right\}-\operatorname{Re}\left\{U_{L 23}\right\} \cdot \operatorname{Im}\left\{I_{L 23}\right\}}{\left(\operatorname{Re}\left\{I_{L 23}\right\}\right)^{2}+\left(\operatorname{Im}\left\{I_{L 23}\right\}\right)^{2}}\)

The impedance is then calculated with the following equation.
\(\underline{Z}=R+j X\)
Because of various influencing quantities the fault impedance may deviate greatly from the theoretical impedance value of the line unit. A typical example for this is an arc short circuit. In this case, the fault impedance is overlain with the non-linear arc resistor. To prevent faults resulting from the tripping, a tripping surface is the default for forming the OFF command.

The following shows this polygon tripping surface for the distance protection.

Figure 197: Tripping surface for the distance protection
In the first quadrant the tripping surface is set by a horizontal and a vertical line. The reactance setting X is the standard for the horizontal line and the resistor setting R for the vertical line. The tripping surface is eventually connected by two rays in the second and the fourth quadrants. The angle of rotation of the ray is \(\delta 2\) in the second quandrant and \(\delta 1\) in the fourth quadrant.

\section*{Directional memory}

The directional decision is normally derived from the complex fault impedance variable. Therefore, the voltage measured variable contained in the fault is used to determine the direction. However, if the fault occurs in the immediate vicinity of where the voltage transformers/sensors are installed, the formation of the directional decision can be seriously affected because of the low voltage measured variable and the interspersed disturbance variables.

For this reason a voltage memory is always used to form the directional decision. All voltages (external conductor and conductor-earth voltages) that were measured before the fault occurred are saved there.

After the fault occurs a phase displacement angle of approximately \(\pm 30^{\circ}\) may occur. For example, this occurs on the transition from fault-free network operation to the cross-country fault. This fact should be taken into account when setting the tripping surface.
The tripping surface should be set as follows to retain a correct directional decision permanently:

In the second quadrant at
\[
\delta_{2}=90^{\circ}+30^{\circ}=120^{\circ}
\]
and in the fourth quadrant at
\[
\delta_{1}=0^{\circ}-30^{\circ}=-30^{\circ} .
\]

\section*{Tripping logic}

The tripping logic connects the distance and directional decision from determining the impedance with the set timer function to impedance-timer characteristics or setting characteristics. In total, three impedance zones, one impedance-independent directional zone and five timer functions are available. The adjustable impedance-timer characteristics can be seen in the following diagram.

Figure 198: Impedance-timer characteristics
As can be seen in the above diagram, every impedance zone and the impedance-independent directional zone can be set either backwards or forwards. The timer functions are assigned as follows:
- Time \(t_{1}\) of impedance zone \(Z_{1}\),
- Time \(t_{2}\) of impedance zone \(Z_{2}\),
- Time \(t_{3}\) of impedance zone \(Z_{3}\),
- Time \(t_{4}\) of impedance-independent directional zone as directional backup and
- Time \(t_{5}\) of impedance and direction-independent zone as non-directional backup.

Every single zone can be deactivated. Which of the impedance-timer characteristics should be selected is determined on one hand by the network topology and on the other hand by the draft of the protection concept.

In addition, the tripping logic shows the interface for autoreclosure (AWE), signal comparison protection (SVS) and acquisition of switching on in the event of faults. Therefore, the functioning of the impedance zone \(Z_{1}\) is superimposed by two special zones, the "overreach zone" and the autoreclosure blocking zone. The setting parameters that must be taken into account are described in the following sections.

\section*{Autoreclosure}

The autoreclosure (AWE) is provided to restore network operation after a fault tripping. The VDEW damage statistics show that faults in overhead cables are mostly of a transient nature. A fault in an overhead cable, such as from a lightning strike, can be corrected after an autoreclosure cycle (Off-On-Off). Network operation can then be restarted without problems.

An autoreclosure-capable power circuit-breaker is required for this function. It must be capable of running a complete autoreclosure cycle within a preset period. If several au-toreclosure-cycles are run, the power circuit-breaker must be able to recover relatively quickly for the next cycle. This function must be activated in the distance protection to enable an autoreclosure in the network.

The autoreclosure may only go over to being ready for operation when the power cir-cuit-breaker has reported that it is ready for operation (CB-OK). In this connection the blocking time from any previously occurring autoreclosure must have expired. Once the autoreclosure is ready for operation, the overreach zone \(Z_{U}\) is activated in the distance protection with the associated time \(\mathrm{t}_{\mathrm{u}}\). The overreach zone is superimposed on the first impedance zone \(Z_{1}\).
The following two diagrams show the flow chart and the signal flow chart of the autoreclosure for the distance protection.

Figure 199: Flow chart for the distance protection autoreclosure

Figure 200: Signal flow chart for distance protection autoreclosure
The following diagram shows the principal view of the impedance-time characteristic. The line unit that is to be protected is between stations \(A\) and \(B\). The impedance-time characteristic is shown with autoreclosure for distance protection in station \(A\).

Figure 201: Impedance-time characteristics for autoreclosure on an overhead cable
In overhead cable networks the overreach zone \(Z_{U}\) is generally set approximately 120 to \(150 \%\) of the line impedance \(Z_{L}\). The timer setting \(t_{U}\) should in this case be set for the time \(t_{1}\) of the first impedance zone \(Z_{1}\). The autoreclosure blocking zone should be set to inactive here.

When the General-Start signal occurs the fault time \(\mathrm{t}_{\mathrm{w} 1}\) is started in the event of a fault in the network. It should also be set for the period of the overreach zone \(t_{u}\). If a tripping is actuated within this fault time by the distance protection, the autoreclosure is started. In the event of a tripping outside this fault time the autoreclosure is blocked. If the dead time \(t_{p 1}\) has expired after the autoreclosure has started, the power circuit-breaker will be reactivated. The signal first AR (autoreclose) will be sent in this event. The autoreclosure will then be blocked for the duration of the blocking time \(t_{s p}\) if the number of autoreclosure is set to equal one.

If the fault is still present after the autoreclosure, the line unit will be definitely shut off if only one autoreclosure cycle has been configured. The autoreclosure did not succeed in this case.

If the autoreclosure is successful, another autoreclosure cycle will not be allowed within the blocking time \(t_{s p}\). Another cycle is possible if the next fault occurs after expiry of the blocking time \(t_{s p}\).

On expiry of the fault time \(t_{w 1}\) the overreach zone \(Z_{U ̈}\) will be deactivated again. If the fault is still present after the autoreclosure in the event of the unsuccessful autoreclosure, it will be tripped in accordance with the impedance-time characteristic. This means that only faults within the zone \(Z_{1}\) with time \(t_{1}\) will be tripped. The reach of zone \(Z_{1}\) is normally \(85-90 \%\) of the total line unit.

Faults outside this zone are tripped with the grading time in accordance with the set impedance-time characteristic. Therefore, the discrimination is maintained with an autoreclosure.

If the number of autoreclosures is set to equal 2, another autoreclosure is released if one is unsuccessful. In this case, the blocking time running after the first autoreclosure has no influence on the course of the second autoreclosure. Here also, similarly to the first autoreclosure, the fault time \(t_{w 2}\) is activated when the General-Start signal is sent. This should be adapted to the time setting \(t_{2}\) of the second impedance zone \(Z_{2}\). The second impedance zone should be set to the forward direction and the first impedance zone \(Z_{1}\) should be immediately above. In some circumstances, this setting enables a fault to be corrected with the second autoreclosure when it occurs in the last range of the line unit beyond the impedance zone \(Z_{1}\).

If the tripping occurs after the first autoreclosure within the fault time \(t_{w 2}\), the dead time \(t_{p 2}\) will be started. This must be set correspondingly longer to ensure the required recovery time of the power circuit-breaker. The autoreclosure readiness must then be set to safety. The autoreclosure will be set to the output state after expiry of this dead time \(t_{\text {p2 }}\). The power circuit-breaker is no longer directly monitored at this time and if necessary has to be implemented via the FUPLA.

However, if the first of two possible autoreclosures is successful, when the blocking time expires the autoreclosure will be reset to the output state. If a system fault occurs at this time, the autoreclosure cycle will be restarted again.

In the event that a mixed line unit comprising cable and overhead cable has to be protected, an autoreclosure is allowed only in the area of the overhead cable. From the distance protection point of view, if the line unit begins with the overhead cable and ends with the cable, in principle the same setting as described above with the standard autoreclosure is valid. The autoreclosure blocking zone \(Z_{B}\) will only be set to approximately \(90 \%\) of the overhead cable impedance of the first section of the unit. The following diagram shows the corresponding impedance-time characteristic.

Figure 202: Impedance-time characteristics for autoreclosure on overhead cable-cable

In this case, the autoreclosure blocking zone operates to release the autoreclosure within the set zone. If the fault occurs in the cable area, the autoreclosure will be blocked.

The restriction on the reach of the overreach zone is required because it is known that faults of approximately \(5 \%\) must be expected with the current and voltage measurement. If the current and voltage measurement is more precise, the reach of the overreach zone should be set correspondingly.
From the distance protection point of view, if the cable to be monitored first and then the overhead cable, the autoreclosure blocking zone \(Z_{B}\) is used for the blockade. The following figure shows the impedance-time characteristic that must be set.

Figure 203: Impedance-time characteristics for autoreclosure on cable-overhead cable
If there is a fault on the cable the autoreclosure will be blocked by the blocking zone \(Z_{B}\). The autoreclosure blocking zone \(Z_{B}\), because of the above-mentioned faults with current and voltage measurement, should be set to approximately \(110 \%\) of the total cable impedance. The reach of the overreach zone \(Z_{u ̈}\) with the associated time tü sets the range for activating the autoreclosure on the overhead cable side.

\section*{Signal comparison protection}

If the carrier protection range is less than the smallest setting range in the REF542, the distance protection must be supplemented with the underlying signal comparison protection. This enables the time-graded protection to function intermittently as comparison protection. With the signal comparison protection the distance protection becomes a protection system with a communications connection. However, there are no specific requirements on the signal connection and transmission as would be the case with the line differential protection. A part of the protection system, in this case the distance protection, also functions without the communications connection.

The following figure shows the principle of the distance protection with the underlying signal comparison protection and the pair of pilot wires required for this.

Figure 204: Impedance-time characteristic for the distance protection with underlying si gnal comparison protection

As noted above, the impedance of the line unit to be protected to ensure the discrimination can be so small that the first impedance zone \(Z_{1}\) must be set greater than the impedance of the entire line unit. To ensure selective tripping, a signal comparison must be underlying. Therefore, the time \(t_{1}\) of the first impedance zone is initially increased to, for example, 0.2 to 0.3 s . In this way, a fault can always be tripped by the distance protection in the increased base time independent of the status of the communications connection.

The two distance protection units at the ends of the line unit are connected to each other with the pair of pilot wires to form a comparison protection system. This enables the General-Start and impedance \(Z_{1}<\) protection signals occurring during the fault to be compared with each other. The following image shows an example of the functioning of the signal comparison protection with the aid of simple relay contacts.

Figure 205: Functional principle of the distance protection with underlying signal comparison protection

The two distance protection units are connected with the pair of pilot wires. This forms a loop over the two protection devices. An auxiliary voltage is applied at the ends of the loop. Half each of the auxiliary voltage is assigned to the two binary inputs in use. It can also be used to monitor the pair of pilot wires. If the auxiliary voltage is faulty an interference signal can be generated after expiry of a configurable time delay of, for example, 5 s . If necessary, this will then be forwarded to the control station. As described above, in the case of the faulty pair of pilot wires the line unit will continue to be protected by the distance protection with increased base time.

If a fault occurs in the network now, both distance protection units (at the line ends) will be tripped. They will each send a General-Start signal. The G-Start N/C contacts and with them the comparison loop will be opened. The connection to the signal comparison is initially broken. Because the loop is only open for a fraction of 1 s , an interference signal is not sent.

However, a tripping by the distance protection is only possible if both protection units send a fault impedance within the first impedance zone \(Z_{1}\). In this case, the signal \(Z_{1}<\) which closes the comparison loop again is sent. The closed state of the loop means that the fault is within the protection zone of both distance protection units at this time. In the event of a fault outside the protection zone, the loop cannot be closed by a distance protection unit because of the missing signal \(Z_{1}<\). Therefore, a trip does not occur.

The signal comparison protection also functions if the line unit is fed from only one side after switchover actions in the network. A quasi-echo circuit is implemented with the implemented comparison loop. The loop remains closed because the distance protection at the other end of the line is and remains in quiescent status with a fault within the protection zone. The tripping is then generated on the supply side by the distance protection.

A fault within the protection zones can be tripped quickly and selectively with the signal comparison protection. However, when making the settings the operating time of the signals must be taken into account. It is important that the G-Start signal always appears before the signal \(Z_{1}<\) to ensure that the loop is opened at the right time.

In addition, the fact that the signals required for the signal comparison protection are not always received simultaneously at both ends of the line unit must be considered. Sufficient closing delays must be defined at the binary inputs.

\section*{Switching onto faults}

The distance protection also has a function for switching on persistent faults. This is generally referred to as manual-on acquisition. With this setting activated, the tripping response of the distance protection can be remotely or locally influenced with the closing command of the power circuit-breaker as follows:
- Standard operation

In this case the function "switching on persistent fault" is not activated. The distance protection ignores the On command of the power circuit-breaker. A fault is only tripped in accordance with the set impedance-time characteristic or the setting characteristic. This means that a fault will be tripped in the first impedance zone with the time \(t_{1}\) and in the second impedance zone with the time \(t_{2}\).
- Use overreach zone

With this setting the overreach stage will be activated for about 200 ms by the closing command of the power circuit-breaker. The protection zone is determined by the setting of the overreach stage \(Z_{U}\). This is normally about \(120 \ldots 150 \%\) of the line impedance \(Z_{L}\). The tripping then occurs with the associated time tü. When the power circuit-breaker is closed by the autoreclosure function, the overreach zone is not activated.
- Tripping after general starting:

In this setting the General-Start signal or the general starting is standard. If the general starting signal occurs when the power circuit-breaker is closed, the distance protection trips immediately. The impedance measurement is not used here.

\section*{Switchover to emergency definite time}

In the event of an automatic device failure in the voltage instrument transformer the distance protection will be unable to function correctly because of faulty voltage measured variables. For this reason it is necessary to block the distance protection and to switch over to the emergency definite time (independent IDMT).
The automatic switchover to the emergency definite time is currently only possible via the automatic device failure signal.
\({ }_{\wedge}{ }^{4}\) Chapter " Function of the definite time functions" on page 5-102

\section*{Directional earth fault supervision}

The directional earth fault supervision is an ancillary module for locating earth faults in networks with isolated neutral point or with earth fault compensation.
\(\left.{ }^{4}\right)\) Chapter " Function of the directional earthfault current timer functions" on page 5-116

\section*{Connections:}

Figure 206: Function block distance protection

BI input: A logical 1 at this input will suppress the protective function trip signal. The function on the tripping side will still be displayed.

BA input: A logical 1 signal at this input blocks the autoreclosure (AWE).
CB OK input: A logical 1 signal at this input signals the function block that the power circuit-breaker is ready for the autoreclosure.

SIGNAL COMP input: A logical 1 signal at this input signals the function block that the pair of pilot wires for the signal comparison protection is not broken.
1. AR /2. AR outputs: A logical 1 signal can be tapped here when the function block trips the first or second autoreclosure cycle. These signals must be linked with the LS ON command.

AR output: A logical 1 signal appears at this output when an autoreclosure attempt is active and running.
< Z1 output: A logical 1 signal can be tapped here when the fault impedance is less than the first impedance zone.

START L1, START L2, START L3 outputs: A logical 1 signal can be tapped here so long as the protective function is started by the corresponding conductor.

EARTH START output: A logical 1 signal can be tapped here when a fault with earth contact has been detected.

GENERAL START output: A logical 1 signal can be tapped here when a fault in the system has been detected.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

Configuration

Figure 207: Configuration dialog function block distance protection
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Option field net type: The type of neutral treatment of the system to be monitored is marked here. The setting influences the consideration of the earth current when selecting the phase for the undervoltage-controlled overcurrent starting.
- High-ohmic earthing: Networks with isolated neutral point or earth fault compensation.
- Low-ohmic earthing: Networks with low-ohmic neutral earthing. The neutral point is connected with the earth directly or via a earth resistance or a earth reactance.
\({ }^{4}\)) Chapter "Activation" on page 5-159
\({ }^{4}\)) Chapter "11.8 Network neutral point earthing" on page 11-35

Note In networks with short-term low-ohmic earthing the network type "low-ohmic earthing" should be selected.

Option field earth start: How the earth fault current starting is included in the general starting is marked here.
- \(\quad \mathrm{I}_{\mathrm{E}}>\) used: A earth fault current starting (EARTH START) results in the general starting or GENERAL START
- \(\mathrm{I}_{\mathrm{E}}>\) unused: The general starting is not derived from a earth fault current starting.
\({ }^{4}\)) Chapter " Activation" on page 5-159

Note The \(\mathrm{I}_{\mathrm{E}}>\) used selection should generally not be used.
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.
\({ }^{\Perp}\) Chapter " Analog inputs" on page 5-159
Option field ct grounding: Whether the current transformer is earthed on the feeder (line) side or the busbar side is marked here.

The definition of the forward direction for determining the direction of the impedance and the directional backup starting zones depends on this. It is important for the set earthing point to conform to the connection diagram.
\({ }^{4}\) Chapter " Defined circuit diagram for directional protective function" on page 7-8
\({ }^{4}\)) Chapter "7.5 Determining the transformer direction" on page 7-4
Option field switching onto faults: How the distance protection responds to a switching on an existing fault is marked here.
- Normal behaviour: The fault is tripped in accordance with the set impedance-time characteristic.
- Overreach zone used: The first impedance zone is switched over to the overreach zone for a short time to enable a fault on the entire line unit to be tripped quickly.
- Tripp after occurance of general start: An immediate trip occurs if a starting occurs immediately after the closure.
\({ }^{\wedge} \downarrow\) Chapter "Switching onto faults" on page 5-171

The setting "Overreach zone used" should be preferred so the discrimination is guaranteed and a fault at the end of the line unit is always detected.

Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.

Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1) Default: 0

Input field signalcomp. time set \(1 /\) set 2 : Input of the time in ms for implementing the underlying signal comparison protection. This binary input SIGNAL COMP is used to query the signal status from the remote side. The signals derived in the distance protection, general starting (GENERAL START) and tripping in zone 1 (\(<\mathrm{Z}_{1}\)), can be used to derive the tripping after comparison with the remote side over the pair of pilot wires. A time can be input for every parameter set.
Setting range: \(30 \ldots 300000\) (increment 1)
Default: 60
\({ }^{4}\)) Chapter "Signal comparison protection" on page 5-169
Button startvalues: The configuration dialog for setting the starting values is opened.
\({ }^{4}\)) Chapter "Start values configuration dialog" on page 5-175
Button Phaseselection: The configuration dialog for setting the conductor preference is opened.
\({ }^{7}\)) Chapter "Phase selection configuration dialog" on page 5-176
Button earthfactors: The configuration dialog for inputting the earth factors for correcting the impedance determination in the event of faults with earth contact is opened.
\(\left.{ }^{7}\right)\) Chapter "Earth factors configuration dialog" on page 5-176
Button zones: The configuration dialog for inputting the impedance zones is opened.
Chapter "Selecting the zone configuration dialog" on page 5-178
Button autoreclose: The configuration dialog for autoreclosure of the distance protection is opened. The button can only be selected when the autoreclosure function has been activated in the REF542 basic settings.
\({ }^{4}\)) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{4}\) Chapter "Autoreclosure configuration dialog" on page 5-177
Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4}\)) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{\mu} \downarrow\) Chapter "11.3 Event list of protective functions" on page 11-6

\section*{Start values configuration dialog}

Figure 208: Configuration dialog starting values, function block distance protection
\({ }^{\text {r }}\) Chapter "Activation" on page 5-159
Input field I> (once per parameter set/setting): Input of the multiplier for \(I_{N}\) to define the overcurrent starting threshold.
Setting range: \(0.05 \ldots 4.00\) (increment 0.01)
Default: 1.00
Input field \(I 0>\) (once per parameter set/setting): Input of the multiplier for \(I_{n}\) to define the earth fault current starting threshold.
Setting range: \(0.05 \ldots 4.00\) (increment 0.01)
Default: 0.20
Input field UF < (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{N}}\) to define the undervoltage starting threshold.
Setting range: \(0.05 \ldots 0.90\) (increment 0.01)
Default: 0.50
Input field IF > (once per parameter set/setting): Input of the multiplier for \(\mathrm{I}_{\mathrm{n}}\) to specify the voltage-controlled overcurrent starting threshold.
Setting range: \(0.05 \ldots 4.00\) (increment 0.01)
Default: 0.50
Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\section*{Phase selection configuration dialog}
\begin{tabular}{|l|}
\hline phase selection \\
\begin{tabular}{|l|}
Mainsetting \\
C normal acycle L3-L1-L2 \\
C normal acycle L3-L1-L2-L3 \\
C inverse acycle L1-L3-L2 \\
C inverse acycle L3-L2-L1-L3 \\
Secondsetting \\
C normal acycle L3-L1-L2 \\
C normal acycle L3-L1-L2-L3 \\
C inverse acycle L1-L3-L2 \\
C inverse acycle L3-L2-L1-L3 \\
\hline OK \\
\hline Cancel \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Figure 209: Input screen for setting the phase selection
\({ }^{\mu}\)) Chapter "Conductor preference/Phase selection" on page 5-162
Option range parameter set 1/parameter set 2 : The definition of the conductor preference for determining the impedance in the event of the cross-country fault for networks with high-resistance earthing is marked here for the specific parameter set.
- normal acycle L3-L1-L2
- normal acycle L1-L2-L3-L1
- inverse acycle L1-L3-L2
- inverse acycle L3-L2-L1-L3

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Note The conductor preference can be used to secure selective tripping of the earth fault footing point only if all distance protection units in the entire network have identical conductor preference. Because in many cases they have to operate with electromechanical protection equipment, the acyclical conductor preference L3 before L1 before L2 should be used.

\section*{Earth factors configuration dialog}

Figure 210: Earth factors configuration dialog
\({ }^{\text {H. }}\) Chapter "Determining the impedance" on page 5-162

Input field factor \(k\) (once per parameter set/setting): Input of the amplitude of the complex earth factor.
Setting range: \(0.05 \ldots 3.00\) (increment 0.01)
Default: 1.00
Input field angle k (once per parameter set/setting): Input of the angle of the complex earth factor.
Setting range: -60 ... \(60^{\circ}\) (increment 1)
Default: \(0^{\circ}\)
Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Because only one earth factor is provided in the distance protection, for reasons of selectivity the earth factor must taken from the zero-sequence and positive-sequence impedance of the first impedance zone \(Z_{1}\).

Autoreclosure configuration dialog
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Reclosetimes} & \multirow[t]{2}{*}{x} \\
\hline & main setting: & second se & ling: & \\
\hline nr. of recloses: & 0 & 0 & 0.1.2 & \\
\hline time tspec1: & 100 & 100 & \(30 . .300000 \mathrm{msec}\) & \\
\hline time tp1: & 100 & 100 & \(30 . .3300000 \mathrm{msec}\) & \\
\hline time tspec2: & 100 & 100 & \(30 . .300000 \mathrm{msec}\) & \\
\hline time tpz: & 100 & 100 & \(30 . . .300000 \mathrm{msec}\) & \\
\hline time treclaim: & 100 & 100 & \(30 . .300000 \mathrm{msec}\) & \\
\hline & OK & Cancel & & \\
\hline
\end{tabular}

Figure 211: Autoreclosure times configuration dialog
Every column of input fields is used to set parameters of the various quantities for a parameter set.
\({ }^{\wedge}\)) Chapter "Autoreclosure" on page 5-165
Input field nr. of reclosure (once per parameter set/setting): Input of the number of autoreclosure cycles that must be run.
Setting range: 0, 1 or 2
Default: 0
Input field time tspec1 (once per parameter set/setting): Input of the first fault time in ms.
Setting range: \(15 \ldots 300000 \mathrm{~ms}\) (increment 1)
Default: 100 ms
Input field time tp1 (once per parameter set/setting): Input of the first dead time in ms.
Setting range: \(15 \ldots 300000 \mathrm{~ms}\) (increment 1)
Default: 100 ms
Input field time tspec2 (once per parameter set/setting): Input of the second fault time in ms.
Setting range: \(15 \ldots 300000 \mathrm{~ms}\) (increment 1)
Default: 100 ms
Input field time tp 2(once per parameter set/setting): Input of the second dead time in ms .

Setting range: \(15 \ldots 300000 \mathrm{~ms}\) (increment 1)
Default: 100 ms
Input field time treclaim (once per parameter set/setting): Input of the blocking time in ms .
Setting range: \(15 \ldots 300000 \mathrm{~ms}\) (increment 1)
Default: 100 ms
Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Selecting the zone configuration dialog

Figure 212: Selecting the zone configuration dialog
\({ }^{7}>\) Chapter "Tripping logic" on page 5-164
Input field cablereactance: Input of the value in \(\Omega / \mathrm{km}\) for calculation of the fault distance.
Setting range: \(0.05 \ldots 120 \Omega / \mathrm{km}\) (increment 0.01)
Default: \(1.00 \Omega / \mathrm{km}\)
Input field overheadlinereact ance: Input of the value in \(\Omega / \mathrm{km}\) for calculation of the fault distance.
Setting range: \(0.05 \ldots 120 \Omega / \mathrm{km}\) (increment 0.01)
Default: \(1.00 \Omega / \mathrm{km}\)
Input field border cable overhead: Input of the correction value in \(\Omega\) for calculation of the fault distance in a mixed line unit.
Setting range: \(0.05 \ldots 120 \Omega\) (increment 0.01)
Default: \(1.00 \Omega\)
Option field type of power transmission line: The line unit combination for the first impedance zone is defined here.
- Only cable
- Only overhead
- Overhead before cable: The line unit of the first impedance zone consists of an overhead cable and finally a cable section. This option is also used for autoreclosure; it is only implemented in the range of the input autoreclosure blocking zone.
- Cable before overhead : The line unit of the first impedance zone consists of a cable and finally an overhead cable section. This option is also used for autoreclosure; it is blocked in the range of the input autoreclosure blocking zone.

Buttons zone 1 , zone 2 or zone 3 :The configuration dialog for setting the specific impedance zone is opened.
\({ }^{〔}\)) Chapter "Configuration dialogs zone 1, zone 2 and zone 3 " on page 5-179
Button overreach zone: The configuration dialog for setting the overreach zone is opened.
\({ }^{4}\)) Chapter "Overreach zone configuration dialog" on page 5-181
Button autoreclose: The configuration dialog for setting the autoreclosure blokking zone or unblocking zone is opened.
\({ }^{4}\)) Chapter "Autoreclosure blocking zone configuration dialog" on page 5-182
Button direct. backup: The configuration dialog for setting the directional backup zone is opened.
\({ }^{5}\) Chapter "Configuration dialog for the directional backup protection" on page 5-183
Button nondir. backup: The configuration dialog for setting the non-directional bakkup zone is opened.
\({ }_{n} \Rightarrow\) Chapter "Configuration dialog for the non-directional backup protection" on page 5-184

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Configuration dialogs zone 1 , zone 2 and zone 3

Figure 213: Example of a configuration dialog for the zones of the function block distance protection

Because the configuration dialogs for zones 1 to 3 have the same structure, they are only described once here. The zones are specified by four lines in the impedance level. The quantities that are to be input here can be found in the diagram in the configuration dialog.
\(\left.{ }^{4}\right)\) Chapter "Tripping logic" on page 5-164

Input field resistance \(R\) (once per parameter set/setting): Input of the value in \(\Omega\) for limiting the tripping surface of the corresponding impedance zone on the R-axis.
Setting range: \(0.05 \ldots 120.00 \Omega\) (increment 0.01)
Default: \(1.00 \Omega\)
Input field reactance X (once per parameter set/setting): Input of the value in \(\Omega\) for limiting the tripping surface of the corresponding impedance zone on the X -axis.
Setting range: \(0.05 \ldots 120.00 \Omega\) (increment 0.01)
Default: \(1.00 \Omega\)
Input field angle delta 1 (once per parameter set/setting): Input of the angle in degrees for limiting the tripping surface of the corresponding impedance zone in the fourth quadrant.
Setting range: \(-45.00 \ldots 0.00^{\circ}\) (increment 0.01)
Default: \(0.00^{\circ}\)
Input field angle delta 2 (once per parameter set/setting): Input of the angle in degrees for limiting the tripping surface of the corresponding impedance zone in the second quadrant.
Setting range: \(90.00 \ldots 135.00^{\circ}\) (increment 0.01)
Default: \(90.00^{\circ}\)
Input field time (once per parameter set/setting): Setting the grading time in ms for the corresponding impedance zone.
Setting range: \(\left[0+t_{\text {relay }}\right] \ldots 100000 \mathrm{~ms}\) (increment 1)
Default: \(\left[0+\mathrm{t}_{\text {relay }}\right] \mathrm{ms}\)
Option field direction (once per parameter set/setting): The activity and the input direction of the first impedance zone are defined here.
- Forward
- Backward
- Zone unused

Button \(\mathrm{R}-\mathrm{X}\) diagram (once per parameter set/setting): The zone is shown in a new dialog window in accordance with the parameters in the impedance level.

Button \(t-z\) diagram (once per parameter set/setting): The setting characteristic or the impedance-time characteristic of the specific zone is shown in a new dialog window in accordance with the parameters.

Button OK: All settings are saved in the configuration program. The dialog window is closed.
Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\section*{Overreach zone configuration dialog}

Figure 214: Overreach zone configuration dialog for the function block distance protection
\(\stackrel{4}{4}\) Chapter "Tripping logic" on page 5-164
Input field resistance \(R\) (once per parameter set/setting): Input of the value in \(\Omega\) for limiting the tripping surface of the corresponding impedance zone on the R-axis.
Setting range: \(0.05 \ldots 120.00 \Omega\) (increment 0.01)
Default: \(1.00 \Omega\)
Input field reactance x (once per parameter set/setting): Input of the value in \(\Omega\) for limiting the tripping surface of the corresponding impedance zone on the X -axis.
Setting range: \(0.05 \ldots 120.00 \Omega\) (increment 0.01)
Default: \(1.00 \Omega\)
Input field angle delta 1 (once per parameter set/setting): Input of the angle in degrees for limiting the tripping surface of the corresponding impedance zone in the fourth quadrant.
Setting range: -45.00 \(\ldots 0.00^{\circ}\) (increment 0.01)
Default: \(0.00^{\circ}\)
Input field angle delta 2 (once per parameter set/setting): Input of the angle in degrees for limiting the tripping surface of the corresponding impedance zone in the second quadrant.
Setting range: \(90.00 \ldots 135.00^{\circ}\) (increment 0.01)
Default: \(90.00^{\circ}\)
Input field time (once per parameter set/setting): Setting the grading time in ms for the corresponding impedance zone.
Setting range: \(\left[0+t_{\text {relay }}\right] \ldots 100000 \mathrm{~ms}\) (increment 1)
Default: \(\left[0+t_{\text {relay }}\right] \mathrm{ms}\)
Option field direction (once per parameter set/setting): The activity and the input direction of the first impedance zone are defined here.
- Forward
- Backward
- Zone unused

Button \(\mathrm{R}-\mathrm{X}\) diagram (once per parameter set/setting): The zone is shown in a new dialog window in accordance with the parameters in the impedance level.

Button t-z diagram (once per parameter set/setting): The setting characteristic or the impedance-time characteristic of the specific zone is shown in a new dialog window in accordance with the parameters.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Autoreclosure blocking zone configuration dialog

Figure 215: Configuration dialog autoreclosure blocking zone 1
\(\stackrel{4}{4}\) Chapter "Tripping logic" on page 5-164
Input field resistance \(R\) (once per parameter set/setting): Input of the value in \(\Omega\) for limiting the tripping surface of the corresponding impedance zone on the R-axis.
Setting range: \(0.05 \ldots 120.00 \Omega\) (increment 0.01)
Default: \(1.00 \Omega\)
Input field reactance X (once per parameter set/setting): Input of the value in \(\Omega\) for limiting the tripping surface of the corresponding impedance zone on the X -axis.
Setting range: \(0.05 \ldots 120.00 \Omega\) (increment 0.01)
Default: \(1.00 \Omega\)
Input field angle delta 1 (once per parameter set/setting): Input of the angle in degrees for limiting the tripping surface of the corresponding impedance zone in the fourth quadrant.
Setting range: \(-45.00 \ldots 0.00^{\circ}\) (increment 0.01)
Default: \(0.00^{\circ}\)
Input field angle delta 2 (once per parameter set/setting): Input of the angle in degrees for limiting the tripping surface of the corresponding impedance zone in the second quadrant.
Setting range: \(90.00 \ldots 135.00^{\circ}\) (increment 0.01)
Default: \(90.00^{\circ}\)

Input field time (once per parameter set/setting): Setting the grading time in ms for the corresponding impedance zone.
Setting range: \(\left[0+\mathrm{t}_{\text {relay }}\right] \ldots 100000 \mathrm{~ms}\) (increment 1)
Default: [0 \(+\mathrm{t}_{\text {relay }}\)] ms
Option field direction (once per parameter set/setting): The activity and the input direction of the first impedance zone are defined here.
- Forward
- Backward
- Zone unused

Button \(\mathrm{R}-\mathrm{X}\) diagram (once per parameter set/setting): The zone is shown in a new dialog window in accordance with the parameters in the impedance level.

Button t-z diagram (once per parameter set/setting): The setting characteristic or the impedance-time characteristic of the specific zone is shown in a new dialog window in accordance with the parameters.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Configuration dialog for the directional backup protection

Figure 216: Configuration dialog for the directional backup protection of the function block distance protection
\({ }^{4}>\) Chapter "Tripping logic" on page 5-164
Input field angle delta 1 (once per parameter set/setting): Input of the angle in degrees for limiting the tripping surface of the corresponding impedance zone in the fourth quadrant.
Setting range: \(-45.00 \ldots 0.00^{\circ}\) (increment 0.01)
Default: \(0.00^{\circ}\)
Input field angle delta 2 (once per parameter set/setting): Input of the angle in degrees for limiting the tripping surface of the corresponding impedance zone in the second quadrant.
Setting range: \(90.00 \ldots 135.00^{\circ}\) (increment 0.01)
Default: \(90.00^{\circ}\)

Input field time (once per parameter set/setting): Setting the grading time in ms for the corresponding impedance zone.
Setting range: [\(0+\mathrm{t}_{\text {relay }}\)] .. 100000 ms (increment 1)
Default: [\(0+\mathrm{t}_{\text {relay }}\)] ms
Option field direction (once per parameter set/setting): The activity and the input direction of the first impedance zone are defined here.
- Forward
- Backward
- Zone unused

Button \(\mathrm{R}-\mathrm{X}\) diagram (once per parameter set/setting): The zone is shown in a new dialog window in accordance with the parameters in the impedance level.

Button \(t-z\) diagram (once per parameter set/setting): The setting characteristic or the impedance-time characteristic of the specific zone is shown in a new dialog window in accordance with the parameters.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Configuration dialog for the non-directional backup protection

Figure 217: Configuration dialog for the non-directional backup protection of the function block distance protection

Input field time (once per parameter set/setting): Setting the grading time in ms for the corresponding impedance zone.
Setting range: [\(0+\mathrm{t}_{\text {relay }}\)] ... 100000 ms (increment 1)
Default: [0 + \(\mathrm{t}_{\text {relay }}\)]
Button \(\mathrm{R}-\mathrm{X}\) diagram (once per parameter set/setting): The zone is shown in a new dialog window in accordance with the parameters in the impedance level.

Button \(t-z\) diagram (once per parameter set/setting): The setting characteristic or the impedance-time characteristic of the specific zone is shown in a new dialog window in accordance with the parameters.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.4.12 Additional protective functions}

The subsections contain the descriptions of the function blocks that are available via the menu Drawing Menu/Insert/Other Protection.

\subsection*{5.4.12.1 Thermal supervision}

Figure 218: Function block thermal supervision

\section*{Function}

The function thermal supervision, which compares temperature measured values with set limit temperatures, is implemented in the REF542. In the LON process bus protocol, the measured values are sent to the separate LON bus connection over electrical conductors.
\({ }^{\text {r }}\) Chapter "3.4.3 Power supply and process bus (LON)" on page 3-18
The option of configuring a warning and a trip temperature is provided. If the warning temperature is exceeded, a warning signal is generated immediately and appears on the tripping side and can be tapped at the function block. When the trip value is exceeded, the starting is activated first. If the trip value is exceeded for at least the set delay period, a trip signal is generated. Like the warning signal it appears on the tripping side and can be tapped at the function block.

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

Warn output: A logical 1 signal can be tapped here so long as the warning temperature is exceeded.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Typical application}

In large equipment (e.g. electrical machines and transformers) the temperature at the critical points, the "hot spots", is measured directly with temperature probes.

The temperature probes are generally temperature-dependent resistors, such as the PT 100. A constant direct current flows through the resistor and the temperature is determined from the measured voltage drop at the resistor. It is processed by the thermal supervision, which then generates warning and trip signals.

Configuration

Figure 219: Configuration dialog function block thermal supervision
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field Max. Temp: The temperature value that sets the response time of the protective function is input here.
Setting range: \(20 \ldots 400^{\circ} \mathrm{C}\) (increment: 1)
Default: 100
Input field Warn Temp: The temperature value at which the protective function generates a warning signal is input here.
Setting range: \(20 \ldots 400^{\circ} \mathrm{C}\) (increment: 1)
Default: 100
Input field Op. Time: Delay period in ms after which the protective function trips if the response time \(T\) max remains exceeded.
Setting range: \(0.1 \ldots 1000 \mathrm{~s}\) (increment: 1)
Default: \(50+t_{\text {relay }}\)
Input field node sequence nr: Shows the node number at which the function is registered in the LON process bus interface.
Setting range: \(0 \ldots 15\) (increment: 1)
Default: 0
Input field sensor in this node: Selects the sensor input to whose value the protective function reacts on the registered node in the LON process bus interface.
Setting range: \(0 \ldots 2\) (Increment: 1)
Default: 0
Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{\mu}\) Chapter "5.3.2 Global Settings" on page 5-2
\(\left.{ }^{4}\right)\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.12.2 Unbalanced load}

Figure 220: Function block unbalanced load supervision

\section*{Function}

Asymmetries in the system result in asymmetrical currents. These asymmetrical currents generate a "negative-sequence system" in the display of the symmetrical components of the currents. The negative-sequence system is a negative sequence threephase system, i. e. the phase sequence is L1-L3-L2. This system is superimposed on the three-phase system that corresponds to the standard phase sequence. This results in different field intensities in the magnetic laminated cores. Points with particularly high field intensities, "hot spots", lead to local overheating. The increasing size of the equipment also reinforces this effect.

The unbalanced load function is implemented in one stage and a minimum active current below which the unbalanced load function is inactive can be set. As soon as one of the three phase currents exceeds this minimum active current, the unbalanced load supervision is activated.

In the REF542 it is not the negative-sequence components of the currents that are measured but asymmetries. To enable this the rms values of the line currents are compared with one another: \(\mathrm{I}_{\mathrm{L} 1}\) with \(\mathrm{I}_{\mathrm{L} 2}, \mathrm{I}_{\mathrm{L} 2}\) with \(\mathrm{I}_{\mathrm{L} 3}\) and \(\mathrm{I}_{\mathrm{L} 3}\) with \(\mathrm{I}_{\mathrm{L} 1}\). Therefore, the unbalanced load supervision can be used in two or three-phase networks.

The trip value is derived as the amplitude of the difference of the currents based on the smaller of the two compared line currents. If this trip value is exceeded, the protective function is started. If the trip value remains exceeded for at least the parameters set in the time delay, the unbalanced load supervision is tripped.

An example of calculating the comparison of the line currents \(\mathrm{I}_{\mathrm{L} 1}\) with \(\mathrm{I}_{\mathrm{L} 2}\) is given below. The other calculations are equivalent:
\[
I_{a s y}=\frac{\left|I_{L 1}\right|-\left|I_{L 2}\right|}{\operatorname{M1N\{ I_{L1},I_{L2}\} }}
\]
\begin{tabular}{ll}
\(\mathrm{I}_{\text {asy: }}:\) & Negative-phase current \\
\(\mathrm{I}_{\mathrm{L} 1}:\) & Current rms value in conductor L 1 \\
\(\mathrm{I}_{\mathrm{L} 2}:\) & Current rms value in conductor L 2 \\
MIN \(\left\{\mathrm{I}_{\mathrm{L} 1}, \mathrm{I}_{\mathrm{L} 2}\right\}:\) & Minimum of \(\mathrm{I}_{\mathrm{L} 1}\) and \(\mathrm{I}_{\mathrm{L} 2}\)
\end{tabular}

The above formula demonstrates that the percentage error of the unbalanced load supervision is based on the rms value of the minimum line current involved in the calculation.

Note The described processing method of unbalanced load supervision detects the unbalanced load current and also any residual currents caused by earth faults that may occur.
Unbalanced load current can therefore only be distinguished from residual current by the configuration of the unbalanced load supervision and a earth fault current protective function.

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Typical application}

Increasing size of the equipment results in an increase in "hot spots" if asymmetries occur in the network.

The negative sequence protection is most frequently used with generators, transformers, chokes and three-phase asynchronous motors.

\section*{Configuration}

Figure 221: Configuration dialog function block unbalanced load supervision
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field max. Unbal. : Input of the response time of the protective function IPEVAN in \% parts of \(\mathrm{I}_{\mathrm{MIN}}\) according to the formula described.
Setting range: \(5 \ldots 80 \%\) (increment: 1)
Default: 20
Input field Min. Curr: Input of the minimum active current \(\mathrm{I}_{\text {MIN }}\) in \% parts of the rated current, which must be exceeded by one of the line currents to activate the protective function.
Setting range: \(5 \ldots\)... 100\% (increment: 1)
Default: 10
Entry field Op. Time: Delay period in ms after which the protective function trips if the response time remains exceeded.
Setting range: \(1 \ldots 1000\) s (increment: 1)
Default: 10
Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.

Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.
Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\(\left.{ }^{\mu}\right)\) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{4} \boldsymbol{y}\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.12.3 Directional power}

Figure 222: Function block directional power

\section*{Function}

Directional power supervision can be added as a supervision function with generators, transformers and three-phase asynchronous motors. It monitors the direction of the power flow and generates an alarm or a tripping after detecting reverse power.

The directional power supervision is based on comparing the calculated effective power with a configured limit value. If the result of the internal power calculation is negative, reactive power is measured. If this exceeds the set response time, a starting follows. If the response time is exceeded for at least the time set in the parameters, it will be tripped.

The nominal effective power that must be set (P nom) is based on the three-phase calculated effective power. This is determined from the voltage and current measured quantities, which are always based on the rated quantities of the analog inputs of the REF542.
\({ }^{n}\)) Chapter "11.7.5.1 Active power calculation" on page 11-33
The correct directional condition must be present at the transducer and sensor terminal, because otherwise the power calculation will not function correctly.
\({ }^{4}\)) Chapter " Defined circuit diagram for directional protective function" on page 7-8

\section*{Connections:}

BI input: A logical 1 at this input will suppress the protective function trip signal. The function on the tripping side will still be displayed.

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

Configuration

Figure 223: Configuration dialog function block directional power

Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field Nom. RealPower: Input of the three-phase rated effective power of the equipment that is to be monitored.
Setting range: 1 ... 1000000 kW (increment: 1)
Default: 1000
Input field Max. Rev. Load: Input of the trip threshold in percent of the rated effective power. The trip threshold is equivalent to the maximum allowable effective power against the usual power direction.
Setting range: \(1 \ldots 50 \%\) of \(P_{n}\) (increment: 1)
Default: 5
Entry field Op. Time: Delay period in ms after which the protective function trips if the response time (P max rev) remains exceeded.
Setting range: \(1 \ldots 1000 \mathrm{~s}\) (increment: 1)
Default: \(10+t_{\text {relay }}\)
Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field direction: The direction is marked here in which the protective function should trip; i.e. the direction is opposite to the usual power direction of the equipment that is to be monitored.
²)Chapter " Defined circuit diagram for directional protective function" on page 7-8
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4}\) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{4}\)) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.12.4 Low load}

7

Figure 224: Function block low load supervision

\section*{Function}

Low load supervision calculates the effective power from the configured REF542 current measurement inputs and automatically adds the corresponding voltage measurement inputs. For this reason the parameters for the relevant voltage inputs at the analog inputs must be set.
\({ }^{4}\)) Chapter "5.3.4 Analog inputs" on page 5-6
The low load supervision is based on comparing the calculated effective power with the configured response time. If the response time falls below the set response time, the protective function will be activated. If it falls below the response time for at least the time set in the parameters, it will be tripped. The rated effective power that must be set is based on the one, two or three-phase effective power calculated from the rated values of the current and voltage measurement inputs.
\(\left.{ }^{n}\right)\) Chapter "11.7.5.1 Active power calculation" on page 11-33
In addition, a pick-up current (Min. Current) can be configured from which the low load supervision is first activated. Offload and pick-up ratios can be taken into account with this parameter.

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page..

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Typical application}

Three-phase asynchronous motors are subject to intermittent stresses, which have to accept a certain load. The low load supervision is provided for these stress cases to monitor for conditions below the required load.

\section*{Configuration}

Figure 225: Configuration dialog function block low load
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field Nom. Real Power: Input of the three-phase rated effective power of the equipment that is to be monitored.
Setting range: 50 ... 1000000 kW (increment: 1)
Default: 1000
Input field Min. Load: Input of the trip threshold in percent of the rated effective power. The trip threshold is equivalent to the allowable minimum low load.
Setting range: \(5 \ldots 100 \%\) of \(P_{n}\) (increment: 1)
Default: 10
Input field Min. Current: Input of the minimum line current in percent of the rated current that must flow in at least one conductor to activate the low load supervision function block.
Setting range: \(2 \ldots 20 \%\) of \(I_{n}\) (increment: 1)
Default: 5
Input field Op. Time: Delay period in s after which the protective function trips if the response time (P min) remains low.
Setting range: \(1 \ldots 1000\) s (increment: 0.1)
Default: \(10+t_{\text {relay }}\)
Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Option field used current phases: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective funktion reacts are connected.

Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\(\left.{ }^{4}\right)\) Chapter "5.3.2 Global Settings" on page 5-2
\(\stackrel{\mu}{4}\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.12.5 Frequency supervision}

Figure 226: Function block frequency supervision

\section*{Function}

Frequency changes influence, for example, the power dissipation, the speed (motors) and the firing characteristics (converters) of equipment. There are also consumers that control their time settings over the network frequency.

The frequency supervision function block is used to report frequency variations in a frequency band with configurable positive and negative frequency difference. A starting is activated initially after the response time has been exceeded or underrun. If the frequency range is exceeded or underrun for at least the parameters in the time setting, it will be tripped. The frequency is automatically determined from the voltage measured value of an analog input.
(2) Chapter "11.7.4 Calculation of the frequency" on page 11-33

The rated frequency is specified in the basic settings for the calculated quantities during the configuration.

\section*{\({ }^{\wedge} \downarrow\) Chapter "5.3.6 Calculated values" on page 5-12}

Two parameter sets can be configured for frequency supervision.

\section*{Connections:}

BS input: A logical 1 signal at this input suppresses the protective function trip signal. The function is still displayed on the tripping page.

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

\section*{Typical application}

Anywhere where time and frequency-dependent processes are involved, it is worthwhile checking the network frequency so it remains within set limits (generators, transformers, chokes, three-phase machines and converters).
In addition, the frequency supervision enables the frequency variations to be documented.

\section*{Configuration}

Figure 227: Configuration dialog function block frequency supervision
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field startvalue (once per parameter set/setting): Input of the frequency difference in Hz around which the rated frequency can positively or negatively vary.
Setting range: \(0.04 \ldots 3.00 \mathrm{~Hz}\) (increment: 0.01)
Default: 0.20
Input field time (once per parameter set/setting): Delay period in ms after which the supervision function trips if the start value (response time) remains exceeded.
Setting range: \(1 \ldots 300 \mathrm{~s}\) (increment: 0.01)
Default: 10
Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{4}\) Chapter "5.3.2 Global Settings" on page 5-2
\(\stackrel{\mu}{\wedge}\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.12.6 Synchrocheck}

Figure 228: Function block synchrocheck

\section*{Function}

The synchrocheck checks these quantities from two voltage systems and only sends a closing command if the difference of the voltage amplitudes, the phase difference and the frequency vary within the set allowable limits over a certain period.

The synchrocheck requires two phase voltages of the networks that are to be parallel switched to do this. The line voltage is calculated from each of the two phase voltages. The vectorially determined differential voltage of the line voltage in the two networks are checked for their phase angle and amplitude in order to enable the synchrocheck. An allowable differential amplitude can be configured for each case. Frequency variations between the two networks are detected by the time delay in which the differential voltage must remain within the limits in amplitude and phase.

If the values of amplitude and phase of the differential voltage are within the set limits, the starting (St) of the protective function is activated first. If the values remain within the limits for at least the parameters in the time setting, both networks are also equalized in their frequencies. Then the protective function will be tripped (SYN). The switching operation for coupling the separate systems can be released with this signal. An example of the voltage ratios is shown in the following diagram.

Figure 229: Vector diagram of the Synchronization condition
As shown in the diagram, the phase difference angle that is to be set depends on the setting of the voltage difference as follows:
\[
\Delta \delta=\arctan \binom{\Delta U}{U}
\]
\(\Delta \delta\) : Phase difference angle setting
\(\Delta \mathrm{U}\) : Voltage difference setting as start value
U: External phase-to-neutral voltage of a network as reference quantity
Two parameter sets can be configured for synchrocheck.

\section*{Connections:}

BI input: A logical 1 at this input will suppress the protective function trip signal. The function on the tripping side will still be displayed.

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

Syn output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip treshhold for the set period. The switching operation for coupling the separate systems can be released with this signal.

\section*{Application}

Synchrocheck is required if two networks are interconnected whose voltages may differ in quantity, phase angle and frequency as a result of different power supplies. Because system partitioning into two subsystems may occur because of a three-pole autoreclosure, if required it may be useful to apply synchrocheck in the event of reswitching.
The synchrocheck can only be used with specific protective functions because of the use of analog inputs.
\({ }^{4}\), "Table 40: Use of the protective functions depending on the configuration of the analog measuring inputs" on page 5-89

Configuration

Figure 230: Configuration dialog function block synchrocheck
Information field field bus address: Set for every protective function and used to address the function block for interbay bus commands.
Input field start value (once per parameter set/setting): Input of the multiplier for \(U_{n}\) to specify the response time of the protective function. The amplitude of the allowable differential voltage is set here.
Setting range: \(0.02 \ldots 0.40\) (increment: 0.01)
Default: 0.05
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value and the phase difference remains exceeded.
Setting range: \(0.50 \ldots 1000.00 \mathrm{~s}\) (increment: 0.01)
Default: 100
Input field (phasendiff.) phase difference (once per parameter set/setting): Input of the maximum phase difference between the networks that are to be coupled or the maximum phase difference of the differential voltage.
Setting range: \(5 \ldots 50^{\circ}\) (increment: 1)
Default: \(10^{\circ}\)

Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{\Perp}\) Chapter "5.3.2 Global Settings" on page 5-2
\(\stackrel{ }{ } \stackrel{ }{ }\) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{5.4.13 Faultrecorder}

Figure 231: Function block faultrecorder

\section*{Function}

This function block allows the seven REF542 analog input signals to be recorded for a period of at least 1 second and for a maximum of 5 seconds. It is also possible to record up to 32 digital signals simultaneously from the function chart.

The faultrecorder is started within the application. The recording time of the fault recorder is a combination of the time before the fault and the time after the fault. The time before the fault refers to the period recorded before the fault recorder is actually started. The time after the fault is the period after the fault recorder is started. Dynamic recording of the fault record (e.g. from start signal to signal LS OFF) is not possible.

The specific fault record is saved by the ring buffer process, i.e. the oldest fault record is always overwritten with a new one. The number of saved fault records depends on the record time. The total duration of all saved fault records is 5 seconds. For example, 5 fault records can be saved with a record time of 1 s (time before the fault + time after the fault).

The fault records are exported with the configuration software and then converted to the COMTRADE format. The fault records can also be exported over the interbay bus.

\section*{\({ }^{4}\)) Chapter "4.5.1.14 Exporting the fault recorder" on page 4-11}

Please also observe the following limitations on the use of the fault recorder:
- At least one protective function must be configured and
- The start signal for the fault recorder must be implemented in the FUPLA.

\section*{Recording precision}

The analog signals are digitized and processed with a 1.2 kHz sampling rate, because they are decisive for the protective trips. They therefore within a time grid of 0.833 ms . Trip signals from protective functions are then also sent to the REF542 binary output immediately.
\({ }^{\text {² }}\) Chapter "11.7.1 Measured-value processing" on page 11-30
In contrast, the digital signals are processed in accordance with the FUPLA cycle time. The cycle time depends on the application in this case.
\({ }^{\mu}\) Chapter " Determining the cycle time" on page 4-11

The digital signals are therefore in a grid that is significantly larger than the analog signal grid.

A start or trip signal of a protective function is sent to the fault recorder only once per FUPLA cycle. Therefore, the fault recorder operates at a maximum precision of one FUPLA cycle time.

\section*{Connections:}

BL input: A logical 1 at this input will suppress this function block trip signal.
1 . . . 32: Signal inputs for the digital signals that are to be recorded.
START: Signaling input for the digital signal that trips the fault recording.
OVERFLOW: Signaling output set to logical 1 if there are too many records in a short time. The data can no longer be saved in this case. A rough estimate of 15 s memory period can be assumed for 5 s of fault record data.

\section*{Typical application}

Recording fault data during a short circuit in the network. The data can be exported from the REF542 later and displayed with suitable program.

Figure 232: Example showing the graphic display of fault record data of a two-pole short circuit with the WINEVE program

\section*{Configuration}

Figure 233: Example of a configuration dialog for the function block fault recorder
Input range analog signals: Various parameter settings that are important for recording analog signals of every analog input:
- Input fields name: Input of a name for the recorded analog signal of the input whose number is before the field. This parameter is used by the processing program to assign a physical quantity to the recorded signal.
Setting range: \(0 \ldots 10\) characters (standard character set)
Default: Set in accordance with the use of the analog inputs
- Input fields factor: Input of a scaling factor for the signals recorded at the specific input. This value is used by the processing program. There are no detailed specifications for this factor in the COMTRADE format, in which the data are converted by the configuration program. The input "1" avoids any problems that might occur.
Setting range: 0 ... 1000 (increment: 1)
Default: Empty
- Entry field unit: Input of a physical unit for the signal recorded at the specific input. This value is used by the processing program.
Setting range: \(0 \ldots 3\) characters (standard character set)
Default: Set in accordance with the use of the analog inputs

Input field time before fault: Input of the time in ms actually recorded before the fault recorder is started.
Setting range: 100 ... 2000 ms (increment: 1 ms)
Default: 100
Input field recording time: Input of the time in ms that should be used to record fault records.
Setting range: 1000 ... 5000 ms (increment: 1 ms)
Default: 2500
Input field time after fault: Input of the time in ms actually recorded after the fault recorder is started.
Setting range: \(100 \ldots 4900 \mathrm{~ms}\) (increment: 1 ms)
Default: 1000

Input fields digital signals: A comment can be input here for every digital input \(1 \ldots 32\) of the fault recorder. The comment is used by the processing program to link the recorded signal and its origin.
Setting range: \(0 \ldots 8\) characters (standard character set)
Default: "unused"
Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button pins: Clicking this button opens a dialog window in which the connections of the fault recorder are listed. The number of the terminal connection and the indication of whether it is an input or output of the function block is adjacent. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.
Click the OK button to close this dialog window.

\subsection*{5.4.14 Other components}

The subsections contain the descriptions of the function blocks that are available via the menu Drawing Menu/Insert/Miscellaneous Objects.

\subsection*{5.4.14.1 Operating hours}

Figure 234: Function block operating hours

\section*{Function}

This function block counts the operating hours as long as there is a logical 1 at its input. A number of operating hours can be set as the start value.

If an operating hours counter function block is implemented, the internal operating hours counter counts only the hours for which the REF542 is connected to the auxiliary voltage. The number of operating hours is shown on the REF542 LC display screen in the operational measured values ring menu. Here the count of the internal counter or of the operating hours counter function block, if activated, is used.

Note Only one operating hours counter function block may be used in the application.

\section*{Connections:}

Input left: If this input is set to logical 1, the operating hours count will begin.

\section*{Typical application}

The operating hours of any equipment can be recorded.

\section*{Configuration}

Figure 235: Configuration dialog function block operating hours counter
Input field operating hours: Input of the factor multiplied by 1000 that sets the initial value of the operating hours counter.
Setting range: \(0 \ldots 9\) (increment: 0.001)
Default: 0.000
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.4.14.2 Event generator}
- EVEHT
Evont0-s1 100E0
Evont 1-s0 100 E0

Figure 236: Function block event generator

\section*{Function}

This function block generates an event if the state at the input changes from logical 0 to logical 1 or vice versa. This event can be processed by the higher-order control system.

Note A maximum of 63 events can be generated with event generators, with every event generator being able to transmit 2 events.

\section*{Connections}

Input left: Every change of the logical state generates an event.

\section*{Typical application}

Generating a real-time event for the higher-order control system if a function block does not provide a corresponding event.

Configuration

Figure 237: Configuration dialog function block event generator
Information window IN: Indicates the function block input with adjacent connection number. The connection number 1 is shown if the function block still does not have a connection.

Input field event: \(0->1\) : Input of the event number assigned to the event as sent. The event is generated if the logical state at the input changes from 0 to 1 and is sent via channel 100 (default) with the selected event number. The input "0" prevents an event from being transmitted.
Setting range: 0 ... 63 (increment: 1)
Default: 0
Input field event: 1->0: Input of the event number assigned to the event as sent. The event is generated if the logical state at the input changes from 0 to 1 and is sent via channel 100 (default) with the selected event number. The input "0" prevents an event from being transmitted.
Setting range: 0 ... 63 (increment: 1)
Default: 0
Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.4.14.3 Direct read-write}

Figure 238: Function block direct read-write

\section*{Function}

This function block enables logical signals to be exported from the function chart to a higher-order control system. Logical signals can also be sent in the reverse direction from the control system to the function chart.

Note A maximum of 100 direct write-read commands may be entered.

\section*{Connections}

Input R: Connection of the logical signal that is to be sent to the higher-order control system.

Output W : Signaling output of the logical signal that the higher-order control system will send to the function chart.

\section*{Typical application}

Implementing station-level interlocking over the interbay bus.
Configuration

Figure 239: Configuration dialog function block direct write-read command
Information window IN/OUT: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Input field signalnumber: Input of the signal number/event number over which a logical signal is sent or received. Channel number 101 is the default. Channel and signal/ event number are also shown in the function chart below the function block.
Setting range: 0 ... 99 (increment: 1)
Default: Next free signal number
Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

\subsection*{5.5 Additional functions}

The function described in the following subsections cannot be started as an independent function block, but it is a component of some protective functions.

\subsection*{5.5.1 Autoreclosure}

Note Autoreclosure for the distance protection is described in the distance protection section.

². Chapter "5.4.11 Distance protection" on page 5-158

\section*{Function}

In overhead cable networks most faults are short circuits with arcing. The line has to be temporarily switched off to stop the arc. It can be reactivated after deionizing the arc section. The fault is tripped by protection equipment and the subsequent quick, independent autoreclosure is also referred to as a short disconnection (SD) (also AR, "autoreclose" or "refermeture automatique").

To enable this procedure, the following protective functions implemented in the REF542 can be combined with the autoreclosure (AR) function:
- Overcurrent instantaneous
- Overcurrent high
- Overcurrent directional high
- Earthfault high
- Earthfault directional low

Two parameter sets can be configured for the autoreclosure.

\section*{Configuration}

Please observe the following basic conditions for proper functioning of the autoreclosure:
- The autoreclosure must be generally released in the REF542 hardware configuration.
\({ }^{\text {n }}\)) Chapter "5.3.2 Global Settings" on page 5-2
- The blocking time must be set longer than the longest dead time.
- The fault time must be longer than the trip time of the protection for which the autoreclosure is configured.
- The power circuit-breaker closing command may not be interlocked while the autoreclosure is running.

The dialog window is the same for all autoreclosure-compatible protective functions and is reached via the autoreclosure button in the configuration dialog of the corresponding protective function.

\section*{Caution The definition of the fault time used here is not the same as the standard definition of the fault time.}

The definition used here is in the following description of the configuration dialog. In contrast to this, the definition of the fault time for the distance protection-autoreclosure is the same as the standard definition.

Figure 240: Configuration window autoreclosure (AR)
Input field number of recloses (once per parameter set/setting): Indicates how often the autoreclosure is activated in succession.
Setting range: 0,1 or 2
Default: 0
Input field ArTime Shot 1 (once per parameter set/setting): Input of the time in ms for which a protective starting must persist after the first tripping before a second tripping.
Setting range: [50 ms + trelay] \(\ldots 300000 \mathrm{~ms}\) (increment: 1 ms)
Default: [\(300 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)]

Note The time set in the configuration dialog of the protective function will be overwritten by this parameter (fault time 1).

Input field ArDelayTime Shot 1 (once per parameter set/setting): The time in ms for which the power circuit-breaker (LS) remains open before the first autoreclosure.
Finally a LS-On command is generated.
Setting range: [200 ms + trelay \(] \ldots 300000 \mathrm{~ms}\) (increment: 1 ms)
Default: [\(2.000 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)]
Input field Artime Shot 2 (once per parameter set/setting): Input of the time in ms for which a protective starting must persist after the second tripping before a third tripping.
Setting range: [50 ms + trelay \(]. .300000 \mathrm{~ms}\) (increment: 1 ms)
Default: [\(300 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)]

Note The time set in the configuration dialog of the protective function will be overwritten by this parameter (fault time 2).

Input field ArDelayTime Shot 2 (once per parameter set/setting): The time in ms for which the power circuit-breaker (LS) remains open before the second autoreclosure. Finally a LS-On command is generated.
Setting range: [200 ms + \(\mathrm{t}_{\text {relay }}\)] ... 300000 ms (increment: 1 ms)
Default: [20 \(000 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\)]
Input field ArReclaimTime (once per parameter set/setting): Recovery time in ms for the power circuit-breaker; i.e. the time in which the autoreclosure is generally blocked. If the protective function is tripped during the blocking time, there will be no autoreclosure.
Setting range: [200 ms + trelay \(]\)... 300000 ms (increment: 1 ms)
Default: [2000 ms + trelay]

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Note An unsuccessful autoreclosure must be acknowledged. The autoreclosure-active signal persists until it is acknowledged. A successful autoreclosure need not be acknowledged.
\({ }^{\mu}\) ¢ Chapter "8.1.4.2 Acknowledging messages and alarms" on page 8-5
Some flow charts of autoreclosures are shown below to clarify its functioning.

\section*{Autoreclosure 1 attempt successful}

Figure 241: autoreclosure flow chart, one successful attempt

\section*{Autoreclosure 1 attempt unsuccessful}

Figure 242: Autoreclosure flow chart, an unsuccessful attempt

\section*{Autoreclosure 2 attempts successful}

Figure 243: Autoreclosure flow chart, two successful attempts
Autoreclosure 2 attempts unsuccessful

Figure 244: Autoreclosure flow chart, two unsuccessful attempts

\section*{6 Mounting and Installation}

In this chapter you will find information
- on what to do first on delivery of the REF542,
- the requirements for the installation location and the environmental conditions,
- how to set up the REF542 and integrate it into the bay and
- how to check the wiring to run the commissioning process.

\subsection*{6.1 Safety Information}

\section*{Warning! Always disconnect the bay before setting up the device!}

\subsection*{6.2 Unpacking}

The REF542 bay control and protection unit does not require special shipping protection. The packaging is adapted for the shipping type and destination. Please proceed as follows:
- Visually inspect the unit and the packaging when unpacking it.

Any shipping damage found in the packaging or the unit should be reported immediately to the last shipper, who should be informed in writing of liability for the damage.
- \(\quad\) Check the delivery for completeness using the order documentation. If there is anything missing or any discrepancies with the order documentation, contact the ABB sales office immediately.
- Mount the unit as described in the following section. If the unit is not for immediate use, store it in a suitable place in its original packaging.
\(\left.{ }^{\mu}\right)\) Chapter "10.1 Storage" on page 10-1

\subsection*{6.3 Mounting}

The diagram below shows the general dimensions of the unit. The table shows the technical data relevant for mounting.

Front view

The figures in parentheses apply to the deep housing.
All dimensions are in mm.
The drawings are not to scale.-X2 interface: Signal converter with corebalance current transformers
\(\square\)-X2 interfaces: Signal converter with connected U-core transducers
\(\square\) Sensor terminal adapter; alternative to the signal converters

Figure 245: Dimensions of the REF542 housing
Table 41: Technical data
\begin{tabular}{lll}
\hline \begin{tabular}{l}
Design \\
\multirow{2}{*}{ Weight }
\end{tabular} & Short housing: \(5 \mathrm{~kg} \ldots 6 \mathrm{~kg}\) & depending on equipment \\
\cline { 2 - 3 } & Long housing: \(5.5 \mathrm{~kg} \ldots 7 \mathrm{~kg}\) & depending on equipment \\
\hline Installation type & Semiflush, terminal above & \begin{tabular}{l}
Terminals for core-balance current transformer are \\
on the side
\end{tabular} \\
\hline Connections: & DIN 41612 & \\
\hline Dimensions & \(240 \times 330 \times 228 \mathrm{~mm}(\mathrm{~W} \times \mathrm{H} \times \mathrm{D})\) & Short housing \\
\cline { 2 - 3 } & \(240 \times 330 \times 271 \mathrm{~mm} \mathrm{(W} \mathrm{\times H} \mathrm{\times D)}\) & Long housing \\
\hline \begin{tabular}{l}
Panel cutout for semiflush \\
mounting
\end{tabular} & \(231 \times 321 \mathrm{~mm} \mathrm{(W} \mathrm{x} \mathrm{H)}\) & \\
\hline
\end{tabular}

\subsection*{6.3.1 Set-up Area and Required Environmental Conditions}

Please note the following information regarding the set-up area:
- Allow sufficient space for access to the front panel of the unit. The connections must be easily accessible.
- Access to the top of the unit with semiflush mounting must be free for the following reasons:
- To replace the unit,
- to expand the unit,
- to replace specific electronic equipment racks/boards and
- to replace specific modules if necessary.

Because the unit is sensitive to non-permitted severe environmental conditions, please observe the following:
- The set-up area must be free of excessive air contamination (dust, aggressive substances ...).
- The natural air circulation around the unit must be free.
- The set-up area must maintain the specified environmental conditions:

The unit is not sensitive to its position. It should be vertically mounted to ensure that the LC display screen and the labels on the front panel can be read without problem.
Table 42: Technical data for the set-up area and the environmental conditions
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{General Data} \\
\hline Temperature Range & \(\begin{array}{ll}\text { Operation: } & -10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C} \\ \text { Storage: } & -20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C} \\ \text { Transport: } & -20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\end{array}\) & Non-condensing humidity < 95\% \\
\hline Earthquake safety & \begin{tabular}{l}
DIN IEC 60068-3-3 \\
DIN IEC 60068-2-6 \\
DIN IEC 60068-2-59 \\
CEI IEC 61166 \\
CEI IEC 60980
\end{tabular} & \\
\hline Insulation voltage & IEC 60255-5/2 kV, 1 Min., 50 Hz & except for power supply input \\
\hline Fast Transient Test & IEC 60801-4/4 kV & \\
\hline Electrostatic discharge (ESD) & IEC 60801-2 & \\
\hline Resistance to electromagnetic fields & IEC 60801-3/30 V/m & \\
\hline Environmental Conditions & IEC 60255-4 & \\
\hline Protection class & \begin{tabular}{ll}
Housing: & IP 30 or \\
& IP 54
\end{tabular} & Standard design on request \\
\hline & Connection: \(\begin{array}{ll}\text { IP } 20 \text { or } \\ & \text { IP4X }\end{array}\) & Standard design on request \\
\hline
\end{tabular}

\subsection*{6.3.2 Installation on the front panel of a substation}

\section*{Installation instructions}
- (1) Slide the REF542 from the front into the substation front panel cutout to the stop
- (2) Loosely screw 2 right-angle washers (no.4) with an angular slot to the bottom of the REF542
- (3) Slide the washer outwards so the lower part of the REF542 is pressed to the substation front panel. Then tighten the screws.
- (4) Loosely screw 2 round washers (no. 5) with eccentric holes to both side panels of the REF542 - do not tighten yet!
(5) Turn or slide the washers so the top panel of the REF542 is pressed to the substation front panel. Then tighten the screws.

\section*{Legend}

No. 1: M5x12 philips screwdriver
No. 2: M5 spring washer
No. 3: M5 U-washer
No. 4: right-angle washer
No. 5: round washer
No. 6: M5 spring washer
No. 7: M5x12 16-kt
Figure 246: REF542 installation diagram in the front panel of a substation

\subsection*{6.3.3 Wiring the REF542}

Follow the bay documentation supplied for the wiring.
In conclusion, the checks described in the following paragraphs can be done to ensure that the wiring is correctly installed.

\section*{Checking the current transformer circuits}

To check that the current transformer and the current transformer circuits are wired correctly, run the following checks:
- Polarity check

The polarity check (as close as possible to the REF542) is used to check the current circuit and also the installation position and the polarity of the transducer. The polarity of the transducers to one another can also be checked with load current.
\({ }^{4}\)) Chapter "7.5 Determining the transformer direction" on page 7-4
- Current feed with heavy current source (primary test instrument)

The current feed provides information on the transducer transformation and the correct wiring to the REF542. The power supply should be per conductor and run from conductor to conductor in each case. All line currents and the residual current should be checked here.
The transducer transformation can also be checked with load current.
- Recording the magnetizing characteristic

Recording the magnetizing characteristic ensures that the REF542 is connected to a protective core and not to a measuring core.
- Checking the transducer circuit ground Every independent current circuit may be grounded at only one point to prevent balancing currents resulting from potential differences.
- Check the grounding of the cable current transformer (when used) If the neutral current is measured by a cable current transformer, the cable shielding should first be returned through the cable current transformer before connecting it to the ground.
- This enables weak ground fault currents that flow along the cable sheath to dissipate. In this way, they will not be incorrectly measured at their own relay feeder. The following shows another view of the cable current transformer grounding.

Figure 247: Grounding of a cable current transformer
\({ }^{〔}\)) Chapter "11.7.2 Measurement or calculation of Uo, Io" on page 11-33

\section*{Check the voltage transformer circuits}

To check that the voltage transformer and the voltage transformer circuits are wired correctly, run the following checks:
- Polarity check
- Wiring check
- Check the transformer circuit grounding
- \(\quad\) Check the voltage transformer for neutral point-ground voltage (when used) To measure ground faults please proceed as follows: The voltage is referred to as neutral point-ground voltage of a ground fault measurement when it occurs with a metallic ground fault in the network between terminals "e" and " n " of the open delta winding.
In the event of a metallic ground fault in phase L1, the external phase-to-neutral voltages occur in phases L2 and L3 instead of the conductor-ground voltages. They are added geometrically and yield three times the amplitude between terminals "e" and " \(n\) ".
\({ }^{4}\) Chapter "11.7.2 Measurement or calculation of Uo, Io" on page 11-33

\section*{Checking the auxiliary voltage}

The auxiliary voltage must be in the tolerance range of the power supply module and have the proper polarity under all operating conditions.
\({ }^{4}\)) Chapter "3.6 Overview of the technical data" on page 3-45

\section*{Check the tripping and signaling contacts}

Conduct this check as shown in the bay documentation.

\section*{Check the binary inputs}

Check the polarity and the voltage value of the binary inputs on the REF542 in accordance with the technical data of the binary inputs.
\({ }^{4}\)) Chapter "3.6 Overview of the technical data" on page 3-45

\section*{7 Commissioning}

The following sections with their subsections contain information on:
- The devices and adapters required for the commissioning inspection.
- The required procedure for the commissioning inspection; For example, depending on the components to be tested: Protection, interlock conditions, communications, measured value recording and determining the direction.

There are also forms for test records, which simplify the tests for the individual protective functions.

\subsection*{7.1 Safety Information}

Note The devices, adapters and procedures described are only examples. Experience and safety in handling the various devices is a requirement.

\section*{Switching on the feeder}

Warning! Before switching on the feeder check that the REF542 is fully functional in the corresponding bay. Pay particular attention to the protective functions and the interlocking!

\subsection*{7.2 Required devices and adapters}

\subsection*{7.2.1 Converter for the sensor terminal adapter}

The converter described below can be used to connect the currents and voltages generated by the Omicron test set to the sensor terminal adapter of the REF542 for testing.

Table 43: Material for manufacturing the converter
\begin{tabular}{l|l|l}
\hline Material & \begin{tabular}{l}
Manu- \\
facturer
\end{tabular} & Manufacturer no. \\
\hline \begin{tabular}{l}
1 Omicron connector with guide cam \\
and 8-pin tension release \\
OR
\end{tabular} & LEMOSA & FGG.2B.308.CNAD 92Z \\
\hline \begin{tabular}{l}
1 Omicron connector with two guide cams \\
and 16-pin tension release
\end{tabular} & LEMOSA & FGB.2B.316.CLAD 72Z \\
\hline \begin{tabular}{l}
1 protective cover fo \\
Omicron connector
\end{tabular} & LEMOSA & GMA.2B.080.DN \\
\hline \begin{tabular}{l}
6 connectors for the REF542 sensor terminal \\
adapter, 2-pin, with soldered connection
\end{tabular} & RADIALL & R 605 005 000 Lot E 95 20 \\
\hline \begin{tabular}{l}
Several meters of \\
double shielded cable
\end{tabular} & & \\
\hline Approx. 1 m 8-pin data line & & \\
\hline
\end{tabular}

Table 44: Pin assignment of the Omicron connector from S/N CMC56 BK xxxxx
\begin{tabular}{l|l||l|l}
\hline \multicolumn{2}{l|}{\begin{tabular}{l}
8-pin connector \\
PIN
\end{tabular}} & Signal & 16-pin connector \\
\hline 1 & Current L1 & 1 & Current L1 \\
\hline 2 & Current L2 & 2 & Current L2 \\
\hline 3 & Current L3 & 3 & Current L3 \\
\hline 4 & Neutral conductor & 4 & Neutral conductor \\
\hline 5 & Voltage L1 & 5 & Voltage L1 \\
\hline 6 & Voltage L2 & 6 & Voltage L2 \\
\hline 7 & Voltage L3 & 7 & Voltage L3 \\
\hline 8 & Not used & \(8-16\) & Not used \\
\hline
\end{tabular}

The following drawing shows the usage of the double shielded cable:

Figure 248: Principal circuit diagram of the REF542 Omicron converter
The test adapter is connected as shown below:
- To the Omicron test set at the connection for external amplifiers.
- To the local control unit on the side at the connections for the sensor terminal adapter

The Omicron test set also requires the generator files to be created:
- 1. current amplifier
- scu_isen.amp

BEGIN AMPLIFIER
NAME SCU_current amplifier
TYPE Current
MAX 50
AMPLF 6.65
PHOFFS 90.0, 90.0, 90.0
END AMPLIFIER
The phase displacement of \(90^{\circ}\) of the Rogowski coils is already accounted for in this file.
- 2. voltage amplifier
- scu_usen.amp BEGIN AMPLIFIER

NAME SCU_voltage amplifier
TYPE Voltage
MAX 1000
AMPLF 50.1
PHOFFS 0, 0, 0 END AMPLIFIER

The rated load for the REF542 is reached with the following setting:
- Voltage: 57.74 V conductor-ground
- Current 1 A

\subsection*{7.3 Calibrating the analog inputs (measuring inputs)}

The following devices are required to calibrate the REF542:
- A precise AC voltage source with 2.00000 V and 50.00 Hz (e.g. a FLUKE process calibrator)
- A voltage meter to monitor the input voltage at the analog inputs/measuring inputs of the REF542
- A plug adapter to connect the analog inputs of the REF542 to the AC voltage source.

The unit is calibrated as follows:

Note The calibration should only be conducted with the unit at operating temperature. Calibrations not conducted under standard operating conditions will yield incorrect results.
- Plug adapter connection to the REF542
- Set the keyswitch "input/operation" to the input position.
- Set the keyswitch "local/remote" to the local position.
- Restart the unit:
- Switch off the auxiliary voltage at the corresponding miniature circuit breakers
- Press and hold the <danger-off-left> and < O > keys and simultaneously switch on the auxiliary voltage again.
- Press and hold the <? > key and switch the keyswitch "local/remote" to the remote position.
- Press the < \(\uparrow>\) key to run a DSP test. The message "DSP interface OK" should appear on the LC display screen.
- Apply the calibration voltage (2.00000 V and 50.00 Hz). Follow the procedure below with the Fluke process calibrator:
- Switch on the unit.
- Source (Off)
- V AC: 5.657V <Enter> (=2.2V• \(\sqrt{ } 2\))
- Press the <<Enter> key to switch to sine.
- Press the blue soft key <fertig>
- Frequency: 50 Hz <Enter>
- Press the <? > to return to the initial menu.
- Press the \(\langle\downarrow>\) key to run the calibration.
- The calibration now runs automatically. When it is finished, the calibration factors for L1-L7 appear on the LC display screen.
- The values should be in the range \(6154 \pm 5 \%\).
(Press <?> and < \(\downarrow\) > in succession until the values of the various inputs are in the desired range. This repeats the actual calibration process. If a satisfactory result can still not be obtained, please observe the following information.)
- Press the < ? >.
- Set the keyswitch "local/remote" to local again. A RAM and watchdog test is run now.
- The analog inputs/measuring inputs are now fully calibrated.

\section*{The calibration process yields incorrect results}

If the calibration factors for the inputs are not in the range \(6154 \pm 5 \%\), the following may be the cause:
- Interference in the calibration voltage
- Transpose the lines and/or shield them.
- The connectors, plug connectors or the cable is defective. This can occur with connectors that are continuously used for calibration.
- Check the connectors and the line and replace them more often.
- If the CPU board is being calibrated for the first time, there may be a defect on the board.
- Replace the board (service!).

\subsection*{7.4 Testing the interlock conditions,}

This test is intended to check the interlocking of the switchgear that the user wants and is required. The two types of interlocking must be taken into account here:
- Bay-level interlocking of specific switchgear and
- station-level interlocking of the bay versus other bays.

The interlock conditions for the bay under test can be found in the order documentation. The interlock conditions specified by the user can be found there.
All possible circumstances must be checked.

\subsection*{7.5 Determining the transformer direction}

The connection of the measuring inputs and the correct polarity of the current and voltage transformers or sensors is very important for distance, comparison and directional functions.

In addition to testing the polarity, the transformation ratio and the magnetizing characteristic, the wiring of the transformers/sensors must also be checked during these test.
\({ }^{\wedge}\)) Chapter "6.3.3 Wiring the REF542" on page 6-5

\subsection*{7.5.1 Current transformer}

The transformers must have a positive winding.
This can be easily checked with a 9 V battery and an analog DC voltmeter. If the primary coil of the current transformer is connected to the battery, the analog voltmeter connected on the secondary side must show positive. When the battery is disconnected, the voltmeter must measure a negative impulse.
The positive terminal of the battery must be connected to P1 of the primary coil and the positive input of the voltmeter to \(s 1\) for this test. The same applies for the negative
terminal at P2 of the primary coil and the voltmeter negative input at s2 of the secondary coil.

The test setup for checking the direction of a core is shown in the following figure.

Figure 249: Setup for the polarity test of current transformers
This polarity check, also referred to as patch test, must be run for every core. To guarantee correct operation even with a multicore current transformer with different cores such as protection and measuring cores, it is recommended that the magnetizing characteristic (hysteresis) be recorded. A Variac with appropriately high voltage is connected to the secondary terminals. The flowing current is measured while the output voltage is rising. The characteristic of the measured values, voltage over current, yields the magnetizing characteristic of the core, which can then be compared with the manufacturer's data.

The transformation ratio of the current transformer cores is checked with a special primary current feed device. The feed device is primarily connected to the current transformer and the secondary value is measured at the secondary terminals of the transformer or at the protective cabinet with an ampere meter.

\subsection*{7.5.2 Voltage transformer}

The same polarity test or patch test is run with voltage transformers. The difference is that the battery is connected to the secondary side and the analog DC test instrument to the primary coil of the voltage transformer.

The test setup for checking a core is shown in the following figure.

Figure 250: Polarity test of voltage transformers.
Every core must be tested here.
If the Variac described in the current transformer section for recording the magnetizing characteristic has a sufficiently high output voltage (e.g. 500 V), it can also be used to run a qualitative test of the voltage transformer transformation ratio. The Variac voltage is applied to the primary side of the voltage transformer and a voltmeter is used to measure the secondary voltage at the corresponding transformer or protective cabinet terminals.

\subsection*{7.5.3 Current sensor}

Because the current sensor, the Rogowski coil, is an air-core coil, it must be subjected to the same polarity test as the current transformers.
The test design is shown in the following diagram. A higher voltage value may be required for the battery.

Figure 251: Polarity test of current sensors (Rogowski coil)
The transformation ratio is tested exactly as with a current transformer. The display in the REF542 protection and control unit can also be checked at the same time. It is not necessary to record a magnetizing characteristic with the Rogowski coil, because it is an air-core coil with no saturation characteristics.

\subsection*{7.5.4 Voltage sensor}

The polarity of the voltage sensor, which is a resistive precision voltage divider, is chekked as shown in the following diagram. The correct polarity of the voltage is measured by applying an appropriate DC voltage (e.g. \(24 \mathrm{~V} / \mathrm{DC}\)) to the secondary terminals. The auxiliary voltage source can also be used if the transformation ratio is very high.

The transformation ratio of the resistive splitter is checked at the same time.

Figure 252: Polarity test of voltage sensors (resistive splitter).

\subsection*{7.6 Testing the measured value recording}

Proper functioning of the transformers and sensors is important for proper functioning of the REF542. The measured-value processing of the unit and the set rated values must be tested for this reason.

The line currents and conductor-ground voltages must be taken as measured input quantities. All other measured values are quantities derived from them.

\section*{Test as follows:}
- Check whether the set rated values match the rated values required by the user (in the order documentation).
- If necessary, load the application into the PC from the REF542.
\({ }^{4}\)) Chapter "4.5.1.13 Receiving an application from the REF542" on page 4-11
- Select the menu item Main Menu/Settings/Connections/Analog Inputs in the configuration program. The rated values are shown in the dialog window that appears and, if necessary, changed. \({ }^{7} \Rightarrow\) Chapter "5.3.4.1 Setting the rated network values" on page 5-7
- Test the wiring of the transformers or sensors
(4) Chapter "6.3.3 Wiring the REF542" on page 6-5
- Disconnect the transducers or sensors from the REF542.

The current transformers must be short-circuited, combination sensors disconnected.
- Connect the test set to the REF542. The relevant current and voltage signals are applied to the transformer inputs (core-balance or closed U-core transformer) or to the sensor terminal adapter.
- \(\quad\) Set the required rated values on the test set
\begin{tabular}{ll}
\hline Transducer/sensor & Rated value \\
\hline Current transformer & 1 A or 5 A \\
Voltage transformer & 100 V or 110 V \\
Rogowski coil & 150 mV \\
Voltage sensor & \(2 \mathrm{~V} / \sqrt{ } 3\) \\
\hline
\end{tabular}

Note When testing combination sensors with measurements, ensure the precision of the test set in this range.
- To test the phase sequence, set every phase separately to the rated value and then check the value on the LC display screen. At the end reset the phase to zero.
- Generate one symmetrical system each for current and voltage with the rated values.
- Check the calculated values.

A three-phase current and voltage tester is recommended to test the power. By changing the phase angle between the current and the voltage system the calculation of reactive and effective values and of \(\cos \varphi\) can be checked.

\section*{Possible sources of error in the event of an erroneous display on the LC display} screen

Always check the settings on the test set first!
Current values are displayed too low:
- The transducers/combination sensors are still switched parallel to the test set.
- An incorrect transformation ratio was set when configuring the analog inputs.

Current values are displayed too high:
- An incorrect transformation ratio was set when configuring the analog inputs.

Voltage values are displayed too low:
- An incorrect transformation ratio was set when configuring the analog inputs.
- Incorrect phase differences were input when testing the external phase-to-neutral voltages.
- The polarity or the transformer terminal of a transducer were reversed.

Voltage values are displayed too high:
- An incorrect transformation ratio was set when configuring the analog inputs.

Power and energy values are not displayed:
- The power calculation is not configured.
- The rated values for current and/or voltage are two high.
- Only test with current OR with voltage.

Power and energy values are shown with the wrong sign
- An incorrect metering system was configured.
- The current or voltage direction is incorrectly set.
- Current or voltage transformers are connected in the wrong direction.
- The phase sequence of the current and/or voltage system is incorrect.

Power values are incorrect
- A three-phase test is not conducted.
- The phase-angle between the current and the voltage system is incorrect; the systems are not congruent.
- The phase difference between the currents and voltages is not \(120^{\circ}\).
- The phase sequence of the current and/or voltage system is incorrect.

\subsection*{7.7 Testing the protective functions}

To ensure that no damage has been caused by transport or setup and installation of the protection equipment and systems, secondary tests are run on the REF542 protection and control unit with the configured protective functions.

\section*{Warning! \\ Always observe the applicable safety regulations when conducting the secondary test with an appropriate test set.}

\section*{Caution When testing ensure that the limit values of the measuring inputs and the auxi-} liary voltage supply are not exceeded.

\section*{\({ }^{4}\) _Chapter "3.6 Overview of the technical data" on page 3-45}

Secondary function tests are recommended during commissioning of the protective functions.

The activated and configured automatic autoreclosure and also other functions of the complete system and the power circuit-breaker should be tested to ensure safe operation of these functions.

\section*{Defined circuit diagram for directional protective function}

The following diagram shows a circuit diagram for the REF542. It is specified for a transformer terminal, but is equally valid for sensors. Circuit diagrams for different applications can also be found in the appendix.
\({ }^{\wedge} \leftrightharpoons\) Chapter "11.4 Typical examples of sensor or transducer connections" on page 11-14

Figure 253: Standard circuit diagram for operating characteristics of the directional functions

\section*{General procedure for testing the protective functions}

The following points are particularly important for protective functions that must work in connection with a set direction or energy flow quantity.
- Checking the sensor and transformer connections and wiring check of the station circuit diagram,
\(\left.{ }^{4}\right)\) Chapter "6.3.3 Wiring the REF542" on page 6-5
- Determining the transformer direction
\({ }^{4}\)) Chapter "7.5 Determining the transformer direction" on page 7-4
- Connection and documentation of the test set
\({ }^{4}\)) Chapter "7.2.1 Converter for the sensor terminal adapter" on page 7-1
- Testing and documentation of the measured value recording,
\({ }^{n} \leftrightharpoons\) Chapter "7.6 Testing the measured value recording" on page 7-6
- Setting parameters for the protective functions,
\({ }^{4}\)) Chapter "5.4.8.1 Inrush" on page 5-91 to
\({ }^{\mu}\)) Chapter "5.4.12.6 Synchrocheck" on page 5-199
- Recording the test settings

To monitor the test of the correct direction of the specific protective functions in comparison with the measured power and power factors in the event of a later primary test, the following information should be documented in the secondary tests:
- Directional setting of the test set
- Measurement of the effective and reactive power and of the \(\cos \varphi\) factor
- Directional setting of the measurement and protective functions

The default test records can be used to record them:
\({ }^{\wedge} \downarrow\) Chapter "7.8 Protection test records" on page 7-16

\section*{Setting parameters for the directional protective functions}

Corresponding effective and reactive power and power factor values and directions are assigned to the directional sector of the protective functions. The setup of the metering system, i.e. the power direction, is significant here.
\({ }^{\wedge} \downarrow\) Chapter "5.3.6 Calculated values" on page 5-12

Note The reference arrow system "load" must be selected to determine the direction of the protective functions with the power.

Details are to found in the description of the specific protective function.
The direction of the energy flow must be known for the primary test.

\section*{Equipment for commissioning}

The REF542 provides the following equipment:
- Display of the tripping page on the LC display screen The tripping page shows the data that have resulted in a protective function being tripped.
\(\stackrel{H}{4}\) Chapter "8.1.4.5 Starting the tripping page" on page 8-7
- Display of the operational measured values on the LC display screen The measured values of the line currents and phase voltage are shown on the LC display screen. All other measured values are calculated from the above. \({ }^{\wedge} \downarrow\) Chapter "8.1.4.3 Retrieving measured and calculated values" on page 8-5

Note If one of the connections on the REF542 or the polarity of the transformers is changed, the result is a number of options for reversing the direction again and again. THEREFORE:
Document every change made after a primary directional test. If there is any doubt, run the secondary test again.

\subsection*{7.7.1 Testing the current protective functions}

When commissioning the current protective functions, secondary functional tests are recommended. The various requirements listed in Chapter "7.7 Testing the protective functions" on page 7-8 and Chapter "5.4.8 Current protective functions" on page 5-90 must be observed.

\section*{Response time}

The response time of the line currents and the earth current must be tested. The protective function response is shown by the lower LED (protective function status LED) changing color to orange and the protective function message displayed in the status line of the LC display screen. The fault duration should be in the range of the time delay set for that function. In the case of the AMZ current protective functions, ensure that the response time is at 1.14 times the setting value.

\section*{Operating time}

The operating time value (delay period) for definite time current protective functions should be tested with a test current increasing by steps from zero to twice the quantity set as the starting value.

When testing AMZ current protective functions, the formulas and families of curves can be found in Chapter "11.5 IDMT protection and earthfault IDMT protection families of curves" on page 11-20.

Note The relay period must also be added to the operating times determined from the cur-rent-time characteristics. (Binary input/output board with transistor relays: 15 ms , and with conventional relays: 30 ms)

\section*{Directional unit}

When testing the directional functions with the line currents, the correct phase voltage must be applied in each case. The limit angle between current and voltage should be determined at twice the starting value of the current and the rated value of the voltage.

The directional earthfault protection (GFP) in \(\cos \varphi\) and \(\sin \varphi\) circuits must be tested in the same way.

\subsection*{7.7.2 Testing the voltage protective functions}

When commissioning the voltage protective functions, secondary functional tests are recommended. The various requirements listed in Chapter " 7.7 Testing the protective functions" on page 7-8 and Chapter "5.4.9 Voltage supervision" on page 5-125 must be observed.

\section*{Response time}

The response time for the external phase-to-neutral voltages and for the neutral voltage in the event of earthfaults must be tested. Ensure that the voltage protective function can be selected to operate as overvoltage or undervoltage protection. The protective function response is shown by the lower LED (protective function status LED) changing color to orange and the protective function message displayed in the
status line of the LC display screen. The fault duration should be in the range of the time delay set for that function.

\section*{Operating time}

The operating time value (delay period) for overvoltage protective functions should be tested with a test current increasing by steps from zero to 1.2 times the quantity set as the voltage response value. However, undervoltage protective functions should be tested with a test voltage declining by steps from the rated value to 0.8 times the voltage response value.

\subsection*{7.7.3 Testing the motor protective functions}

When commissioning the voltage protective functions, secondary functional tests are recommended. The various requirements listed in Chapter "7.7 Testing the protective functions" on page 7-8 and Chapter "5.4.10 Motor Protection" on page 5-143 must be observed.

\subsection*{7.7.3.1 Thermal overload}

The thermal overload protective function has a temporal course, as described in Chapter "5.4.10.1 Thermal overload protection" on page 5-144.

The trip time depends on the momentary stored temperature in the REF542 and on the supply current. Because there are three power system ranges, each of which has one time constant, the trip time also depends on the power system range.

The ranges are divided as follows depending on the rated motor current \(\mathrm{I}_{\mathrm{MN}}\) :
- \(\quad 0.10 \cdot I_{\mathrm{MN}}<\mathrm{I}<2,00 \cdot \mathrm{I}_{\mathrm{MN}}\) (time constant TC normal active)
- I > \(2.00 \cdot I_{\mathrm{MN}}\) (time constant TC fault active for rotor-critical cases)
- I \(>0.10 \cdot I_{\mathrm{MN}}\) (time constant TC Off active for cooling when stopped)

The operating time should be determined with a test current equivalent to 6 times the rated motor current. The cooling period is determined by the time constant when stopped. A trip is shown by the lower LED (protective function status LED) changing color to orange and the protective function message displayed in the status line of the LC display screen.

\subsection*{7.7.3.2 Motor start monitoring}

The current-time characteristic of the motor starting monitoring is described and shown in Chapter "5.4.10.2 Motor start" on page 5-148.

The operating time is inversely proportional to the square of the flowing current. The operating time should also be determined here with a test current equivalent to 6 times the rated motor current.

\subsection*{7.7.3.3 Monitoring on blocking rotor}

The monitoring on blocking rotor protective function is tested in the same way as an overcurrent definite time, as described in Chapter "7.7.1 Testing the current protective functions" on page 7-11. If the signal "rotor blocked" is simulated, the tripping can be blocked.
\({ }^{\text {² }}\), Chapter "5.4.10.3 Blocking rotor" on page 5-152
A trip is shown by the lower LED (protective function status LED) changing color to orange and the protective function message displayed in the status line of the LC display screen.

\subsection*{7.7.3.4 Number of starts}

The number of starts is defined for the warm or cold start. The temperature parameters set for the warm start determine whether a start is warm or cold. This function requires a signal to detect the motor start. The signal may be generated in the function chart.

If the number of starts is exceeded, this is shown by the lower LED (protective function status LED) changing color to orange and the protective function message displayed in the status line of the LC display screen.

\subsection*{7.7.4 Testing the distance protection}

When commissioning the distance protective function, a secondary functional test is recommended.
\({ }^{\text {n }}\)) Chapter "5.4.11 Distance protection" on page 5-158

\section*{Secondary test}

The secondary test during commissioning is provided to check the proper and faultfree functioning of the protective function.

\section*{Testing the impedance calculation}

In the REF542 impedances from all six loops are calculated. A secondary test is recommended to check these measuring loops. When calculating the fault impedance of earth faults, the \(\mathrm{k}_{0}\) factor must be taken into account.

The following set parameters should be checked to test the operating characteristic:
- Setting of the real resistance,
- Setting of the reactive resistance and
- \(\quad\) Setting of the zone directional angle \(\delta_{1}\) and \(\delta_{2}\).

Note The power circuit-breaker should be in an undefined position while the operating characteristic is recorded. The auxiliary voltage for the position message must be shut off for this.
If the power circuit-breaker is in the OFF position during the test, measurement precision and operating time may be influenced.

\section*{Response time and operating characteristic}

The response times of the voltage-dependent overcurrent starting should be completely specified first. Then the operating characteristic can be tested in accordance with the applicable regulations.

For example, in accordance with VDE the operating characteristic must be tested with constant current and the operating time is determined as twice the setting value of the overcurrent starting.

\section*{Switch-on fault/switching on persistent fault}
\({ }^{4}\)) Chapter " Switching onto faults" on page 5-171
- Standard operation

The REF542 reacts here in accordance with its set impedance zones. If a fault is simulated with the secondary test instrument when the power circuit-breaker is switched on simultaneously, the fault will be switched off in the applicable zone time in accordance with the set impedance-time characteristic.
- Use overreach zone With this setting the overreach zone is activated for 200 ms when the power cir-cuit-breaker is closed. A fault impedance is placed between the first impedance step and the overreach stage on the test instrument to test it. If the fault current is present within 200 ms after switching on the power circuit-breaker, this results in a tripping as set in the time setting of the overreach zone. If the fault current is present later, it will be tripped in accordance with the set impedance-time characteristic.
- Tripping after general starting

With this setting the tripping is generated only depending on the general starting. If the fault current is present within 200 ms after switching on the power circuitbreaker, the tripping occurs immediately.

\section*{AR - autoreclosure}
\({ }^{4}\)) Chapter "Autoreclosure" on page 5-165
An autoreclosure can only be tested with a circuit breaker image or the power circuitbreaker itself. The proper functional sequence should be tested here; for example, how the overreach zone operates with an autoreclosure on a line unit that is overhead cable only or with a mixed unit comprising cable and overhead cable.

\section*{Signal comparison protection}
\({ }^{〔}\) Chapter "Signal comparison protection" on page 5-169
In this function a fault is simulated within the first zone. If the loop for signal comparison remains closed, a trip with low delay period is formed. If the loop is open, i.e. a fault outside the protection zone, the tripping only occurs with the first time-level delay.
The protective function response is shown by the lower LED (protective function status LED) changing color to orange and the protective function message displayed in the status line of the LC display screen. The fault duration should be in the range of the time delay set for that function.

\subsection*{7.7.5 Testing the supplementary protective functions}

When commissioning the voltage protective functions, secondary functional tests are recommended. The various requirements listed in Chapter "7.7 Testing the protective functions" on page 7-8 and Chapter "5.4.12 Additional protective functions" on page \(5-186\) must be observed.

Note The protective function response is shown by the lower LED (protective function status LED) changing color to orange and the protective function message displayed in the status line of the LC display screen.

\section*{Thermal supervision}
\({ }^{〔} \downarrow\) Chapter "5.4.12.1 Thermal supervision" on page 5-186
The thermal supervision function receives the measured values over the process bus. These values must be checked with the substation and the measured value encoders.

\section*{Unbalanced load}
\({ }^{〔}\)) Chapter "5.4.12.2 Unbalanced load" on page 5-189
The unbalanced load function is executed in one step and runs an assymetrical current test. The unbalanced load components of the currents are not measured but the rms values of the line currents are compared. To activate the function a minimum line current must be present. The trip value is derived as the amplitude of the difference of the currents based on the smaller of the two compared line currents. If this trip value is exceeded, the protective function is started. If the trip value is exceeded for at least the set delay period, a trip signal is generated.

The following example shows the calculation of the negative-phase current for the line currents \(\mathrm{I}_{\mathrm{L} 1}\) and \(\mathrm{I}_{\mathrm{L} 2}\) :
\(I_{\text {asy }}=\frac{\left|I_{L 1}\right|-\left|I_{L 2}\right|}{\left.\operatorname{AHN}\}_{L L 1} I_{L 1}, I_{L 2}\right\}}\)
lasy: Asymmetrical current
\(\mathrm{I}_{\mathrm{L} 1}\) : Current rms value in conductor L1
\(\mathrm{I}_{\mathrm{L} 2}\) : Current rms value in conductor L 2
\(\operatorname{MIN}\left\{\mathrm{I}_{\mathrm{L} 1}, \mathrm{I}_{\mathrm{L} 2}\right\}: \quad\) Minimum of \(\mathrm{I}_{\mathrm{L} 1}\) and \(\mathrm{I}_{\mathrm{L} 2}\)

\section*{Directional Power}

². Chapter "5.4.12.3 Directional power" on page 5-192
The directional power supervision is based on comparing the calculated active power with a configured limit value. The rated active power (P nom) that must be set is based on the three-phase calculated active power and therefore should always be subjected to a three-phase balanced scheme. The active power is determined from the voltage and current measured quantities, which are always based on the rated quantities of the analog inputs.

\section*{Low load}

²) Chapter "5.4.12.4 Low load" on page 5-194
The low load supervision is based on comparing the active power with the configured response time. If the calculated active power falls below the response time, the protective function will be activated. If the response time falls below for at least the time set in the parameters, it will be tripped. It must be noted that the set pick-up current (I min) must be exceeded to activate the low load supervision.

\section*{Frequency supervision function}
\({ }^{4}\)) Chapter "5.4.12.5 Frequency supervision" on page 5-197
The frequency limits of the frequency monitoring should be tested by raising and lowering the frequency on the test instrument.
② Chapter "11.7.4 Calculation of the frequency" on page 11-33

\section*{Synchrocheck}
(7) Chapter "5.4.12.6 Synchrocheck" on page 5-199

The synchrocheck tests the external line voltages of the systems that are to be switched in parallel. A closing command is generated if the differences of the voltage amplitudes, the phase difference and the frequencies vary within preset limits for a specified period. The closing command enables the switching operation to be released to couple the separate systems. A test instrument with two voltage systems that can be set separately is required.

\subsection*{7.8 Protection test records}

The following pages have the test records that were addressed in Chapter "7.7 Testing the protective functions" on page 7-8 and its subsections.
The test record itself indicates what protocol can be used for what protective function.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TEST RECORD & & \multicolumn{5}{|l|}{} \\
\hline \multicolumn{7}{|l|}{Station:} \\
\hline \multicolumn{7}{|l|}{Out-feed:} \\
\hline Current transformer ratio: & & A & & A & & \\
\hline \multirow[t]{2}{*}{Closing current blocking} & & \multicolumn{2}{|l|}{Parameter set 1} & \multicolumn{2}{|l|}{Parameter set 2} & \\
\hline & Setting range: & Setting & Response time & Setting & Response time & Remarks \\
\hline m \(\cdot 1>\) & 2.0-8.0 & & & & & \\
\hline n & 3.0-4.0 & & & & & \\
\hline Time & \(200+t_{\text {relay }} \ldots 1000000 \mathrm{~ms}\) & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{m \(\cdot 1>\)} \\
\hline \multicolumn{7}{|l|}{Time} \\
\hline \multicolumn{7}{|l|}{0.65 m \(\mathrm{m} \cdot \mathrm{l}\) >} \\
\hline \multicolumn{7}{|l|}{Time} \\
\hline & - & & & & & \\
\hline \multicolumn{7}{|l|}{n-l>>} \\
\hline \multicolumn{7}{|l|}{Time} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{I>} \\
\hline \multicolumn{7}{|l|}{Time} \\
\hline \multicolumn{7}{|l|}{l>>} \\
\hline \multicolumn{7}{|l|}{Time} \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{Overcurrent low l>} \\
\hline Start val. conductor L1, L2, L3 & 0.05...40.0 \(I_{\text {nREF }}\) & & & & & \\
\hline Time & \(20+t_{\text {relay }} \ldots 300000 \mathrm{~ms}\) & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{Overcurrent high l>>} \\
\hline Start val. conductor L1, L2, L3 & 0.05...40.0 \(I_{\text {nREF }}\) & & & & & \\
\hline Time & \(20+t_{\text {relay }} \ldots 300000 \mathrm{~ms}\) & & & & & \\
\hline & & & & & & \\
\hline \multicolumn{7}{|l|}{Overcurrent inst. l>>>} \\
\hline Start val. conductor L1, L2, L3 & 0.1...40.0 \(\cdot I_{\text {nREF }}\) & & & & & \\
\hline Time & \(20+t_{\text {relay }} \ldots 300000 \mathrm{~ms}\) & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{TEST RECORD} \\
\hline \multicolumn{8}{|l|}{Station:} \\
\hline \multicolumn{8}{|l|}{Out-feed:} \\
\hline Current transformer ratio: & & A & & & A & & \\
\hline Voltage transformer ratio: & & kV & & & kV & & \\
\hline \multirow[t]{2}{*}{Overcurrent directional low.} & \multicolumn{3}{|l|}{Parameter set 1} & \multicolumn{3}{|l|}{Parameter set 2} & \multirow[t]{2}{*}{Angular range} \\
\hline & Setting & Response time & Tripping page & Setting & Response time & Tripping page & \\
\hline \multicolumn{8}{|l|}{Directional setting} \\
\hline \multicolumn{8}{|l|}{Current value phase L1 forwards} \\
\hline \multicolumn{8}{|l|}{Voltage phase L1} \\
\hline \multicolumn{8}{|l|}{Time phase L1} \\
\hline \multicolumn{8}{|l|}{Current value phase L2 forwards} \\
\hline \multicolumn{8}{|l|}{Voltage phase L2} \\
\hline \multicolumn{8}{|l|}{Time phase L2} \\
\hline \multicolumn{8}{|l|}{Current value phase L3 forwards} \\
\hline \multicolumn{8}{|l|}{Voltage phase L3} \\
\hline \multicolumn{8}{|l|}{Time phase L3} \\
\hline \multicolumn{8}{|l|}{Real power measurement} \\
\hline \multicolumn{8}{|l|}{Reactive power measurement} \\
\hline \multicolumn{8}{|l|}{Current value phase L1 forwards} \\
\hline \multicolumn{8}{|l|}{Voltage phase L1} \\
\hline \multicolumn{8}{|l|}{Time phase L1} \\
\hline \multicolumn{8}{|l|}{Current value phase L2 backwards} \\
\hline \multicolumn{8}{|l|}{Voltage phase L2} \\
\hline \multicolumn{8}{|l|}{Time phase L2} \\
\hline \multicolumn{8}{|l|}{Current value phase L3 backwards} \\
\hline \multicolumn{8}{|l|}{Voltage phase L3} \\
\hline \multicolumn{8}{|l|}{Time phase L3} \\
\hline \multicolumn{8}{|l|}{Real power measurement} \\
\hline \multicolumn{8}{|l|}{Reactive power measurement} \\
\hline \multicolumn{8}{|l|}{Test set settings} \\
\hline Direction or fault code & & & & & & & \\
\hline Earthing current/voltage transformer & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TEST RECORD & \multicolumn{7}{|l|}{} \\
\hline Station: & \multicolumn{7}{|l|}{} \\
\hline Out-feed: & \multicolumn{7}{|l|}{} \\
\hline Current transformer ratio: & & A & & & A & & \multirow[t]{3}{*}{Remarks} \\
\hline & \multicolumn{3}{|l|}{Parameter set 1} & \multicolumn{3}{|l|}{Parameter set 2} & \\
\hline & Setting & Response time & Tripping page & Setting & Response time & Tripping page & \\
\hline IDMT & & & & & & & \\
\hline Start value IEB phase L1 & & & & & & & \\
\hline Start value IEB phase L2 & & & & & & & \\
\hline Start value IEB phase L3 & & & & & & & \\
\hline IDMT curve & & & & & & & \\
\hline \(2 \times\) phase L1 & & & & & & & \\
\hline Time & & & & & & & \\
\hline \(2 \times\) phase L2 & & & & & & & \\
\hline Time & & & & & & & \\
\hline \(2 \times\) phase L3 & & & & & & & \\
\hline Time & & & & & & & \\
\hline \(4 \times\) phase L1 & & & & & & & \\
\hline Time & & & & & & & \\
\hline \(4 \times\) phase L2 & & & & & & & \\
\hline Time & & & & & & & \\
\hline \(4 \times\) phase L3 & & & & & & & \\
\hline Time & & & & & & & \\
\hline \(8 \times\) phase L1 & & & & & & & \\
\hline Time & & & & & & & \\
\hline \(8 \times\) phase L2 & & & & & & & \\
\hline Time & & & & & & & \\
\hline \(8 \times\) phase L3 & & & & & & & \\
\hline Time & & & & & & & \\
\hline & & & & & & & \\
\hline Curve setting & & & & & & & \\
\hline Setting: k-factor & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TEST RECORD & \multicolumn{7}{|l|}{} \\
\hline Station_ & \multicolumn{7}{|l|}{} \\
\hline Out-feed: & \multicolumn{7}{|l|}{} \\
\hline Current transformer ratio: & & A & & & A & & \multirow[t]{3}{*}{Remarks} \\
\hline & \multicolumn{3}{|l|}{Parameter set 1} & \multicolumn{3}{|l|}{Parameter set 2} & \\
\hline & Setting & Response time & Tripping page & Setting & \multicolumn{2}{|l|}{Response time \(\quad\) Tripping page} & \\
\hline Earthfault low & & & & & & & \\
\hline Start value phase N & & & & & & & \\
\hline Time & & & & & & & \\
\hline & & & & & & & \\
\hline Earthfault high & & & & & & & \\
\hline Start value phase N & & & & & & & \\
\hline Time & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline Number of autoreclosure tries & & & & & & & \\
\hline Fault time 1 & & & & & & & \\
\hline Dead time 1 & & & & & & & \\
\hline Fault time 2 & & & & & & & \\
\hline Dead time 2 & & & & & & & \\
\hline Blocking time & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TEST RECORD & \multicolumn{7}{|l|}{} \\
\hline \multicolumn{8}{|l|}{Station:} \\
\hline \multicolumn{8}{|l|}{Out-feed:} \\
\hline Current transformer ratio: & & A & & & A & & \\
\hline Voltage transformer ratio: & & kV & & & kV & & \\
\hline \multirow[t]{2}{*}{Earthfault directional low} & \multicolumn{3}{|l|}{Parameter set 1} & \multicolumn{3}{|l|}{Parameter set 2} & \multirow[t]{2}{*}{Angular range} \\
\hline & Setting & Response time & Tripping page & Setting & Response time & Tripping page & \\
\hline \multicolumn{8}{|l|}{Directional setting} \\
\hline \multicolumn{8}{|l|}{Current value phase N forwards} \\
\hline \multicolumn{8}{|l|}{Voltage phase N} \\
\hline \multicolumn{8}{|l|}{Time phase N} \\
\hline \multicolumn{8}{|l|}{Real power display} \\
\hline \multicolumn{8}{|l|}{Reactive power display} \\
\hline \multicolumn{8}{|l|}{Current value phase N forwards} \\
\hline \multicolumn{8}{|l|}{Voltage phase N} \\
\hline \multicolumn{8}{|l|}{Time phase N} \\
\hline \multicolumn{8}{|l|}{Earthfault directional high} \\
\hline \multicolumn{8}{|l|}{Directional setting} \\
\hline \multicolumn{8}{|l|}{Current value phase N forwards} \\
\hline \multicolumn{8}{|l|}{Voltage phase N} \\
\hline \multicolumn{8}{|l|}{Time phase N} \\
\hline \multicolumn{8}{|l|}{Real power display} \\
\hline \multicolumn{8}{|l|}{Reactive power display} \\
\hline \multicolumn{8}{|l|}{Current value phase N backwards} \\
\hline \multicolumn{8}{|l|}{Voltage phase N} \\
\hline \multicolumn{8}{|l|}{Time phase N} \\
\hline \multicolumn{8}{|l|}{Number of autoreclosure tries} \\
\hline \multicolumn{8}{|l|}{Fault time 1} \\
\hline \multicolumn{8}{|l|}{Dead time 1} \\
\hline \multicolumn{8}{|l|}{Fault time 2} \\
\hline \multicolumn{8}{|l|}{Dead time 2} \\
\hline \multicolumn{8}{|l|}{Blocking time} \\
\hline Direction or fault code & Test apparatus & & & & & & \\
\hline Grounding current/voltage transformer & Test apparatus & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TEST RECORD & \multicolumn{7}{|l|}{} \\
\hline Station: & \multicolumn{7}{|l|}{} \\
\hline Out-feed: & \multicolumn{7}{|l|}{} \\
\hline Current transformer ratio: & & kV & & & kV & & \multirow[t]{3}{*}{Remarks} \\
\hline & \multicolumn{3}{|l|}{Parameter set 1} & \multicolumn{3}{|l|}{Parameter set 2} & \\
\hline & Setting & Response time & Tripping page & Setting & Response time & Tripping page & \\
\hline Overvoltage low & & & & & & & \\
\hline Start value phase L1 & & & & & & & \\
\hline Start value phase L2 & & & & & & & \\
\hline Start value phase L3 & & & & & & & \\
\hline Time & & & & & & & \\
\hline Overvoltage high & & & & & & & \\
\hline Start value phase L1 & & & & & & & \\
\hline Start value phase L2 & & & & & & & \\
\hline Start value phase L3 & & & & & & & \\
\hline Time & & & & & & & \\
\hline Number of autoreclosure tries & & & & & & & \\
\hline Fault time 1 & & & & & & & \\
\hline Dead time 1 & & & & & & & \\
\hline Fault time 2 & & & & & & & \\
\hline Dead time 2 & & & & & & & \\
\hline Blocking time & & & & & & & \\
\hline Overvoltage instantaneous & & & & & & & \\
\hline Start value phase L1 & & & & & & & \\
\hline Start value phase L2 & & & & & & & \\
\hline Start value phase L3 & & & & & & & \\
\hline Time & & & & & & & \\
\hline Number of autoreclosure tries & & & & & & & \\
\hline Fault time 1 & & & & & & & \\
\hline Dead time 1 & & & & & & & \\
\hline Fault time 2 & & & & & & & \\
\hline Dead time 2 & & & & & & & \\
\hline Blocking time & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TEST RECORD & \multicolumn{7}{|l|}{} \\
\hline Station: & \multicolumn{7}{|l|}{} \\
\hline Out-feed: & \multicolumn{7}{|l|}{} \\
\hline Current transformer ratio: & & kV & & & kV & & \multirow[t]{3}{*}{Remarks} \\
\hline & \multicolumn{3}{|l|}{Parameter set 1} & \multicolumn{3}{|l|}{Parameter set 2} & \\
\hline & Setting & Response time & Tripping page & Setting & Response time & Tripping page & \\
\hline Undervoltage low & & & & & & & \\
\hline Start value phase L1 & & & & & & & \\
\hline Time & & & & & & & \\
\hline Start value phase L2 & & & & & & & \\
\hline Time & & & & & & & \\
\hline Start value phase L3 & & & & & & & \\
\hline Time & & & & & & & \\
\hline Undervoltage high & & & & & & & \\
\hline Start value phase L1 & & & & & & & \\
\hline Time & & & & & & & \\
\hline Start value phase L2 & & & & & & & \\
\hline Time & & & & & & & \\
\hline Start value phase L3 & & & & & & & \\
\hline Time & & & & & & & \\
\hline Number of autoreclosure tries & & & & & & & \\
\hline Fault time 1 & & & & & & & \\
\hline Dead time 1 & & & & & & & \\
\hline Fault time 2 & & & & & & & \\
\hline Dead time 2 & & & & & & & \\
\hline Blocking time & & & & & & & \\
\hline Undervoltag instantaneous & & & & & & & \\
\hline Start value phase L1 & & & & & & & \\
\hline Time & & & & & & & \\
\hline Start value phase L2 & & & & & & & \\
\hline Time & & & & & & & \\
\hline Start value phase L3 & & & & & & & \\
\hline Time & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TEST RECORD & \multicolumn{7}{|l|}{} \\
\hline Station: & \multicolumn{7}{|l|}{} \\
\hline Out-feed: & \multicolumn{7}{|l|}{} \\
\hline Current transformer ratio: & & kV & & & \multicolumn{2}{|l|}{kV} & \multirow[t]{3}{*}{Remarks} \\
\hline & \multicolumn{3}{|l|}{Parameter set 1} & \multicolumn{3}{|l|}{Parameter set 2} & \\
\hline & Setting & Response time & Tripping page & Setting & Response time & Tripping page & \\
\hline Residual voltage low & & & & & & & \\
\hline Start value phase N & & & & & & & \\
\hline Time & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline Residual voltage high & & & & & & & \\
\hline Start value phase N & & & & & & & \\
\hline Time & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline TEST RECORD \\
\hline Station: \\
\hline Out-feed: \\
\hline Current transformer ratio: \\
\hline \\
\hline Thermal overload \\
\hline Rated motor current \\
\hline Warm-up time constant \\
\hline Current value phase L1 \\
\hline Time \\
\hline Cooling time constant \\
\hline Current value phase L1 \\
\hline Time \\
\hline Startup warm-up time constant \\
\hline Current value phase L1 \\
\hline Time \\
\hline Cooling time constant \\
\hline Current value phase L2 \\
\hline Time \\
\hline Warm-up time constant \\
\hline Current value phase L2 \\
\hline Time \\
\hline Startup warm-up time constant \\
\hline Current value phase L2 \\
\hline Time \\
\hline Cooling time constant \\
\hline Current value phase L3 \\
\hline Time \\
\hline Warm-up time constant \\
\hline Current value phase L3 \\
\hline Time \\
\hline Startup warm-up time constant \\
\hline Current value phase L3 \\
\hline Time \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TEST RECORD & \multicolumn{7}{|l|}{} \\
\hline Station: & \multicolumn{7}{|l|}{} \\
\hline Out-feed: & \multicolumn{7}{|l|}{} \\
\hline Current transformer ratio: & & A & & & A & & \\
\hline & \multicolumn{3}{|l|}{Parameter set 1} & \multicolumn{3}{|l|}{Parameter set 2} & \\
\hline & Setting & Response time & Tripping page & Setting & Response time & Tripping page & Remarks \\
\hline \multicolumn{8}{|l|}{Motor start} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{Operational rated motor current} \\
\hline \multicolumn{8}{|l|}{Motor starting current} \\
\hline \multicolumn{8}{|l|}{Current value phase L1} \\
\hline \multicolumn{8}{|l|}{Current value phase L2} \\
\hline \multicolumn{8}{|l|}{Current value phase L3} \\
\hline \multicolumn{8}{|l|}{} \\
\hline \multicolumn{8}{|l|}{Sys.int. \(\mathrm{I}^{2}\) START \(\cdot \mathrm{T}_{\text {START }} / \mathrm{I}^{2}{ }_{\text {ME }}\)} \\
\hline \multicolumn{8}{|l|}{Current value phase L1} \\
\hline \multicolumn{8}{|l|}{Current value phase L2} \\
\hline \multicolumn{8}{|l|}{Current value phase L3} \\
\hline \multicolumn{8}{|l|}{Starting time} \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline \multicolumn{8}{|l|}{} \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{} \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline TEST RECORD & \multicolumn{5}{|l|}{} \\
\hline Station: & \multicolumn{5}{|l|}{} \\
\hline Out-feed: & \multicolumn{5}{|l|}{} \\
\hline Current transformer ratio: & & A & & A & \multirow[t]{2}{*}{Remarks} \\
\hline \multirow[t]{2}{*}{Thermal supervision} & \multicolumn{2}{|l|}{Parameter set 1} & \multicolumn{3}{|l|}{Parameter set 2} \\
\hline & Setting & Response time & Setting & Response time & \\
\hline Warning temperature & & & & & \\
\hline Time & & & & & \\
\hline Trip temperature & & & & & \\
\hline Time & & & & & \\
\hline & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TEST RECORD & \multicolumn{7}{|l|}{} \\
\hline Station: & \multicolumn{7}{|l|}{} \\
\hline Out-feed: & \multicolumn{7}{|l|}{} \\
\hline Current transformer ratio: & & A & & & A & & \\
\hline Voltage transformer ratio: & & kV & & & kV & & \\
\hline Directional Power & Setting & Response time & Tripping page & Angle & Response time & Tripping page & Angle \\
\hline Directional setting & & & & & & & \\
\hline Real power setting & & & & & & & \\
\hline Current value phase L1 forwards & & & & & & & \\
\hline Voltage phase L1 & & & & & & & \\
\hline Current value phase L2 forwards & & & & & & & \\
\hline Voltage phase L2 & & & & & & & \\
\hline Current value phase L3 forwards & & & & & & & \\
\hline Voltage phase L3 & & & & & & & \\
\hline Time power direction & & & & & & & \\
\hline Real power measurement & & & & & & & \\
\hline Reactive power measurement & & & & & & & \\
\hline Current value phase L1 backwards & & & & & & & \\
\hline Voltage phase L1 & & & & & & & \\
\hline Current value phase L2 backwards & & & & & & & \\
\hline Voltage phase L2 & & & & & & & \\
\hline Current value phase L3 backwards & & & & & & & \\
\hline Voltage phase L3 & & & & & & & \\
\hline Time power direction & & & & & & & \\
\hline Real power measurement & & & & & & & \\
\hline Reactive power measurement & & & & & & & \\
\hline Test set settings & & & & & & & \\
\hline Direction or fault code & & & & & & & \\
\hline Grounding current/voltage transformer & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TEST RECORD & \multicolumn{7}{|l|}{} \\
\hline Station: & \multicolumn{7}{|l|}{} \\
\hline Out-feed: & \multicolumn{7}{|l|}{} \\
\hline Current transformer ratio: & & kV & & & kV & & \multirow[t]{3}{*}{Remarks} \\
\hline \multirow[t]{2}{*}{Frequency supervision} & \multicolumn{3}{|l|}{Parameter set 1} & \multicolumn{3}{|l|}{Parameter set 2} & \\
\hline & Setting & Response time & Tripping page & Setting & Response time & Tripping page & \\
\hline Frequency band & & & & & & & \\
\hline Rated frequency: & & & & & & & \\
\hline & & & & & & & \\
\hline Overfrequency & & & & & & & \\
\hline Time & & & & & & & \\
\hline & & & & & & & \\
\hline Underfrequency & & & & & & & \\
\hline Time & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\subsection*{7.9 Communications test}

Proper functioning of communications is important when using an interbay bus to send data to the control system.

The test is the same regardless of the interbay bus version in use. The messages to the control system (measured values, switching states, alarms ...) for the bay under test can be found in the project documentation. The messages specified by the user are specified there.

All relevant signals must be generated in the bay and checked at the control system operating terminal to ensure that the messages have been received correctly.

\subsection*{7.10 REF542 switch-on process}

The REF542 startup, i.e. the processes that begin with the application of the auxiliary voltage and end with the unit in a fully functional state, run in the following sequence:
- Switch on the auxiliary voltage, the green READY LED lights.
- Initialization of controller, protection and communications:
- Basic initialization of the unit.
- Initialization of controller, protection and communications configuration:
- Loading controller, protection and communications configuration:
- Initialization of configuration-dependent parts (protection and controller)
- Read saved quantities (operating hours, energy, fault records ..
- Version check (If the MicroController and the protection and measuring unit, DSP, do not match, a message will be output to the status line on the LC display screen)
- Load the configuration from the EEPROM into the DSP.
- Start protection and controller.
- Approximately 10 seconds after activation of the auxiliary voltage:
- Open binary and analog inputs and outputs. The protection is active from now on. The interlocking status LED and the protective function status LED show green.
- Starting the function chart
- If the SPA bus is used as the interbay bus, communications begin now.
- Initialization of communications is complete. If the MVB is used as the interbay bus, communications begin about 1 minute after activation of the auxiliary voltage.

Note During the function chart start all connections are set to the logical "0" state. To enable the application to reach a stable state, there should be a delay in releasing the binary outputs; for example, by delaying release of the blocking input at the switching objects.

\subsection*{7.11 Commissioning with a replacement EPROM}

\section*{Caution After replacing an EPROM the analog inputs/measuring inputs must be calibrated!}

The following steps are required for commissioning the REF542 if the EPROMs are also replaced.
- Replace the EPROMS on the CPU board. Depending on the design there are one or two EPROMS for the MC (microcontroller: Processor for controller and messages) and one EPROM for the DSP (Digital Signal Processor: Processor for protection and measuring) are required. They must be removed with a special EPROM tool to avoid damaging the modules.
\({ }^{\text {r }}\) Chapter "3.4.1 CPU Board 1" on page 3-14
\({ }^{5}\)) Chapter "3.4.2 CPU board 2" on page 3-16
- Calibrate the analog inputs (measuring inputs) on the REF542.

²) Chapter "7.3 Calibrating the analog inputs (measuring inputs)" on page 7-3
- \(\quad\) Switch off the miniature circuit breakers on the controller voltage to prevent unwanted switching operations.
- Transfer the application to the REF542.
\({ }^{4}>\) Chapter "4.5.1.12 Sending the application to the REF542" on page 4-10
- Test the interlocking: Only the switching operations defined in the function chart may be conducted. \(\stackrel{ }{ }{ }^{\wedge}\) Chapter "7.4 Testing the interlock conditions," on page 7-4
- Establish the connection of the REF542 analog inputs/measuring inputs to the test instrument (e.g. Omicron test sets).
- Feed in the rated values.
\begin{tabular}{ll}
\hline Transformer/sensor & Rated value \\
\hline Current transformer & 1 A or 5 A \\
Voltage transformer & 100 V or 110 V \\
Rogowski coil & 150 mV \\
Voltage sensor & \(2 \mathrm{~V} / \sqrt{ } 3\) \\
\hline
\end{tabular}

A three-phase current and voltage system must be simulated for test purposes. The above rated values simulate the rated load of the bay.
- Check the display on the upper section of the LC display screen on the REF542:
- Voltage or current displays must show rated load. Real and reactive power and also phase difference \(\cos \varphi\) must be shown if they have been configured. In addition, note the signs, which depend on the configured metering system and the transformer assignment.
- Connect the REF542 digital messages to the test instrument. Depending on the substation type, the digital messages can be specifically configured and can be tapped (e.g. at the terminal strip in the switchbox or directly at the power circuitbreaker).
- Digital messages are:
- LS OFF,
- LS ON (if an automatic autoreclosure has been configured) and
- G St (general starting, only if distance protection has been configured!).
- The malfunction simulation should now be run with the test instrument.
- Reset the following pages after the test has been completed:
- Fault record
- Tripping page
- Circuit breaker data
- Energy values and
- Maximum values.
\({ }^{\text {n }}\)) Chapter "8.1.6.6 Resetting the quantities saved in the unit" on page 8-23

\subsection*{7.12 Commissioning without replacing EPROMs}

The following steps are required for commissioning the REF542:
- Determine the device software versions in the REF542:
- Set the keyswitch "input/operation" to the input position.
- Set the keyswitch "local/remote" to the local position.
- Click the < ? > button to view the service page with the version information.
- Check the version numbers for whether the EPROMs and the configuration software match
- Import the current configuration settings from the REF542 to the PC with the configuration software. Save the configuration settings.
\({ }^{5}\)) Chapter "4.5.1.13 Receiving an application from the REF542" on page 4-11
- Connect the REF542 analog inputs/measuring inputs to the test instrument (e.g. Omicron test sets).
- Feed in the rated values.
\begin{tabular}{ll}
\hline Transformer/sensor & Rated value \\
\hline Current transformer & 1 A or 5 A \\
Voltage transformer & 100 V or 110 V \\
Rogowski coil & 150 mV \\
Voltage sensor & \(2 \mathrm{~V} / \sqrt{ } 3\) \\
\hline
\end{tabular}

A three-phase current and three-phase voltage system must be simulated for test purposes. The above rated values simulate the rated load of the bay.
- Check the display on the upper section of the LC display screen on the REF542:
- Voltage and current displays must show rated load. Real and reactive power and also phase difference \(\cos \varphi\) must be shown if they have been configured. In addition note the signs, which depend on the configured metering system and the transformer assignment.
- Connect the REF542 digital messages to the test instrument. Depending on the substation type, the digital messages can be specifically configured and tapped (e.g. at the terminal strip in the low-voltage box or directly at the power circuitbreaker).
- Digital messages are:
- LS OFF,
- LS ON (if automatic autoreclosure has been configured) and
- G St (general starting, if distance protection has been configured!).
- The malfunction simulation should now be run with the test instrument.
- Reset the following pages after the test has been completed:
- Fault record
- Tripping page
- Circuit breaker data
- Energy values and
- Maximum values.

\section*{8 Operation and Maintenance}

The following section and its subsections contain information on:
- The control elements of the local command unit (LCU)
- The different operating modes of the LCU
- The control options available in the various operating modes
- The different descriptions of the protective functions and their parameters in the configuration program and on some pages that can be shown on the LC display screen
- Regular tests that should be run on the REF542
- The maintenance schedule
- The durability of single components of the REF542.

\subsection*{8.1 Operating the LCU}

The next subsection shows what the operator needs to know to work with the local command unit. Additional information can be found in the referenced sections.
\(\left.{ }^{4}\right)\) Chapter "1.2.2 Special designations in the LCU documentation" on page 1-6
\({ }^{〔}\)) Chapter "3.5 Principles of LCU control" on page 3-42

Table 45: Technical data of the operator view and the control elements
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{General Data} \\
\hline \multirow[t]{5}{*}{LEDs on the control panel of the REF542} & 1 Ready LED not configurable color: green & Signals that the REF542 is ready for operation \\
\hline & 1 protective function status LED not configurable color: green orange red & No protective function activated One protective function activated One protective function tripped \\
\hline & 1 interlocking status LED not configurable color: green red & No interlocking violation Interlocking violation; Illegal switching operation \\
\hline & 1 ALARM LED freely configurable color: black (off) red & \\
\hline & ```
7 LEDs
freely configurable
color: black (off)
 green
 orange
 red
``` & \\
\hline \multirow[t]{2}{*}{Remote communications} & Interface: RS232 (9-pin) & \\
\hline & Transmission speed: \(9600 \mathrm{bit} / \mathrm{s}\) & \\
\hline
\end{tabular}

\subsection*{8.1.1 The control elements of the LCU}

Depending on the equipment option, the control panel of the REF542 local command unit has a backlit LC display screen. LC here stands for liquid crystal and describes the functional principal of the display screen. It has a resolution of \(128 \times 256\) pixels and enables functions such as the user-friendly menu operation and the display of up to eight switchgear items in one mimic diagram. The editor for the LC display screen is used to configure the mimic diagram in accordance with the equipment being monitored.
. \({ }^{\text { }}\) Chapter "5.3.7 Display" on page 5-13
In addition, the front panel of the REF542 has nine keys and two keyswitches plus eleven LEDs (light-emitting diodes). Their configuration is shown in the following illustration. The local command unit is also referred to as the LCU (Local Controlling Unit).
\({ }^{\text {² }}\) Chapter "3.5 Principles of LCU control" on page 3-42


Figure 254: REF542 control panel

1: Operating LED,
2: Red alarm LED,
3: Interlocking status LED,
4: 7 three-color LEDs,
5: Protective function status LED,
6: RS232-Interface,
7: Key for selecting message texts <?>,
8: Danger-Off keys,
9: Key for selecting switchgear \(\langle\boldsymbol{\aleph}\rangle\),
10: Key for opening the selected switchgear <0>,

11: Key for closing the selected switchgear < \(\mathbf{O}\) >,

12: Keyswitch "local/remote",
13: LC display screen
14: Keyswitch "set/operational",
15: Acknowledgment key,
16, 17: Page up/page down keys < \(\boldsymbol{\uparrow}>,\langle\downarrow\rangle\)

\subsection*{8.1.2 The operating modes of the LCU}

There are three operating modes available for operating the LCU. They can be selected with the two keyswitches: local/remote and operational/set:
- Local-operational This is the operating mode of the REF542 with no provision for a higher-order control system. The unit is locally controlled. Information can be scanned and switching operations initiated.
- Local-set

For example, this mode enables scanning and partial resetting of parameters. The REF542 test mode can also be activated.
- Remote-operational In this operating mode the REF542 is operated from a higher-order control system. For example, information can be scanned and switching operations initiated from there.

The combination of the keyswitches "remote-set" is not allowed and will send an error message to the status line at the bottom of the LC display screen as follows: "Operating mode error. Keyswitch on local or operational".

There is also the test mode. It is started from the local-set mode if this option was enabled when the application was set up.
\(\left.{ }^{\mu}\right)\) Chapter "5.3.2 Global Settings" on page 5-2
The test mode control options are described with the "local-set" mode.
Some functions are available in all operating modes and are explained in the following subsection:
\({ }^{〔}\) ) Chapter "8.1.3 Functions in all operating modes" on page 8-3.
Other functions depend on the operating mode and are described in the appropriate sections:
\({ }^{\wedge} \downarrow\) Chapter "8.1.4 Functions in the mode: Local-operational" on page 8-4,
\(\left.{ }^{4}\right\rangle\) Chapter "8.1.6 Functions in the mode: Local-set" on page 8-17 and
\({ }^{\text {r }}\) Chapter "8.1.5 Functions in mode: Remote-operational" on page 8-15.

Note Many protective functions and their parameters are labeled differently in the configuration program and on some pages that can be shown on the LC display screen (2) Chapter "8.2 Parameter names" on page 8-24

\subsection*{8.1.3 Functions in all operating modes}

The following functions of the LCU are available in every operating mode; and therefore are independent of the position of the keyswitch.

\subsection*{8.1.3.1 Loading a configuration from the PC into the REF542}

This function is selected by the configuration software and is independent of the position of the keyswitch.
\({ }^{〔}\) Chapter "4.5.1.12 Sending the application to the REF542" on page 4-10

\subsection*{8.1.3.2 Loading a configuration from the REF542 into the PC}

This function is selected by the configuration software and is independent of the position of the keyswitch.
\({ }^{\wedge} \downarrow\) Chapter "4.5.1.13 Receiving an application from the REF542" on page 4-11

\subsection*{8.1.3.3 Export of the fault recorder (when configured)}

This function is selected by the configuration software and is independent of the position of the keyswitch.
\({ }^{4}\) Chapter "4.5.1.14 Exporting the fault recorder" on page 4-11

\subsection*{8.1.3.4 Setting the LC display screen contrast}

The procedure described below is used to set the contrast of the LC display screen for the lighting conditions at the installation location of the unit.

Increase contrast (darker)
- Press the \(<\boldsymbol{\checkmark}>\) and \(<\boldsymbol{\uparrow}>\) keys simultaneously.

\section*{Reduce contrast (lighter)}
- Press the \(<\checkmark>\) and \(<\downarrow>\) keys simultaneously.

\subsection*{8.1.3.5 Deleting the EEPROMs}

Deleting the EEPROMs deletes the application completely. Even the values saved in the unit (tripping page, maximum values, fault records ...) are deleted. The calibration of the analog inputs is not changed.

It always makes sense to delete the EEPROMs if a new application is to be copied.
- \(\quad\) Switch off the REF542 auxiliary voltage. (Usually at the corresponding miniature circuit breakers; depends on where the unit is installed.)
- Press the < \(\boldsymbol{\uparrow}>\) and \(\langle\boldsymbol{\psi}>\) keys and simultaneously switch on the auxiliary voltage again.

\subsection*{8.1.4 Functions in the mode: Local-operational}

Note Please note that all available control options are also described in Chapter "8.1.3 Functions in all operating modes" on page 8-3.

Many protective functions and their parameters are labeled differently in the configuration program and on some pages that can be shown on the LC display screen. \({ }^{\text {ny }} \boldsymbol{y}\) Chapter "8.2 Parameter names" on page 8-24

\subsection*{8.1.4.1 Display LED message texts}

The message texts of the nine LEDs can be set up as desired in the configuration program (with the exception of the interlocking status and the protective function status LED). They should provide information on what the LED is signaling.
- Press the < ? >.

After a few seconds the previous display is shown on the LC display screen again. To keep the message texts on screen for longer, hold the <?> key down.

\subsection*{8.1.4.2 Acknowledging messages and alarms}

A persistent alarm or a message must be acknowledged, depending on the configuration. Persistent alarms can be detected immediately by the protective function status
LED (5) lighting. Persistent messages, which must be acknowledged, remain displayed on the LC display screen in the status line (bottom).
- Press the <?> and \(\langle\checkmark\rangle\) keys simultaneously.

An alarm can only be successfully acknowledged when the situation that caused the trip no longer exists.

\subsection*{8.1.4.3 Retrieving measured and calculated values}

The measured and calculated values of the REF542 are continuously displayed on the LC display screen above the mimic diagram. They are displayed as absolute values. In addition, voltages and currents are represented by a bar graph. A measurement range of \(0 \ldots 200 \%\) of the rated value is displayed with the voltages, the earth current and the line currents.

With the line currents a trailing pointer function is also used to indicate the maximum value of a configurable time interval. The calculation of the maximum value must be configured in the configuration program with the menu <Configure/Calculated Values ...>.

The displayed values are arranged in a ring menu. Only those that have been measured or whose calculation has been configured are displayed. The calculated values must also be required by a protective function. This minimizes the DSP (protection and measuring processor) processing requirements.

\section*{Selection of next/previous value}
- Press the \(\langle\boldsymbol{\uparrow}>\) or \(\langle\boldsymbol{\downarrow}\rangle\) keys to call up the next or previous value in the ring menu.

The following table shows an overview of all possible displayed values, the corresponding unit and the conditions required to display the value.
Table 46: Measured value display on the REF542 LC display screen
\begin{tabular}{|c|c|c|}
\hline Displayed value & Unit & Condition \\
\hline Communication address & - & is always displayed \\
\hline Current IL1 & A & Min. 1 measurement recorder for current (analog input 1 or 4) \\
\hline Current I \({ }_{\text {L2 }}\) & A & Min. 2 measurement recorders for current (analog input 1, 2 or 4,5 ) \\
\hline Current I \({ }_{\text {L3 }}\) & A & Min. 3 measurement recorders for current (analog input 1, 2, 3 or \(4,5,6\) ) \\
\hline Current I \({ }_{\text {LL1 }}\) & A & Min. 6 measurement recorders for current \\
\hline Current \(\mathrm{I}_{1 \mathrm{~L} 2}\) & A & \\
\hline Current \(\mathrm{I}_{1 \mathrm{~L} 3}\) & A & \\
\hline Current \(\mathrm{I}_{\text {LL } 1}\) & A & \\
\hline Current \(\mathrm{I}_{2 \mathrm{~L} 2}\) & A & \\
\hline Current \(\mathrm{I}_{2 \mathrm{~L} 3}\) & A & \\
\hline Current IL0 & A & Measurement recorder for current at analog input 7 or \(\mathrm{I}_{0}\) calculated from a earthfault protection function, when active . \\
\hline Voltage \(\mathrm{U}_{1 \mathrm{E}}\) & kV & Min. 1 measurement recorder for voltage (analog input 1 or 4) \\
\hline
\end{tabular}

Table 46: Measured value display on the REF542 LC display screen
\begin{tabular}{|c|c|c|}
\hline Displayed value & Unit & Condition \\
\hline Voltage \(\mathrm{U}_{2 \mathrm{E}}\) & kV & Min. 2 measurement recorders for voltage (analog input 1, 2 or 4, 5) \\
\hline Voltage \(\mathrm{U}_{3 \mathrm{E}}\) & kV & Min. 3 measurement recorders for voltage (analog input 1, 2, 3 or 4, 5. 6) \\
\hline Voltage \(\mathrm{U}_{12}\) & kV & At least 2 measurement recorders for voltage ( \(\mathrm{U}_{1 \mathrm{E}}\) and \(\mathrm{U}_{2 \mathrm{E}}\) ). \\
\hline Voltage \(\mathrm{U}_{23}\) & kV & At least 3 measurement recorders for voltage ( \(\mathrm{U}_{2 \mathrm{E}}\) and \(\mathrm{U}_{3 \mathrm{E}}\) ). \\
\hline Voltage \(\mathrm{U}_{31}\) & kV & At least 3 measurement recorders for voltage ( \(\mathrm{U}_{3 \mathrm{E}}\) and \(\mathrm{U}_{1 \mathrm{E}}\) ). \\
\hline Voltage \(\mathrm{U}_{0}\) & kV & Measurement recorder for voltage at analog input 7 or \(U_{0}\) calculated from residual overvoltage protection function, when active. \\
\hline Voltage U1 \({ }_{\text {L1E }}\) & kV & \multirow[t]{6}{*}{Min. 6 measurement recorders for voltage} \\
\hline Voltage U1 \({ }_{\text {L2E }}\) & kV & \\
\hline Voltage U1 \(1_{\text {L3E }}\) & kV & \\
\hline Voltage U1 \({ }_{\text {L12 }}\) & kV & \\
\hline Voltage U1 \({ }_{\text {L23 }}\) & kV & \\
\hline Voltage U1 \({ }_{\text {L31 }}\) & kV & \\
\hline Voltage U2 L 1 E & kV & \multirow[t]{6}{*}{Min. 6 measurement recorders for voltage} \\
\hline Voltage U2 L 2 E & kV & \\
\hline Voltage U2L3E & kV & \\
\hline Voltage U2 \({ }_{\text {L1E }}\) & kV & \\
\hline Voltage U2L23 & kV & \\
\hline Voltage U2 \({ }_{\text {L31 }}\) & kV & \\
\hline Current \(\mathrm{I}_{\text {L1m }}\) & A & Maximum values are configured and measurement recorder for \(\mathrm{L}_{\mathrm{L} 1}\). \\
\hline Current \(\mathrm{I}_{\text {L2m }}\) & A & Maximum values are configured and measurement recorder for \(\mathrm{I}_{\mathrm{L} 2}\). \\
\hline Current \(\mathrm{I}_{\text {L3m }}\) & A & Maximum values are configured and measurement recorder for \({ }^{\mathrm{L}} \mathrm{L}\). \\
\hline Active power & kW & \multirow[t]{5}{*}{The power calculation is activated and the associated analog inputs have corresponding measurement recorders.} \\
\hline Reactive power & kVAr & \\
\hline cos phi & - & \\
\hline Active energy & kWh & \\
\hline Reactive energy & kVAhr & \\
\hline Frequency & Hz & always \\
\hline Operating hours & h & \begin{tabular}{l}
always \\
(If the function block operating hours counter is not activated, the time for which the REF542 is on the auxiliary voltage is counted. If the function block operating hours counter is activated, the time for which its starting condition is met is counted.) \\
\({ }^{4}\) ) Chapter "5.4.14.1 Operating hours" on page 5-206
\end{tabular} \\
\hline Switching cycles & - & \multirow[t]{2}{*}{A power circuit-breaker is configured.} \\
\hline Switched current & kA & \\
\hline
\end{tabular}

Table 46: Measured value display on the REF542 LC display screen
\begin{tabular}{|c|c|c|}
\hline Displayed value & Unit & Condition \\
\hline Phase diff. & & \multirow[t]{8}{*}{Display indicates when the synchrocheck has been activated.} \\
\hline Voltage diff. & V & \\
\hline U1L1E & kV & \\
\hline U1L2E & kV & \\
\hline U2L1E & kV & \\
\hline U2L2E & kV & \\
\hline U1L12 & kV & \\
\hline U2L12 & kV & \\
\hline Motor temperature & \({ }^{\circ} \mathrm{C}\) & \multirow[t]{2}{*}{Application with the thermal replica function for protecting a motor from thermal overload.} \\
\hline Motor start in & min & \\
\hline Transformer temperature & \({ }^{\circ} \mathrm{C}\) & \multirow[t]{2}{*}{Application with the thermal replica function for protecting a transformer from thermal overload.} \\
\hline Transformer ON in & min & \\
\hline Cable temperature & \({ }^{\circ} \mathrm{C}\) & \multirow[t]{2}{*}{Application with the thermal replica function for protecting a cable unit from thermal overload.} \\
\hline Cable ON in & min & \\
\hline max. 15 energy counters & - & There may be as many displays with the corresponding display texts as the number of configured energy counters. \\
\hline
\end{tabular}

\subsection*{8.1.4.4 Selecting and actuating switchgear}

A switching device shown in the mimic diagram can be selected and switched directly in the operator view of the REF542. If an interlock condition is violated, it cannot be switched. The interlocking status LED (top in the row directly beside the LC display screen) will then show red.
- Press the \(\langle\boldsymbol{y}\rangle\) key one or more times until the desired switching device is selected.
The selected switching device will be shown inverted. Which switching device is selected with the first press of the key and which switchgear can be selected is set in the configuration program.
\({ }^{4}\) ) Chapter "5.3.7 Display" on page 5-13
- Press the < \(\mathbf{O}>\) or \(<\mathbf{l}>\) key to open or close the selected switching device.
\({ }^{4}>\) Chapter "5.3.2 Global Settings" on page 5-2.
If double actuation is activated there, two switching commands in succession can be executed in a defined period with the selected switching device. Otherwise the switching device must be selected before every switching command.

\subsection*{8.1.4.5 Starting the tripping page}

The tripping pages show information based on the starting and tripping of the configured protective functions. This information is specific to the protective functions and is available as soon as a protective function is started. The tripping page is structured as shown below:
- Sequential number (0 ... 65537, then 0 again)
- Name of protective function,
- Action of protective function (start or trip) and
- Various relevant values with units.

The data for the tripping page are saved in a ring buffer with a capacity of 29 entries. If the ring buffer fills up, the oldest data will be deleted and the new data saved (FIFO strategy: First In, First Out). The data are not timestamped.
- Press the \(<\) ? \(>\) keys and \(\langle\downarrow>\) to open the tripping page.
- Press the \(\langle\boldsymbol{\uparrow}>\) or \(\langle\boldsymbol{\psi}>\) keys to call up the previous or the next values.
- To close the tripping page again, press the \(\langle\checkmark\rangle\) key.

If the tripping page was opened in the event of a persistent fault, the times and trip values are shown by "****. If the fault is successfully acknowledged, the corresponding values will be shown instead of the asterisks.

The following table shows an overview of the messages regarding the specific protective functions in the status line and on the tripping page. If there are several information blocks in the "messages on the tripping page" column, their display is optional, depending on the fault.

Note Many protective functions and their parameters are shown differently in the configuration program and on the tripping pages.
\({ }^{4}\) ) Chapter "8.2 Parameter names" on page 8-24.
Table 47: Protective function entries on the tripping page and in the status line
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Protective function} & \multirow[b]{2}{*}{Message (Status bar)} & \multicolumn{2}{|l|}{Messages on the tripping page} \\
\hline & & Single-line faults & Multi-line faults \\
\hline \multirow[t]{2}{*}{Inrush current blocking} & \multirow[t]{2}{*}{Inrush} & Fault Ln-E inrush current Start Ln: X.XX Sec inrush current Trip.: XXX.X A & Fault Ln-Lm inrush current Start Ln: X.XX Sec inrush current Trip.: XXX.X A inrush current Start Lm: X.XX Sec \\
\hline & & with \(\mathrm{n}=[1,2,3]\) and and \(m=[1,2,3]\) & Fault L1-L2-L3 inrush current Start L1: X.XX Sec inrush current Trip: XXX.X A inrush current Start L2: X.XX Sec inrush current Start L3: X.XX Sec \\
\hline \multirow[t]{2}{*}{Overcurrent Directional High Set} & \multirow[t]{2}{*}{Overl Def Dir High} & Fault Ln-E Overl Def Dir High Start Ln: X.XX Sec Overl Def Dir High Trip: XXX.X A & Fault Ln-Lm Overl Def Dir High Start Ln: X.XX Sec Overl Def Dir High Trip: XXX.X A Overl Def Dir High Start Lm: X.XX Sec \\
\hline & & with \(n=[1,2,3]\) and and \(m=[1,2,3]\) & Fault L1-L2-L3 Overl Def Dir High Start L1: X.XX Sec Overl Def Dir High Trip: XXX.X A Overl Def Dir High Start L2: X.XX Sec Overl Def Dir High Start L3: X.XX Sec \\
\hline
\end{tabular}

Table 47: Protective function entries on the tripping page and in the status line
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Protective function} & \multirow{2}{*}{Message (Status bar)} & \multicolumn{2}{|l|}{Messages on the tripping page} \\
\hline & & Single-line faults & Multi-line faults \\
\hline \multirow[t]{2}{*}{Overcurrent Directional Low Set} & \multirow[t]{2}{*}{Overl Def Dir Low} & Fault Ln-E Overl Def Dir Low Start Ln: X.XX Sec Overl Def Dir Low Trip: XXX.X A & Fault Ln-Lm Overl Def Dir Low Start Ln: X.XX Sec Overl Def Dir Low Trip: XXX.X A Overl Def Dir Low Start Lm: X.XX Sec \\
\hline & & \[
\begin{aligned}
& \text { with } \mathrm{n}=[1,2,3] \text { and } \\
& \mathrm{m}=[1,2,3]
\end{aligned}
\] & Fault L1-L2-L3 Overl Def Dir Low Start L1: X.XX Sec Overl Def Dir Low Trip: XXX.X A Overl Def Dir Low Start L2: X.XX Sec Overl Def Dir Low Start L3: X.XX Sec \\
\hline \multirow[t]{2}{*}{Overcurrent Instantaneous} & \multirow[t]{2}{*}{Overcurrent Inst} & Fault Ln-E Overcurrent Inst Start Ln: X.XX Sec Definite time l>>> Trip: XXX.X A & Fault Ln-Lm Overcurrent Inst Start Ln: X.XX Sec Overcurrent Inst Trip: XXX.X A Overcurrent Inst Start Lm: X.XX Sec \\
\hline & & \[
\text { with } n=[1,2,3] \text { and }
\]
\[
m=[1,2,3]
\] & Fault L1-L2-L3 Overcurrent Inst Start L1: X.XX Sec Overcurrent Inst Trip: XXX.X A Overcurrent Inst Start L2: X.XX Sec Overcurrent Inst Start L3: X.XX Sec \\
\hline \multirow[t]{2}{*}{Overcurrent High Set} & \multirow[t]{2}{*}{Overcurrent Def High} & \begin{tabular}{l}
Fault Ln-E \\
Overcurrent Def High \\
Start Ln: X.XX Sec \\
Overcurrent Def High \\
Trip: XXX.X A
\end{tabular} & Fault Ln-Lm Overcurrent Def High Start Ln: X.XX Sec Overcurrent Def High Trip: XXX.X A Overcurrent Def High Start Lm: X.XX Sec \\
\hline & & with \(n=[1,2,3]\) and \(m=[1,2,3]\) & Fault L1-L2-L3 Overcurrent Def High Start L1: X.XX Sec Overcurrent Def High Trip: XXX.X A Overcurrent Def High Start L2: X.XX Sec Overcurrent Def High Start L3: X.XX Sec \\
\hline
\end{tabular}

\footnotetext{
Continued next page
}

Table 47: Protective function entries on the tripping page and in the status line
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Protective function} & \multirow{2}{*}{Message (Status bar)} & \multicolumn{2}{|l|}{Messages on the tripping page} \\
\hline & & Single-line faults & Multi-line faults \\
\hline \multirow[t]{2}{*}{Overcurrent Low Set} & \multirow[t]{2}{*}{Overcurrent Def Low} & Fault Ln-E Overcurrent Def Low Start Ln: X.XX Sec Overcurrent Def Low Trip: XXX.X A & Fault Ln-Lm Overcurrent Def Low Start Ln: X.XX Sec Overcurrent Def Low Trip: XXX.X A Overcurrent Def Low Start Lm: X.XX Sec \\
\hline & & \[
\text { with } n=[1,2,3] \text { and }
\]
\[
m=[1,2,3]
\] & Fault L1-L2-L3 Overcurrent Def Low Start L1: X.XX Sec Overcurrent Def Low Trip: XXX.X A Overcurrent Def Low Start L2: X.XX Sec Overcurrent Def Low Start L3: X.XX Sec \\
\hline \begin{tabular}{l}
IDMT: \\
normal inverse \\
very inverse
\end{tabular} & IDMT Normal Inv IDMT Very Inv & IDMT normal inv IDMT normal inv Start Ln: X.XX Sec IDMT normal inv Trip: XXX.X A & IDMT very inv IDMT very inv Start Ln: X.XX Sec IDMT very inv Trip: XXX.X A \\
\hline \begin{tabular}{l}
extremely inv. \\
long-term inv.
\end{tabular} & IDMT Extremely Inv IDMT long time Inv & IDMT extremely inv IDMT extremely inv Start Ln: X.XX Sec IDMT extremely inv Trip: XXX.X A & IDMT long-term inv IDMT long-term inv Start Ln: X.XX Sec IDMT long-term inv Trip: XXX.X A \\
\hline IDMT & & \multicolumn{2}{|l|}{with \(\mathrm{n}=[1,2,3]\)} \\
\hline Earthfault High Set & Gnd Non Dir Hi & Gnd Non Dir Hi Start: X.XX Sec Gnd Non Dir Hi Trip: XXX.X A & \\
\hline Earthfault Low Set & Gnd Non Dir Low & Gnd Non Dir Low Start: X.XX Sec Gnd Non Dir Low Trip: XXX.X A & \\
\hline Earthfault directional High Set & Gnd Dir High & Gnd Dir High Start: X.XX Sec Gnd Dir High Trip: XXX.X A & \\
\hline Earthfault directional Low Set & Gnd Dir Low & Gnd Dir Low Start: X.XX Sec Gnd Dir Low Trip: XXX.X A & \\
\hline
\end{tabular}

\footnotetext{
Continued next page
}

Table 47: Protective function entries on the tripping page and in the status line
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Protective function} & \multirow[b]{2}{*}{Message (Status bar)} & \multicolumn{2}{|l|}{Messages on the tripping page} \\
\hline & & Single-line faults & Multi-line faults \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Earthfault IDMT: \\
normal inverse very inverse extremely inv. long-term inv.
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
GndIDMT \\
Normal Inv: Very Inv or Extremely Inv or Long Time Inv
\end{tabular}} & GndIDMT Normal Inv Start Ln: X.XX Sec GndIDMT Normal Inv Trip: XXX.X A & \\
\hline & & GndIDMT Extremey Inv Start Ln: X.XX Sec GndIDMT Extremey Inv Trip: XXX.X A & \\
\hline & & GndIDMT Very Inv Start Ln: X.XX Sec GndIDMT Very Inv Trip: XXX.X A & \\
\hline & & GndIDMT Long Time Inv Start Ln: X.XX Sec GndIDMT Long Time Inv Trip: XXX.X A & \\
\hline Overvoltage Instantaneous & Overvoltage Inst & Overvoltage Inst Start L1: X.X Sec Overvoltage Inst Start L2: X.X Sec Overvoltage Inst Start L3: X.X Sec Overvoltage Inst Trip: XXXX.X V & \\
\hline Overvoltage High Set & Overvoltage Def High & Overvoltage Def High Start L1: X.X Sec Overvoltage Def High Start L2: X.X Sec Overvoltage Def High Start L3: X.X Sec Overvoltage Def High Trip: XXXX.X V & \\
\hline Overvoltage Low Set & Overvoltage Def Low & Overvoltage Def Low Start L1: X.X Sec Overvoltage Def Low Start L2: X.X Sec Overvoltage Def Low Start L3: X.X Sec Overvoltage Def Low Trip: XXXX.X V & \\
\hline Undervoltage Instanteneous & Undervoltage Inst & Undervoltage Inst Start L1: X.X Sec Undervoltage Inst Start L2: X.X Sec Undervoltage Inst Start L3: X.X Sec Undervoltage Inst Trip: XXXX.X V & \\
\hline
\end{tabular}

Table 47: Protective function entries on the tripping page and in the status line
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Protective function} & \multirow{2}{*}{Message (Status bar)} & \multicolumn{2}{|l|}{Messages on the tripping page} \\
\hline & & Single-line faults & Multi-line faults \\
\hline Undervoltage High Set & Undervoltage Def High & Undervoltage Def High Start L1: X.X Sec Undervoltage Def High Start L2: X.X Sec Undervoltage Def High Start L3: X.X Sec Undervoltage Def High Trip: XXXX.X V & \\
\hline Undervoltage Low Set & Undervoltage Def Low & Undervoltage Def low Start L1: X.X Sec Undervoltage Def low Start L2: X.X Sec Undervoltage Def low Start L3: X.X Sec Undervoltage Def low Trip: XXXX.X V & \\
\hline Residual Overvoltage High Set & Resid OverV Def High & Resid OverV Def High Start L1: X.X Sec Resid OverV Def High Trip: XXXX.X V & \\
\hline Residual Overvoltage Low Set & Resid OverV Def Low & Resid OverV Def Low Start L1: X.X Sec Resid OverV Def Low Trip: XXXX.X V & \\
\hline Thermal Overload protection for motors & Thermal Overload & Thermal Overload Start: XXX.X Sec Thermal overload Trip: XXX.XX \({ }^{\circ} \mathrm{C}\) & \\
\hline Thermal Overload protection for transformers & Thermal Overload & Thermal Overload Start: XXX.X Sec Thermal overload Trip: XXX.XX \({ }^{\circ} \mathrm{C}\) & \\
\hline Thermal Overload protection for cables & Thermal Overload & Thermal Overload Start: XXX.X Sec Thermal overload Trip: XXX.XX \({ }^{\circ} \mathrm{C}\) & \\
\hline Motor Start Protection & Motor Start & \begin{tabular}{l}
Motor Start \\
Start: XXX.X Sec \\
Motor Start \\
Trip: XXX.X A
\end{tabular} & \\
\hline Blocking Rotor & Blocking Rotor & \begin{tabular}{l}
Blocking Rotor \\
Start L1: XXX.X Sec \\
Blocking Rotor \\
Start L2: XXX.X Sec \\
Blocking Rotor \\
Start L3: XXX.X Sec \\
Blocking Rotor \\
Trip: XXX.X A
\end{tabular} & \\
\hline Number of Starts & Nr. Of Starts & \begin{tabular}{l}
Nr. Of Starts --- \\
Nr. Of Starts Trip: k
\end{tabular} & with \(\mathrm{k}=[1 . . .10]\) \\
\hline
\end{tabular}

Continued next page

Table 47: Protective function entries on the tripping page and in the status line
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Protective function} & \multirow{2}{*}{Message (Status bar)} & \multicolumn{2}{|l|}{Messages on the tripping page} \\
\hline & & Single-line faults & Multi-line faults \\
\hline \multirow[t]{2}{*}{Distance protection} & \multirow[t]{2}{*}{Distance protection} & \begin{tabular}{l}
Fault Ln-E with earth contact Distance protection Start Ln: X.XX Sec Distance protection Start E: X.XX Sec Distance protection G-Start: X.XX Sec Distance protection Trip: --- \\
Distance protection Impedance: X.X Ohm Distance protection Distance: X.X km Distance protection Resistance: X.X Ohm Distance protection Reactance: X.X Ohm Distance protection Phi Z: X. \(\mathrm{X}^{\circ}\) \\
Distance protection Zone X \\
Distance protection Min Z: X.XX Sec
\end{tabular} & \begin{tabular}{l}
Fault Ln-Lm with earth contact Distance protection Start Ln: X.XX Sec Distance protection Start Lm: X.XX Sec Distance protection Start E: X.XX Sec Distance protection G-Start: X.XX Sec Distance protection Trip: --- \\
Distance protection Impedance: X.X Ohm Distance protection Distance: X.X km Distance protection Resistance: X.X Ohm Distance protection Reactance: X.X Ohm Distance protection Phi Z: X.X \({ }^{\circ}\) \\
Distance protection Zone X Distance protection Min Z: X.XX Sec
\end{tabular} \\
\hline & & \begin{tabular}{l}
Fault L1-L2-L3 \\
with earth contact \\
Distance protection \\
Start L1: X.XX Sec \\
Distance protection \\
Start L2: X.XX Sec \\
Distance protection \\
Start L3: X.XX Sec \\
Distance protection \\
Start E: X.XX Sec \\
Distance protection \\
G-Start: X.XX Sec \\
Distance protection \\
Trip: --- \\
Distance protection Impedance: X.X Ohm \\
Distance protection \\
Distance: X.X km \\
Distance protection \\
Resistance: X.X Ohm \\
Distance protection \\
Reactance: X.X Ohm \\
Distance protection \\
Phi Z: X. \(\mathrm{X}^{\circ}\) \\
Distance protection \\
Zone X \\
Distance protection \\
Min Z: X.XX Sec
\end{tabular} & with \(n=[1,2,3]\) and
\[
m=[1,2,3]
\] \\
\hline
\end{tabular}

Continued next page

Table 47: Protective function entries on the tripping page and in the status line
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{Protective function} & \multirow{2}{*}{Message (Status bar)} & \multicolumn{2}{|l|}{Messages on the tripping page} \\
\hline & & Single-line faults & Multi-line faults \\
\hline \multirow[t]{2}{*}{Distance protection} & Distance protection & \begin{tabular}{l}
Fault Ln-E without earth contact Distance protection Start Ln: X.XX Sec Distance protection G-Start: X.XX Sec Distance protection Trip: --- \\
Distance protection Impedance: X.X Ohm Distance protection Distance: X.X km Distance protection Resistance: X.X Ohm Distance protection Reactance: X.X Ohm Distance protection Phi Z: X.X․ Distance protection Zone X Distance protection Min Z: X.XX Sec
\end{tabular} & \begin{tabular}{l}
Fault Ln-Lm without earth contact Distance protection Start Ln: X.XX Sec Distance protection Start Lm: X.XX Sec Distance protection G-Start: X.XX Sec Distance protection Trip: --- \\
Distance protection Impedance: X.X Ohm Distance protection Distance: X.X km Distance protection Resistance: X.X Ohm Distance protection Reactance: X.X Ohm Distance protection Phi Z: X. \(\mathrm{X}^{\circ}\) \\
Distance protection Zone X Distance protection Min Z: X.XX Sec
\end{tabular} \\
\hline & & \begin{tabular}{l}
Fault L1-L2-L3 with earth contact Distance protection Start L1: X.XX Sec Distance protection Start L2: X.XX Sec Distance protection Start L3: X.XX Sec Distance protection G-Start: X.XX Sec Distance protection Trip: --- \\
Distance protection Impedance: X.X Ohm Distance protection Distance: X.X km Distance protection Resistance: X.X Ohm Distance protection Reactance: X.X Ohm Distance protection Phi Z: X.X \({ }^{\circ}\) \\
Distance protection Zone X Distance protection Min Z: X.XX Sec
\end{tabular} & with \(n=[1,2,3]\) and \(m=[1,2,3]\) \\
\hline Thermal Supervision & Thermal Supervision & \multicolumn{2}{|l|}{no message} \\
\hline Unbalanced Load & Unbalanced Load & Unbalanced Load Start: XX.X Sec Unbalanced Load Trip: XXX.X\% & \\
\hline
\end{tabular}

Continued next page

Table 47: Protective function entries on the tripping page and in the status line
\begin{tabular}{l|l|l}
\hline Protective function & Message (Status bar) & \begin{tabular}{l} 
Messages on the tripping page \\
Single-line faults
\end{tabular} \\
\hline Directional Power & Power direction & \begin{tabular}{l} 
Power direction \\
Start: XX.X Sec \\
Power direction \\
Trip: XXX.X kW
\end{tabular} \\
\hline Directional Power & Directional Power & \begin{tabular}{l} 
Directional Power \\
Start: XX.X Sec \\
Directional Power \\
Trip: XXX.X kW
\end{tabular} \\
\hline Frequency Supervision & Frequency Supervision & \begin{tabular}{l} 
Frequency Supervision \\
Start L1: XX.X Sec \\
Frequency Supervision \\
Trip: XX.X Hz
\end{tabular} \\
\hline Synchrocheck & & no message \\
\hline
\end{tabular}

\subsection*{8.1.5 Functions in mode: Remote-operational}

Note Please also note that all operating options described in Chapter "8.1.3 Functions in all operating modes" on page 8-3 can be used.

Note Many protective functions and their parameters are labeled differently in the configuration program and on some pages that can be shown on the LC display screen ( \({ }^{2}\), Chapter "8.2 Parameter names" on page 8-24

\subsection*{8.1.5.1 Display LED message texts}

The message texts of the nine LEDs can be set up as desired in the configuration program (with the exception of the interlocking status and the protective function status LED). They are intended to provide information on what the LED is signaling.
- Press the <?> button.

After a few seconds the previous display is shown on the LC display screen again. To keep the message texts on screen for longer, hold the <?> key down.

\subsection*{8.1.5.2 Acknowledging messages and alarms}

A persistent alarm or a message must be acknowledged, depending on the configuration. Persistent alarms can be detected immediately by the protective function status LED (5) lighting. Persistent messages, which must be acknowledged, remain displayed on the LC display screen in the status line (bottom).
- Press the <?> and < \(\langle>\) keys simultaneously.

An alarm can only be successfully acknowledged when the situation that caused the trip no longer exists.

\subsection*{8.1.5.3 Retrieving measured and calculated values}

The measured and calculated values of the REF542 are continuously displayed on the LC display screen above the mimic diagram. They are displayed as absolute values. Voltages and currents are also represented by a bar graph. A measurement range of \(0 \ldots 200 \%\) of the rated value is displayed with the voltages, the earth current and the line currents. With the phase currents a non return pointer function is also used to indicate the maximum value of a configurable time interval. The calculation of the maximum value must be configured in the configuration program with the menu <Configure/Calculated Values>.

The displayed values are arranged in a ring menu. Only those that have been measured or whose calculation has been configured are displayed. The calculated values must also be required by a protective function. This minimizes the DSP (protection and measuring processor) processing requirements.

\section*{Selection of next/previous value}
- Press the \(\langle\boldsymbol{\uparrow}\rangle\) or \(\langle\boldsymbol{\downarrow}\rangle\) keys to call up the next or previous value in the ring menu.

The table shows an overview of all possible displayed values, the associated unit and the conditions applicable to their display.

². "Table 46: Measured value display on the REF542 LC display screen" on page 8-5

\subsection*{8.1.5.4 Starting the tripping page}

The tripping pages show information based on the starting and tripping of the configured protective functions. This information is specific to the protective functions and is available as soon as a protective function is started. The tripping page is structured as shown below:
- Sequential number (0 ... 65537, then 0 again)
- Name of protective function,
- Action of protective function (start or tripping) and
- Various relevant values with units.

The data for the tripping page are saved in a ring buffer with a capacity of 29 entries. If the ring buffer fills up, the oldest data will be deleted and the new data saved (FIFO strategy: The data are not timestamped.
- Press the \(<\) ? \(>\) keys and \(\langle\downarrow>\) to open the tripping page.
- Press the \(<\boldsymbol{\uparrow}>\) or \(\langle\boldsymbol{\downarrow}>\) keys to call up the previous or the next values.
- To close the tripping page again, press the \(<\checkmark>\) key.

If the tripping page was opened in the event of a persistent fault, the times and trip values are shown by "***". If the fault is successfully acknowledged, the corresponding values will be shown instead of the asterisks. The "Table 47: Protective function entries on the tripping page and in the status line" on page \(8-8\) provides an overview of the messages of the specific protective functions in the status line and on the tripping page. If there are several information blocks in the "messages on the tripping page" column, their display is optional, depending on the fault.

Note Many protective functions and their parameters are labeled differently in the configuration program and on some pages that can be shown on the LC display screen.
y Chapter "8.2 Parameter names" on page 8-24

\subsection*{8.1.6 Functions in the mode: Local-set}

The local set mode enables various information and interaction options, described in the following subsections.

The diagram on the next page provides an initial overview of the operating structure available in this mode. The boxes represent the LC display screen.

The REF542 has a convenient control structure. Operation of the various control elements is consistent. The texts on the LC display screen show the subsequent possible and required operational steps.

The descriptions of every function are shown again in the corresponding section of the diagram

The entire LC display screen including the status line is used in the local set mode. Therefore, neither the current measured and calculated values nor the mimic diagram are displayed.

Note All protection and measurement functions are active with the previously used parameters in the local set mode!

All changes made in the local set mode remain without effect until the operator switches to the local operational or remote operational mode again. This ensures that the REF542 functions properly while in the local set mode. All previously used parameters are used.

Please note that all operating options described in Chapter "8.1.3 Functions in all operating modes" on page 8-3 can be used.

Note Many protective functions and their parameters are labeled differently in the configuration program and on some pages that can be shown on the LC display screen. \(\left.{ }^{\wedge}\right)\) Chapter "8.2 Parameter names" on page 8-24


Figure 255: LCU operating structure local set mode

\subsection*{8.1.6.1 Starting the service page}


Figure 256: Local set mode, starting the service page
The service page provides the following information:
- The version numbers of the microcontroller (MC - control and command unit) and of the digital signal processor (DSP - protection and measuring unit),
- The version number of the interbay bus in use (optional),
- The resets,
- The LCU temperature,
- The application name,
- The duration of the FUPLA cycle.

A configuration number reserved for future use is also shown.
Proceed as follows:
- Set the keyswitch "operational/set" to "set" and the keyswitch "local/remote" to "local". The "list of pages" will appear on the LC display screen.
- Press and hold the <?> until the service page is displayed.

\subsection*{8.1.6.2 Change the active parameter set}


Figure 257: Local set, change active parameter set
Most protective functions have two parameter sets with which various starting and tripping characteristics can be specified. This page can be used to switch back and forth between the two parameter sets.

Proceed as follows:
- Set the keyswitch "operational/set" to "set" and the keyswitch "local/remote" to "local". The "list of pages" page will appear on the LC display screen.
- Press the \(<\downarrow>\) key to get to the "active parameter set" page.
- Press the \(\langle\checkmark\rangle\) key to change the active parameter set.

If there is an alarm on the REF542, the active parameter set cannot be changed. The message "range error" is shown in the status line of the LC display screen. The alarm must be acknowledged first.

\subsection*{8.1.6.3 Viewing the parameters of the individual protective functions}


Figure 258: Local set mode, viewing the individual protective function parameters
Most protective functions have two parameter sets with which various starting and tripping characteristics can be specified. Both parameter sets of then protective functions in the application can be viewed on the parameter pages. Depending on the number of configured protective functions, several pages may be used for this purpose.

Proceed as follows:
- Set the keyswitch "operational/set" to "set" and the keyswitch "local/remote" to "local". The "list of pages" page will appear on the LC display screen.
- Press the < \(\downarrow>\) key twice to get to the first "parameter setting" page.
- Press the \(<\boldsymbol{\downarrow}>\) key or the \(<\boldsymbol{\uparrow}>\) key, several times if necessary, to go forwards or back through the "parameter" pages.

Note Many protective functions and their parameters are shown differently in the configuration program and on the parameter pages.
\({ }^{\text {y }}\) Chapter "8.2 Parameter names" on page 8-24

\subsection*{8.1.6.4 Switching the autoreclosure on and off}


Figure 259: Local set mode, activate and deactivate the autoreclosure
Some protective functions have the option of autoreclosure (AR). The autoreclosure function may be activated or deactivated on this page. Please note that the autoreclosure must generally be enabled when setting up the application.
\(\left.{ }^{4}\right)\) Chapter "5.3.2 Global Settings" on page 5-2
\({ }^{4}\) ) Chapter "5.5.1 Autoreclosure" on page 5-209
Proceed as follows to activate or deactivate the autoreclosure:
- Set the keyswitch "operational/set" to "set" and the keyswitch "local/remote" to "local". The "list of pages" page will appear on the LC display screen.
- Press the \(\langle\boldsymbol{\downarrow}\rangle\) key several times until the "autoreclosure" page appears. The current autoreclosure status is shown there.
- Press the \(\langle\checkmark\rangle\) key to activate or deactivate autoreclosure.

If there is an alarm on the REF542, the autoreclosure cannot be activated or deactivated. The message "range error" is shown in the status line of the LC display screen. The alarm must be successfully acknowledged first.

\subsection*{8.1.6.5 Changing a parameter of a protective function}


Figure 260: Local set, changing protective function parameters
Most protective functions have two parameter sets with which various response and tripping characteristics can be specified. The various parameters of the configured protective functions can be changed at the setting parameters page. The setting parameters pages can be closed at any time without changing any saved values.

Note Many protective functions and their parameters are shown differently in the configuration program and on the setting parameters pages. ( \()\) Chapter "8.2 Parameter names" on page 8-24

Proceed as follows to change the parameters of specific protective functions:
- Set the keyswitch "operational/set" to "set" and the keyswitch "local/remote" to "local". The "list of pages" page will appear on the LC display screen.
- Press the \(\langle\downarrow>\) key several times until the "setting parameters" page is shown.
- Press the \(\langle\checkmark\rangle\) key to open the page for selecting the configured protective functions.
- Use the \(<\boldsymbol{\uparrow}>\) key or the \(\langle\boldsymbol{\downarrow}>\) key to select a protective function whose parameters are to be changed.
(Use "exit" and press \(\langle\checkmark\rangle\) to return to the previous page.)
- Press the \(<\checkmark>\) key to open the page with the list of parameters for the selected protective function.
- Use the \(<\boldsymbol{\uparrow}>\) key or the \(\langle\boldsymbol{\downarrow}>\) key to select a parameter to be changed. (Use "exit" and press \(\langle\checkmark\rangle\) to return to the previous page.)
- Press the \(<\checkmark>\) key to change the parameter.

The selected parameter will be shown inverted and the character !>" will be shown behind the parameter that is to be changed.
- Use the \(\langle\boldsymbol{\uparrow}>\) key or the \(\langle\boldsymbol{\downarrow}>\) key to increase or reduce the value of the parameter.
- Press the \(<\checkmark>\) key.
- If a parameter has not been changed, switch to the previous page to select the parameter that is to be changed. Select "exit" twice with the < \(\boldsymbol{\uparrow}>\) or < \(\downarrow>\) keys and then press \(<\checkmark>\) to confirm to return to the initial page for setting parameters.
OR
- If a parameter has been changed, switch to the setting parameters page by selecting the protective functions.
Now follow the procedure described to select and change the parameters of various protective functions.
- \(\quad\) Select "exit" with the \(<\boldsymbol{\uparrow}>\) or the \(<\boldsymbol{\downarrow}>\) key to stop setting parameters.
- Press the \(\langle\checkmark\rangle\) key and a query page will appear.
- Use the < \(\uparrow>\) key or the \(\langle\boldsymbol{\downarrow}>\) key to select one of the points and confirm the selection with the \(<\checkmark>\) key.
- Use "exit", "exit WITH saving" or "exit WITHOUT saving" to get to the selection page of the protective functions whose parameters are to be changed.
"Exit": The parameters changed since the last time they were saved will not be saved and also will not remain on the setting parameters pages.
"Exit WITH saving": The parameters changed since the last time they were saved will be saved.
"Exit WITHOUT saving": The parameters changed since the last time they were saved will remain changed on the setting parameters pages, but will not be saved.
OR
- The "previous parameter" item returns the operator to the initial page for setting parameters. The parameters used since the last time they were saved will be used again. No changes are made.

\subsection*{8.1.6.6 Resetting the quantities saved in the unit}


Figure 261: Local set, resetting quantities saved in the unit
Various data are saved in the REF542. For example, this includes the switched currents or the maximum currents per conductor in a specified period. The reset page is used to delete specific data from the unit's memory.

Proceed as follows:
- Set the keyswitch "operational/set" to "set" and the keyswitch "local/remote" to "local". The "list of pages" page will appear on the LC display screen.
- Press the \(<\downarrow>\) key several times until the "entry page to reset page" page appears.
- Press the \(<\checkmark>\) key to open the reset page.
- Use the \(<\boldsymbol{\uparrow}>\) or \(\langle\boldsymbol{\downarrow}>\) key to select the data that is to be deleted. (Use "exit" and press \(\langle\checkmark\rangle\) to return to the previous page.)
- Press the \(\langle\checkmark\rangle\) key to delete the data. A message confirming the deletion will appear in the status line of the LC display screen and the entry page to the reset page will reappear.
- Repeat the process to delete more data.

\subsection*{8.1.6.7 Entry point to test mode}


Figure 262: Local set, entry to test mode
All interlocking can be deactivated to test the REF542 protective functions. The test mode is used for this purpose. Please note that the test mode must be enabled when setting up the application.
\({ }^{\text {r }}\) Chapter "5.3.2 Global Settings" on page 5-2
Only the "local operational" mode can be reached from the test mode. It is not possible to return to the "local set" mode after leaving the "entry page to test mode".

To enter the test mode proceed as follows:
- Set the keyswitch "operational/set" to "set" and the keyswitch "local/remote" to "local". The "list of pages" page will appear on the LC display screen.
- Press the \(\langle\downarrow>\) key several times until the "entry page to test mode" appears.
- Press the \(<\checkmark>\) key to open test mode.
- The message "interlocking OFF / Test Mode" appears.

Now the REF542 can be operated as in "local operational" mode. However, all interlocking is deactivated!
- To exit the test mode, set the keyswitch "operational/set" to "operational". The message "you are leaving test mode" appears.
(To return to test mode, set the keyswitch "operational/set" back to "set".)
- Press the \(<\checkmark>\) key to leave test mode finally and to return to "local-operational" mode.

If additional settings are required in "local-set" mode, first set the keyswitch to the appropriate positions.

\subsection*{8.2 Parameter names}

Many of the protective functions and their parameters have different names in the configuration program and on the following pages of the LC display screen:
- Pages with the parameter view,
- Parameter setting pages and
- Tripping pages

This is the result of the limitation on the length of texts on the pages of the LC display screen. The following table shows the equivalent names opposite one another.
Table 48: Parameter name in the configuration program and on the parame-
ter setting pages
\begin{tabular}{l|l}
\hline Configuration Program & Parameter setting pages \\
\hline \multicolumn{1}{l}{ Current protection functions } & \\
\hline Inrush Blocking & Inrush \\
\hline N & n \\
\hline M & m \\
\hline Time & Time \\
\hline Overcurrent Instantaneous & Overcurrent Inst \\
\hline Overcurrent Definite Time High Set & Overcurrent Def High \\
\hline Overcurrent Definite Time Low Set & Overcurrent Def Low \\
\hline Start value & Start \\
\hline Time & Time \\
\hline Continued next page &
\end{tabular}

REF542 bay control and protection unit (SCU)

Table 48: Parameter name in the configuration program and on the parameter setting pages
\begin{tabular}{l|l}
\hline Configuration Program & Parameter setting pages \\
\hline Overcurrent Directional High Set & Overl Def Dir High \\
\hline Overcurrent Directional Low Set & Overl Def Dir Low \\
\hline Start value & Start \\
\hline Time & Time \\
\hline \begin{tabular}{l} 
Direction \\
forwards
\end{tabular} & Direction \\
\hline backwards & 0 \\
\hline IDMT & 1 \\
\hline \hline I/In & IDMT (type of curve) \\
\hline k & Start \\
\hline Earthfaulf High Set & k \\
\hline Earthfaulf Low Set & Gnd Non Dir Hi \\
\hline Earthfault Directional High Set & Gnd Non Dir Low \\
\hline Earthfault Directional Low Set & Gnd Dir High \\
\hline Start value & Gnd Dir Low \\
\hline Time & Start \\
\hline Network type & Time \\
\hline isolated & Network type \\
\hline earthed & 0 \\
\hline Direction & 1 \\
\hline forwards & Direction \\
\hline backwards & 0 \\
\hline Earthfault IDMT & 1 \\
\hline I/In & Gnd IDMT [type of curve] \\
\hline k & Start \\
\hline k & k \\
\hline
\end{tabular}

Voltage protection functions
\begin{tabular}{|l|l}
\hline Overvoltage Instantaneous & Overvoltage Inst \\
\hline Overvoltage High Set & Overvoltage Def High \\
\hline Overvoltage Low Set & Overvoltage Def Low \\
\hline Residual Overvoltage High Set & Resid OverV Def High \\
\hline Residual Overvoltage Low Set & Resid OverV Def Low \\
\hline Start value & Start \\
\hline Time & Time \\
\hline Undervoltage Instanteneous & Undervoltage Inst \\
\hline Undervoltage High Set & Undervoltage Def High \\
\hline Undervoltage Low Set & Undervoltage Def Low \\
\hline Start value & Start \\
\hline Time & Time \\
\hline\(\frac{\text { Undervoltage limit }=0}{}\) & Us<=0 \\
\hline\(\frac{1}{\text { use }}\) do not use & 0 \\
\hline Continued next page & \\
\hline
\end{tabular}

Table 48: Parameter name in the configuration program and on the parameter setting pages
\begin{tabular}{|c|c|}
\hline Configuration Program & Parameter setting pages \\
\hline \multicolumn{2}{|l|}{Motor protection functions} \\
\hline Number of Starts & Nr. of Starts \\
\hline Number of warm starts & N warm \\
\hline Number of cold starts & N cold \\
\hline Temperature for warm start & T warm \\
\hline Time & Blocking time \\
\hline Motor Start Protection & Motor Start \\
\hline Motor current le & le \\
\hline Start value & Is \\
\hline Time & Time \\
\hline Motor start & It \\
\hline Thermal Oveerload & Thermal overload \\
\hline T nom & T nom \\
\hline Inom & Inom \\
\hline T ini & T init \\
\hline TC Off & TC Off \\
\hline TC standard & TC standard \\
\hline TC fault & TC fault \\
\hline T max & T max \\
\hline T warn & T warn \\
\hline T ambient & T ambient \\
\hline Time & Time \\
\hline Blocking Rotor & Blocking rotor \\
\hline Motor current le & le \\
\hline Starting value & Is \\
\hline Time & Time \\
\hline \multicolumn{2}{|l|}{Further protective functions} \\
\hline Distance protection: & Distance protection \\
\hline Network type: & Network type \\
\hline high-res. earthing & 0 \\
\hline low-res. earthing & 1 \\
\hline Earth fault detection & ESt/GSt \\
\hline IE> use & 0 \\
\hline IE> do not use & 1 \\
\hline Grd. of current transformer & Tr/Gr \\
\hline Feed side & 0 \\
\hline SS side & 1 \\
\hline Switching on persistent faults & Sw.p.f. \\
\hline Normal operation & 2 \\
\hline Use overreach zone & 0 \\
\hline Trip after general starting & 1 \\
\hline Type of power transmission line & \\
\hline
\end{tabular}

Table 48: Parameter name in the configuration program and on the parameter setting pages
\begin{tabular}{|c|c|}
\hline Configuration Program & Parameter setting pages \\
\hline Distance protection:(continued) & Distance protection \\
\hline Cable only No.warm starts & Cond. \(=1 \quad\) Struct \(=0\) \\
\hline Over. cable only. & Cond. \(=1 \quad\) Struct \(=1\) \\
\hline Cable before over. cable & Cond. \(=0 \quad\) Struct \(=0\) \\
\hline Over. cable before cable & Cond. \(=0 \quad\) Struct \(=1\) \\
\hline Conductor preference & L.Bev. \\
\hline acyclical L3-L1-L2 & 0 \\
\hline cyclical L1-L2-L3-L1 & 1 \\
\hline acyclical L1-L3-L2 & 2 \\
\hline cyclical L3-L2-L1-L3 & 3 \\
\hline Limit cable/over. cable & Zb \\
\hline Cable reactance & X cable \\
\hline Overhead cable reactance & X over. cable \\
\hline 1> & 1> \\
\hline 10> & 10> \\
\hline IF> & IF> \\
\hline UF> & UF> \\
\hline Factor k & k0 amplitude \\
\hline Angle k & k0 angle \\
\hline Intertripping time & Inter. time \\
\hline Zone 1 & Zone 1 \\
\hline Overreach zone & Overreach zone \\
\hline AR blocking zone & AR Zone \\
\hline Zone 2 & Zone 2 \\
\hline Zone 3 & Zone 3 \\
\hline Dir. backup & Dir. backup \\
\hline Non-dir. backup & Non-dir. backup \\
\hline Real resistance R & R \\
\hline Reactive resistance X & X \\
\hline Angle delta 1 & d1 \\
\hline Angle delta 2 & d2 \\
\hline Time & Time \\
\hline Direction & Direction \\
\hline forwards & 0 \\
\hline backwards & 1 \\
\hline do not use & 2 \\
\hline Thermal Supervision & Thermal Supervision \\
\hline T max & T max \\
\hline Time & Time \\
\hline T warn & T warn \\
\hline Continued next page & \\
\hline
\end{tabular}

Table 48: Parameter name in the configuration program and on the parameter setting pages
\begin{tabular}{l|l}
\hline Configuration Program & Parameter setting pages \\
\hline Unbalanced Load & Unbalanced Load \\
\hline Max. negative phase & Start \\
\hline I min & Min. current \\
\hline Time & Time \\
\hline Directional Power & Directional Power \\
\hline P nom & Pnom \\
\hline P max.rev. & Max.rev.P \\
\hline Time & Time \\
\hline Direction & Direction \\
\hline forwards & 0 \\
\hline backwards & 1 \\
\hline Low Load & Low Load \\
\hline P nom & P nom \\
\hline P min & Start \\
\hline I min & Min. current \\
\hline Time & Time \\
\hline Frequency Supervision & Frequency Supervision \\
\hline Start value & Start \\
\hline Time & Time \\
\hline Ayncrocheck & Syncrocheck \\
\hline Start value & Delta U \\
\hline Time & Time \\
\hline Phase diff. & Delta Deg \\
\hline
\end{tabular}

\subsection*{8.3 Regular testing of the REF542}

The self-monitoring and diagnosis functions of the unit make periodic testing unnecessary. If a malfunction occurs, the unit outputs a message to the LC display screen.
\({ }^{\wedge} \downarrow\) Chapter "9.2.1 Error and status messages at the LCU" on page 9-1

\subsection*{8.4 Maintenance Program}

Because of the high quality standards of the REF542 and its components and processing, we suggest the following procedure:
- Function test (automatically done on commissioning)
- Secondary test (protection test - also automatically done on commissioning)

Repeat tests are not really necessary. The REF542's self-monitoring functions immediately signal all faults that occur. However, the following tests are worth carrying out to check the safety technology of the unit.
- Repeat test (function and protection test):

Six months after commissioning and then every 2-5 years.
- Calibration test:

The calculated long-term drift of the components in use is \(0.3 \%\) per 10 years. For this reason we recommend that the analog input values be tested every 10 years. Recalibration can be done on site with little effort.
4) Chapter "7.3 Calibrating the analog inputs (measuring inputs)" on page 7-3

\subsection*{8.4.1 Durability of specific components}

\section*{Power relay contacts}

The power relay contacts on the binary input/output board with conventional relays in the REF542 cannot directly trip the trip coil without shortening their life. However, the contact life is at least 10 full load trips.

Normally a mechanical auxiallary switch is switched in series with the trip coil to reduce the load on the power relay contacts. This again increases their life.
\(\stackrel{y}{4}\) "Table 13: Maximum switching cycles of the conventional power relays" on page 3-28

\section*{Electrolyte capacitors}

The durability of the electrolyte capacitors used depends primarily on the ambient temperature. The calculated life in the operation of the REF542 under normal conditions is more than 35 years.

If the REF542 is continuously operated at temperatures over the specifications, the electrolyte capacitors of the power supply board should be replaced every 10 years.

\section*{LC display screen}

The guaranteed life of the LC display screen is 16 years at ambient temperatures below \(55^{\circ} \mathrm{C}\) and subject to \(60^{\circ} \mathrm{C}\) for no more than \(10 \%\) of operational time. The end of its life is signaled by black or white spots on the display.

If black spots that do not change when the display changes become obvious well before the end of its life, the seal of the LC display screen is defective and must be replaced.

If the contrast is too low and can no longer be increased, there is a fault in the LC display screen control electronics. The complete display screen module must be replaced in this case.

\section*{9 Troubleshooting}

In this chapter you will find information on
- Fault and status messages that the local command unit (LCU) shows in the status line
- Error and status messages shown by the configuration program
- The reason for any specific message
- Options for correction and
- The ABB Calor Emag Mittelspannung GmbH sales offices and service centers.

\subsection*{9.1 Safety Information}

Note If there is any doubt regarding the treatment of a message, check with our service representative.

The addresses can be found in Chapter "9.4 Further information" on page 9-38.

\subsection*{9.2 Error and status messages}

The next two subsections first show the alphabetically sorted tables of error and status messages that can be shown in the status line of the LCU with the LC display screen or in the configuration program.

Help or information on the faults and status messages may be found in the relevant tables in the following subsections.

Every message in the table of all messages is linked by its number to the necessary help positions or information in the correction options table.

\subsection*{9.2.1 Error and status messages at the LCU}

The following messages are displayed in the status line on the LCU LC display screen.

Note These error messages are not shown on the LCU version with no LC display screen.

The following table shows the number and the message type. The number and the page number enable access to the information required to know the cause and correct the fault.

The messages are classified into two types and are shown when the following events occur:
- Status message:These messages provide information on a current process in the REF542. They are not the result of an operational error.
- Error message: These messages are output as a result of an operational action that may have negative consequences for the application. They are the result of an operational error or malfunction.

Further information or corrective measures can be found in Chapter "9.3.1 Corrective action for error messages on the LCU" on page 9-11.

Table 49: Messages on the LC display screen
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline No. & Message & Help & Type & No. & Message & Help & Type \\
\hline 1 & Address Error & Page 9-11 & Error & 43 & Gnd IDMT Long Time Inv & Page 9-15 & Status \\
\hline 2 & IDMT Extremely Inv & Page 9-11 & Status & 44 & Gnd IDMT Normal Inv & Page 9-15 & Status \\
\hline 3 & IDMT Long Time Inv & Page 9-11 & Status & 45 & Gnd IDMT Very Inv & Page 9-15 & Status \\
\hline 4 & IDMT Normal Inv & Page 9-11 & Status & 46 & Wrong Parameter Value & Page 9-15 & Error \\
\hline 5 & IDMT Very Inv & Page 9-11 & Status & 47 & ERROR SUPERVISION & Page 9-15 & Error \\
\hline 6 & Nr Of Starts & Page 9-11 & Status & 48 & Frequency Supervision & Page 9-15 & Status \\
\hline 7 & CONFIG_ERROR & Page 9-11 & Error & 49 & Overl Def Dir Low & Page 9-15 & Status \\
\hline 8 & Bad FUPLA E1 & Page 9-11 & Error & 50 & Overl Def Dir High & Page 9-15 & Status \\
\hline 9 & Bad FUPLA E2 & Page 9-12 & Error & 51 & Gnd Dir Low & Page 9-15 & Status \\
\hline 10 & Bad FUPLA E3 & Page 9-12 & Error & 52 & Gnd Dir High & Page 9-15 & Status \\
\hline 11 & Bad FUPLA E4 & Page 9-12 & Error & 53 & Illegal Instruction & Page 9-16 & Error \\
\hline 12 & Bad FUPLA E5 & Page 9-12 & Error & 54 & No R/W with RS-232 & Page 9-16 & Error \\
\hline 13 & Bad FUPLA E6 & Page 9-12 & Error & 55 & Upload Version & Page 9-16 & Status \\
\hline 14 & Bad FUPLA E7 & Page 9-12 & Error & 56 & Directional Power & Page 9-16 & Status \\
\hline 15 & Bad FUPLA E8 & Page 9-12 & Error & 57 & Mem Full Error & Page 9-16 & Error \\
\hline 16 & Bad FUPLA E9 & Page 9-12 & Error & 58 & Motor Start & Page 9-16 & Status \\
\hline 17 & Bad FUPLA E10 & Page 9-12 & Error & 59 & Nodes Disconnect & Page 9-16 & Error \\
\hline 18 & Bad FUPLA E11 & Page 9-12 & Error & 60 & NOT IDENT EEPROM DATA & Page 9-16 & Error \\
\hline 19 & CHANGE SET ERROR & Page 9-12 & Error & 61 & Synchro Check & Page 9-16 & Status \\
\hline 20 & Wait CHECK of Change & Page 9-13 & Status & 62 & Parameter NOT saved & Page 9-16 & Error \\
\hline 21 & Block Error & Page 9-13 & Error & 63 & Privilege & Page 9-16 & Error \\
\hline 22 & Blocked Rotor & Page 9-13 & Status & 64 & READ HOST ERROR & Page 9-16 & Error \\
\hline 23 & Bus Error & Page 9-13 & Error & 65 & READY DSP ERROR & Page 9-17 & Error \\
\hline 24 & CALIBRATION DSP FAULT & Page 9-13 & Error & 66 & Ready Error & Page 9-17 & Error \\
\hline 25 & Clearing EEPROM & Page 9-13 & Status & 67 & SCU running mode & Page 9-17 & Status \\
\hline 26 & Config not loaded & Page 9-13 & Status & 68 & Runtime error & Page 9-17 & Error \\
\hline 27 & Configuration loaded & Page 9-13 & Status & 69 & Unbalanced Load & Page 9-17 & Status \\
\hline 28 & Configuration saved & Page 9-13 & Status & 70 & Upload DSP Data & Page 9-17 & Status \\
\hline 29 & CONFIG DSP ERROR & Page 9-13 & Error & 71 & FUPLA Up Load & Page 9-17 & Status \\
\hline 30 & CONFIG LON ERROR & Page 9-13 & Error & 72 & LCU Up Load & Page 9-17 & Status \\
\hline 31 & Files deleted & Page 9-14 & Status & 73 & WIRE Up Load & Page 9-17 & Status \\
\hline 32 & Diff Protection & Page 9-14 & Status & 74 & Software changed & Page 9-17 & Error \\
\hline 33 & Distance Protection & Page 9-14 & Status & 75 & COIL ERROR CARD1I & Page 9-18 & Error \\
\hline 34 & Division by zero & Page 9-14 & Error & 76 & COIL ERROR CARD1II & Page 9-18 & Error \\
\hline 35 & DSP CONFIGURED & Page 9-14 & Status & 77 & COIL ERROR CARD2I & Page 9-18 & Error \\
\hline 36 & EEPROM DATA DISTURBED & Page 9-14 & Error & 78 & COIL ERROR CARD2II & Page 9-18 & Error \\
\hline 37 & Inrush & Page 9-14 & Status & 79 & StatusRegError & Page 9-18 & Error \\
\hline 38 & FUPLA Down Load & Page 9-14 & Status & 80 & Supply down & Page 9-18 & Status \\
\hline 39 & LCU Down Load & Page 9-14 & Status & 81 & Suspend Error & Page 9-18 & Error \\
\hline 40 & WIRE Down Load & Page 9-14 & Status & 82 & Thermal Overload & Page 9-18 & Status \\
\hline 41 & Erase Addr Block Error & Page 9-14 & Error & 83 & Thermal Protection & Page 9-18 & Status \\
\hline 42 & Gnd IDMT Extremely Inv & Page 9-14 & Status & 84 & TIMEOUT ERROR & Page 9-18 & Error \\
\hline
\end{tabular}

Continued next page

Table 49: Messages on the LC display screen
\begin{tabular}{l|l|l|l}
\hline No. & Message & Help & Type \\
\hline 86 & Trace & Page 9-19 & Error \\
\hline 87 & Resid OverV Def Low & Page 9-19 & Status \\
\hline 88 & Resid OverV Def Low & Page 9-19 & Status \\
\hline 89 & Undervoltage Def Low & Page 9-19 & Status \\
\hline 90 & Undervoltage Def High & Page 9-19 & Status \\
\hline 91 & Undervoltage Inst & Page 9-19 & Status \\
\hline 92 & Overvoltage Def Low & Page 9-19 & Status \\
\hline 93 & Overvoltage Def High & Page 9-19 & Status \\
\hline 94 & Overvoltage Inst & Page 9-19 & Status \\
\hline 95 & Overcurrent Def Low & Page 9-19 & Status \\
\hline 96 & Overcurrent Def High & Page 9-19 & Status \\
\hline 97 & Overcurrent Inst & Page 9-19 & Status \\
\hline 98 & UNDEFINED PROT ERROR & Page 9-20 & Error \\
\hline
\end{tabular}
\begin{tabular}{l|l|l|l}
\hline No. & Message & Help & Type \\
\hline 100 & Gnd Non Dir Low & Page 9-20 & Status \\
\hline 101 & Unit Interrupt & Page 9-20 & Error \\
\hline 102 & Low Load & Page 9-20 & Status \\
\hline 103 & VppLowError & Page 9-20 & Status \\
\hline 104 & Wait new Config & Page 9-20 & Error \\
\hline 105 & Waiting for DSP ready & Page 9-20 & \begin{tabular}{l} 
Status/ \\
Error
\end{tabular} \\
\hline 106 & Waiting LON Node & Page 9-20 & Status \\
\hline 107 & Waiting LON Node 1 & Page 9-20 & Error \\
\hline 108 & WRITE HOST ERROR & Page 9-20 & \begin{tabular}{l} 
Status/ \\
Error
\end{tabular} \\
\hline 109 & Writing Byte Error & Page 9-21 & Error \\
\hline 110 & Wrong Parameter Value & Page 9-21 & Error \\
\hline 111 & WRONG VERSION DSP & Page 9-21 & \begin{tabular}{l} 
Status/ \\
Error
\end{tabular} \\
\hline 112 & WRONG CONFIGURATION & Page 9-21 & Error \\
\hline
\end{tabular}

\subsection*{9.2.2 Error and status messages of the configuration program}

The following messages are displayed while the configuration program is in use. The table below shows the number and the message type. The number and the page number enable access to the information required to know the cause and correct the fault.

The messages are classified into four types and are shown when the following events occur:
- Note: These messages are output as the result of an operational step. They are not the result of an operational error.
- Warning: These messages are output as a result of an operational action that may have negative consequences for the application. They are not the result of an operational error.
- Application error: These messages are output if an operational step causes an error in the application. Application errors may also be displayed after a drawing test.
- System error: The configuration program is not functioning together with the PC. Check whether the computer meets the requirements of the configuration program. If necessary, consult the system administrator.
- Communication error: Displayed during communications processes between the PC and the REF542. If there is a communication error resulting from the configuration program or the REF542, please contact ABB Service. In the event of communication errors resulting from the PC configuration, consult the system administrator as required.
Further information or corrective measures can be found in Chapter "9.3.2 Correction in the event of configuration program error messages" on page 9-22.
Table 50: Configuration program messages
\begin{tabular}{l|l|l|l}
\hline No. & Message & Help & Type \\
\hline 1 & 8 P Font selection failed & Page 9-22 & System error \\
\hline 2 & Warning: Uploaded file was generated with version: & Page 9-22 & Note \\
\hline 3 & Warning: be sure to have no elements chosen, which are no more available! & Page 9-22 & Warning \\
\hline 4 & Current file not saved ! Really open a new file without saving ? & Page 9-22 & Note \\
\hline 5 & Analog inputs not configured & Page 9-22 & Application error \\
\hline 6 & Nr of moving failure & Page 9-22 & Application error \\
\hline 7 & Failure with open comm & Page 9-22 & Application error \\
\hline 8 & Number of wires & Page 9-22 & Note \\
\hline 9 & Choose only energy counter 1 .. 10 & Page 9-22 & Note \\
\hline 10 & Display will be cleared.lnDo you want to continue ? & Page 9-22 & Warning \\
\hline 11 & Display: Field bus address \%hu not used by any switching object. Check symbols ! & Page 9-22 & Application error \\
\hline 12 & LED Text for display & Page 9-22 & Application error \\
\hline 13 & REF542 texts & Page 9-23 & Application error \\
\hline 14 & Application is OUT OF MEMORY & Page 9-23 & System error \\
\hline 15 & AR used without CB & Page 9-23 & Application error \\
\hline 16 & Now starts drawing check & Page 9-23 & Note \\
\hline 17 & Binary input \(1==0\) & Page 9-23 & Application error \\
\hline 18 & Binary input \(2==0\) & Page 9-23 & Application error \\
\hline Continued next page & &
\end{tabular}

REF542 bay control and protection unit (SCU)
Handbook

Table 50: Configuration program messages
\begin{tabular}{|c|c|c|c|}
\hline No. & Message & Help & Type \\
\hline 19 & Binary input \(3==0\) & Page 9-23 & Application error \\
\hline 20 & Binary input 4 == 0 & Page 9-23 & Application error \\
\hline 21 & Binary input \(5=0\) & Page 9-23 & Application error \\
\hline 22 & Binary input \(6==0\) & Page 9-23 & Application error \\
\hline 23 & The selected symbol will be deleted. Continue? & Page 9-23 & Note \\
\hline 24 & The device isn't open & Page 9-23 & Communication error \\
\hline 25 & The device is already open & Page 9-23 & Communication error \\
\hline 26 & Downloadfile for objects is too big. Your file is big. & Page 9-23 & Application error \\
\hline 27 & First character of filename not valid & Page 9-23 & Application error \\
\hline 28 & LCU upload & Page 9-23 & Note \\
\hline 29 & Wire upload & Page 9-23 & Note \\
\hline 30 & LCU upload active & Page 9-24 & Note \\
\hline 31 & Fupla upload active & Page 9-24 & Note \\
\hline 32 & Wire upload active & Page 9-24 & Note \\
\hline 33 & Import operation will overwrite all current data & Page 9-24 & Warning \\
\hline 34 & Wrong sensor nominal value! & Page 9-24 & Application error \\
\hline 35 & The device identifer is invalid or unsupported & Page 9-24 & Application error \\
\hline 36 & The specified byte size is invalid & Page 9-24 & Communication error \\
\hline 37 & Failure at configuration of an analog output & Page 9-24 & Application error \\
\hline 38 & Loading of new display texts will overwrite current texts & Page 9-24 & Warning \\
\hline 39 & Direct read write object: Invalid field bus address & Page 9-24 & Application error \\
\hline 40 & Direct read write object is more than once configured! & Page 9-24 & Application error \\
\hline 41 & DSP Load > 100 \% & Page 9-24 & Warning/application error \\
\hline 42 & Validation Error & Page 9-24 & Warning/application error \\
\hline 43 & LCU upload was fault & Page 9-24 & Warning \\
\hline 44 & Fupla upload was fault & Page 9-24 & Warning \\
\hline 45 & Data upload & Page 9-24 & Note \\
\hline 46 & Wire upload was fault & Page 9-25 & Warning \\
\hline 47 & Get data from REF542 & Page 9-25 & Note \\
\hline 48 & Reading Fault Recorder Data & Page 9-25 & Note \\
\hline 49 & Upload file not interpretable & Page 9-25 & Application error \\
\hline 50 & Energy counter is more than once configured! & Page 9-25 & Application error \\
\hline 51 & Rising event failure! & Page 9-25 & Application error \\
\hline 52 & Failure with open comm & Page 9-25 & Application error \\
\hline 53 & Successful ready & Page 9-25 & Note \\
\hline 54 & The function can't allocate the queues & Page 9-25 & System error \\
\hline 55 & There is still a CB chosen & Page 9-25 & Application error \\
\hline 56 & Too many characters. max 21. & Page 9-25 & Application error \\
\hline 57 & Wrong lowtime parameter! & Page 9-25 & Application error \\
\hline 58 & Wrong hightime parameter ! & Page 9-25 & Application error \\
\hline 59 & Display failure & Page 9-25 & Application error \\
\hline 60 & Wrong factor (I Transformer/I NetNominal) & Page 9-25 & Application error \\
\hline
\end{tabular}

\footnotetext{
Continued next page
}

Table 50: Configuration program messages
\begin{tabular}{|c|c|c|c|}
\hline No. & Message & Help & Type \\
\hline 61 & Wrong interrupt channel. & Page 9-25 & Application error \\
\hline 62 & Wrong time parameter! & Page 9-25 & Application error \\
\hline 63 & Failure at configuration of protection functions & Page 9-25 & Application error \\
\hline 64 & Nominal voltages fault for synchro check & Page 9-26 & Application error \\
\hline 65 & Error at opening .doc file & Page 9-26 & System error \\
\hline 66 & Main setting failure & Page 9-26 & Application error \\
\hline 67 & Second setting failure & Page 9-26 & Application error \\
\hline 68 & failure with build comm dcb & Page 9-26 & Communication error \\
\hline 69 & Communication failure & Page 9-26 & Communication error \\
\hline 70 & Failure in initcom & Page 9-26 & Communication error \\
\hline 71 & Failure with open comm & Page 9-26 & Communication error \\
\hline 72 & Failure with setcommstate & Page 9-26 & Communication error \\
\hline 73 & Failure sensor 1 & Page 9-26 & Application error \\
\hline 74 & Failure sensor 2 & Page 9-26 & Application error \\
\hline 75 & Failure sensor 3 & Page 9-26 & Application error \\
\hline 76 & Failure sensor 4 & Page 9-26 & Application error \\
\hline 77 & Failure sensor 5 & Page 9-26 & Application error \\
\hline 78 & Failure sensor 6 & Page 9-26 & Application error \\
\hline 79 & Failure sensor 7 & Page 9-26 & Application error \\
\hline 80 & Active time failure & Page 9-26 & Application error \\
\hline 81 & Wrong nr. of starts & Page 9-26 & Application error \\
\hline 82 & Display failure & Page 9-27 & Application error \\
\hline 83 & Failure at reading an application & Page 9-27 & Application error \\
\hline 84 & Selection failed! & Page 9-27 & Application error \\
\hline 85 & Documentation error & Page 9-27 & System error \\
\hline 86 & Wrong temperature & Page 9-27 & Application error \\
\hline 87 & Invalid field bus address in switching object & Page 9-27 & Application error \\
\hline 88 & Invalid field bus address in analog object & Page 9-27 & Application error \\
\hline 89 & Invalid node address & Page 9-27 & Application error \\
\hline 90 & Initialisation temperature failure & Page 9-27 & Application error \\
\hline 91 & Sequence node nr. failure & Page 9-27 & Application error \\
\hline 92 & Sensor fault & Page 9-27 & Application error \\
\hline 93 & Contact wear failure & Page 9-27 & Application error \\
\hline 94 & Wrong thickness found, choose only \(0,1,3\) & Page 9-27 & Application error \\
\hline 95 & Line thickness failure & Page 9-27 & Application error \\
\hline 96 & Maximal temperature & Page 9-27 & Application error \\
\hline 97 & Minimum load failure & Page 9-27 & Application error \\
\hline 98 & Wrong motorcurrent & Page 9-27 & Application error \\
\hline 99 & Nominal temperature & Page 9-27 & Application error \\
\hline 100 & Nominal real power failure & Page 9-27 & Application error \\
\hline 101 & Wrong phase parameter & Page 9-28 & Application error \\
\hline 102 & Environment Temperature failure & Page 9-28 & Application error \\
\hline 103 & Netnumber failure & Page 9-28 & Application error \\
\hline
\end{tabular}

Continued next page

REF542 bay control and protection unit (SCU)
Handbook

Table 50: Configuration program messages
\begin{tabular}{|c|c|c|c|}
\hline No. & Message & Help & Type \\
\hline 104 & Warning temperature & Page 9-28 & Application error \\
\hline 105 & x-parameter bitmap failure & Page 9-28 & Application error \\
\hline 106 & Wrong x-parameter in \(x\)-end found & Page 9-28 & Application error \\
\hline 107 & Wrong x-parameter in \(x\)-start found & Page 9-28 & Application error \\
\hline 108 & y-parameter bitmap failure & Page 9-28 & Application error \\
\hline 109 & Wrong y-parameter in y-end found & Page 9-28 & Application error \\
\hline 110 & Wrong y-parameter in y -start found & Page 9-28 & Application error \\
\hline 111 & Wrong time configuration ! & Page 9-28 & Application error \\
\hline 112 & Maximum reverse load failure & Page 9-28 & Application error \\
\hline 113 & Wrong operating hours & Page 9-28 & Application error \\
\hline 114 & Wrong parameter & Page 9-28 & Application error \\
\hline 115 & Wrong I/In parameter & Page 9-28 & Application error \\
\hline 116 & Wrong k parameter & Page 9-28 & Application error \\
\hline 117 & Wrong minimum motorcurrent parameter & Page 9-28 & Application error \\
\hline 118 & Wrong motorcurrent start threshold parameter & Page 9-28 & Application error \\
\hline 119 & Nominal current failure & Page 9-28 & Application error \\
\hline 120 & Wrong a parameter & Page 9-28 & Application error \\
\hline 121 & Wrong b parameter & Page 9-28 & Application error \\
\hline 122 & Select font failed & Page 9-28 & System error \\
\hline 123 & Active protection set failure & Page 9-28 & Application error \\
\hline 124 & Signal value failure & Page 9-29 & Application error \\
\hline 125 & Wrong startvalue & Page 9-29 & Application error \\
\hline 126 & Wrong time window & Page 9-29 & Application error \\
\hline 127 & Operating time failure & Page 9-29 & Application error \\
\hline 128 & Time const off failure & Page 9-29 & Application error \\
\hline 129 & Time const fault failure & Page 9-29 & Application error \\
\hline 130 & Time const normal failure & Page 9-29 & Application error \\
\hline 131 & Minimum operating current failure & Page 9-29 & Application error \\
\hline 132 & Failure in switching object & Page 9-29 & Application error \\
\hline 133 & Failure in analog object with field bus address: & Page 9-29 & Application error \\
\hline 134 & Division rate failure & Page 9-29 & Application error \\
\hline 135 & Filtertime failure & Page 9-29 & Application error \\
\hline 136 & Fupla upload & Page 9-29 & Note \\
\hline 137 & Hardware modified & Page 9-29 & Note \\
\hline 138 & The device's baud rate is unsupported & Page 9-29 & Communication error \\
\hline 139 & Wrong Icumemfile size & Page 9-29 & Application error \\
\hline 140 & Wrong wirememfile size & Page 9-29 & Application error \\
\hline 141 & Hardware is not configured! & Page 9-29 & Application error \\
\hline 142 & Hardware number is a signal output. & Page 9-29 & Note \\
\hline 143 & Led hardware number failure & Page 9-29 & Application error \\
\hline 144 & Anlaog object hardware number failure & Page 9-29 & Application error \\
\hline 145 & Hardware Number failure & Page 9-30 & Application error \\
\hline 146 & Failed to create main window & Page 9-30 & System error \\
\hline
\end{tabular}

\footnotetext{
Continued next page
}

Table 50: Configuration program messages
\begin{tabular}{|c|c|c|c|}
\hline No. & Message & Help & Type \\
\hline 147 & Main window & Page 9-30 & System error \\
\hline 148 & Your application has got no objects & Page 9-30 & Application error \\
\hline 149 & Your application has got no wire informations & Page 9-30 & Note \\
\hline 150 & Your application has got too many wires & Page 9-30 & Application error \\
\hline 151 & INTERNAL ERROR & Page 9-30 & System error \\
\hline 152 & Is not accessible & Page 9-30 & System error \\
\hline 153 & Wrong calibration-/scalingfactor & Page 9-30 & Application error \\
\hline 154 & Invalid channel given in bitmap & Page 9-30 & Application error \\
\hline 155 & No display text file available & Page 9-30 & System error \\
\hline 156 & No connection to REF542 & Page 9-30 & Communication error \\
\hline 157 & No wire information in this file & Page 9-30 & Application error \\
\hline 158 & Configuration failure & Page 9-30 & Application error \\
\hline 159 & Led Number is more than once configured & Page 9-30 & Application error \\
\hline 160 & Power output \(2=0\) & Page 9-31 & Application error \\
\hline 161 & Power output \(3=0\) & Page 9-31 & Application error \\
\hline 162 & Power output \(4=0\) & Page 9-31 & Application error \\
\hline 163 & Power Calculation & Page 9-31 & Application error \\
\hline 164 & CB failure & Page 9-31 & Application error \\
\hline 165 & Read error & Page 9-31 & Communication error \\
\hline 166 & Maximum 21 characters.. & Page 9-31 & Application error \\
\hline 167 & More than 10 energy counter configured & Page 9-31 & Application error \\
\hline 168 & More than 100 direct read writes configured & Page 9-31 & Application error \\
\hline 169 & More than 12 protection functions configured & Page 9-31 & Application error \\
\hline 170 & More than 70 analog objects configured & Page 9-31 & Application error \\
\hline 171 & Do you want to save your modifications in 1? & Page 9-31 & Note \\
\hline 172 & Do you want to save your modifications ? & Page 9-31 & Note \\
\hline 173 & Energy factor failure! & Page 9-31 & Application error \\
\hline 174 & Net contains more than one output & Page 9-31 & Application error \\
\hline 175 & Net nominal current failure & Page 9-31 & Application error \\
\hline 176 & File new & Page 9-32 & Note \\
\hline 177 & Take new wire text ? & Page 9-32 & Note \\
\hline 178 & Number parameter failure! & Page 9-32 & Application error \\
\hline 179 & Number parameter failure! & Page 9-32 & Application error \\
\hline 180 & Only Netnumbers free & Page 9-32 & Note \\
\hline 181 & Object with given field bus address not found & Page 9-32 & Note \\
\hline 182 & Object with given sequence number not found & Page 9-32 & Note \\
\hline 183 & Object with no valid connections & Page 9-32 & Application error \\
\hline 184 & Pole change relais not configurable & Page 9-32 & Application error \\
\hline 185 & Problems with FILE HANDLING & Page 9-32 & System error \\
\hline 186 & Problems with WINDOWS RESOURCES & Page 9-32 & System error \\
\hline 187 & Really exit without saving the file? & Page 9-32 & Note \\
\hline 188 & Reduced hardware size & Page 9-32 & Information/application error \\
\hline
\end{tabular}

\footnotetext{
Continued next page
}

Table 50: Configuration program messages
\begin{tabular}{|c|c|c|c|}
\hline No. & Message & Help & Type \\
\hline 189 & Swiobj 0-1 failure ! & Page 9-32 & Application error \\
\hline 190 & Swiobj 0-2 failure & Page 9-32 & Application error \\
\hline 191 & Swiobj 0-3 failure & Page 9-32 & Application error \\
\hline 192 & Swiobj 1-0 failure & Page 9-33 & Application error \\
\hline 193 & Swiobj 1-1 failure & Page 9-33 & Application error \\
\hline 194 & Swiobj 1-2 failure & Page 9-33 & Application error \\
\hline 195 & Swiobj 2-1 failure & Page 9-33 & Application error \\
\hline 196 & Swiobj 2-2 failure & Page 9-33 & Application error \\
\hline 197 & Swiobj 2-2 no out failure & Page 9-33 & Application error \\
\hline 198 & Swiobj 4-3 failure & Page 9-33 & Application error \\
\hline 199 & Swiobj 6-5 failure & Page 9-33 & Application error \\
\hline 200 & Failure in switching object nr.: & Page 9-33 & Application error \\
\hline 201 & The hardware isn't available (locked by an other device) & Page 9-33 & Communication error \\
\hline 202 & Analog object field bus address: is more than once configured! & Page 9-33 & Application error \\
\hline 203 & LCU download active & Page 9-33 & Note \\
\hline 204 & Data download & Page 9-33 & Note \\
\hline 205 & Data download & Page 9-33 & Note \\
\hline 206 & Fupla download active & Page 9-33 & Note \\
\hline 207 & Send tel-nr. & Page 9-33 & Note \\
\hline 208 & Wire download active & Page 9-33 & Note \\
\hline 209 & Sensor 1-3 nominal value failure & Page 9-33 & Application error \\
\hline 210 & Sensor 4-6 nominal value failure & Page 9-33 & Application error \\
\hline 211 & Sensor 7 nominal value failure & Page 9-33 & Application error \\
\hline 212 & Wrong sensor configuration & Page 9-33 & Application error \\
\hline 213 & Wrong sensors for power calculation 3 phases & Page 9-34 & Application error \\
\hline 214 & Wrong sensors for power calculation aaron & Page 9-34 & Application error \\
\hline 215 & Sensor fault for directional power & Page 9-34 & Application error \\
\hline 216 & Signal not available & Page 9-34 & Communication error \\
\hline 217 & Are you sure, that all wires should be deleted? & Page 9-34 & Warning \\
\hline 218 & Are you sure, that this page should be deleted? & Page 9-34 & Warning \\
\hline 219 & Are you sure, that all pages should be deleted? & Page 9-34 & Warning \\
\hline 220 & Are you sure, that this object should be deleted? & Page 9-34 & Warning \\
\hline 221 & Language DLL missing & Page 9-34 & System error \\
\hline 222 & Failed to change language & Page 9-34 & System error \\
\hline 223 & Fault recorder chosen but no protection function & Page 9-34 & Application error \\
\hline 224 & Select Recordings & Page 9-34 & Application error \\
\hline 225 & Wire configuration & Page 9-34 & Note \\
\hline 226 & Drawing check & Page 9-35 & Note \\
\hline 227 & This will destroy the current configuration! & Page 9-35 & Warning \\
\hline 228 & Unknown struct found & Page 9-35 & Application error \\
\hline 229 & Unrecognised data type request & Page 9-35 & Application error \\
\hline 230 & Unrecognised data type to send & Page 9-35 & Application error \\
\hline 231 & Invalid net number & Page 9-35 & Application error \\
\hline
\end{tabular}

\footnotetext{
Continued next page
}

Table 50: Configuration program messages
\begin{tabular}{|c|c|c|c|}
\hline No. & Message & Help & Type \\
\hline 232 & Invalid parameter: Min. Curr. & Page 9-35 & Application error \\
\hline 233 & Invalid parameter: Max. Unbal. & Page 9-35 & Application error \\
\hline 234 & Invalid path & Page 9-35 & Application error \\
\hline 235 & Different nominal voltages used & Page 9-35 & Application error \\
\hline 236 & Invalid usage of protection functions & Page 9-35 & Application error \\
\hline 237 & Wire with given net number not found & Page 9-35 & Note \\
\hline 238 & Connection to REF542 lost & Page 9-35 & Communication error \\
\hline 239 & Connection to REF542 broken & Page 9-35 & Note \\
\hline 240 & Netnumber failure & Page 9-36 & Application error \\
\hline 241 & REF542 version and configuration program not compatible! & Page 9-36 & Warning \\
\hline 242 & Choose only positive numbers & Page 9-36 & Application error \\
\hline 243 & Choose correct number & Page 9-36 & Application error \\
\hline 244 & Choose menupoint: versions to see current Versions & Page 9-36 & Note \\
\hline 245 & Warning: maximum of protection functions configured!! & Page 9-36 & Application error \\
\hline 246 & WARNING!! Problems with internal wires & Page 9-36 & Application error \\
\hline 247 & Deletion warning & Page 9-36 & Warning \\
\hline 248 & Warning sensor 1 & Page 9-36 & Application error \\
\hline 249 & Warning sensor 2 & Page 9-36 & Application error \\
\hline 250 & Warning sensor 3 & Page 9-36 & Application error \\
\hline 251 & Warning sensor 4 & Page 9-36 & Application error \\
\hline 252 & Warning sensor 5 & Page 9-36 & Application error \\
\hline 253 & Warning sensor 6 & Page 9-36 & Application error \\
\hline 254 & Warning sensor 7 & Page 9-36 & Application error \\
\hline 255 & Value outside of limits: & Page 9-36 & Application error \\
\hline 256 & Value not understandable! & Page 9-36 & Application error \\
\hline 257 & Choose only value: a - b & Page 9-36 & Application error \\
\hline 258 & Operating hours & Page 9-36 & Application error \\
\hline 259 & Choose only factor 0.1 .. 1000! & Page 9-37 & Application error \\
\hline 260 & Only 1 or 2 accepted & Page 9-37 & Application error \\
\hline 261 & Choose only x:0 .. 96 & Page 9-37 & Application error \\
\hline 262 & Choose only y:66 .. 247 & Page 9-37 & Application error \\
\hline 263 & Choose only & Page 9-37 & Application error \\
\hline 264 & x -parameter failure & Page 9-37 & Application error \\
\hline 265 & \(y\)-parameter failure & Page 9-37 & Application error \\
\hline 266 & Drawing & Page 9-37 & Note \\
\hline 267 & Choose only time 0 .. 30 min & Page 9-37 & Application error \\
\hline 268 & Time parameter failure! & Page 9-37 & Application error \\
\hline 269 & Time parameter ignored & Page 9-37 & Note \\
\hline 270 & Too many Switchobjects used & Page 9-37 & Application error \\
\hline 271 & Wire file too big! Only ... byte allowed. Your file is ... byte big. Remove some wires! (1 Wire = 14 byte) & Page 9-37 & Application error \\
\hline 272 & More than 120 protection parameters used! & Page 9-37 & Application error \\
\hline
\end{tabular}

\subsection*{9.3 Causes and corrections for error or status messages}

The next two subsections contain information on the reason for the message and if applicable help on correcting errors. The lists are sorted by error numbers and alphabetically by message text. The user can correct many errors without additional help, but for some errors service assistance will be required. See Chapter "9.4 Further information" on page 9-38 for the relevant addresses.

\subsection*{9.3.1 Corrective action for error messages on the LCU}

The table below contains additional information on the individual messages. The desired message can be quickly found by the number in "Table 49: Messages on the LC display screen" on page 9-2. The message itself is also listed alphabetically in the error text column.

The other columns show the reason for the message and, if it is an error message, brief instructions on how to deal with the error.
Table 51: Causes and options for correction in the event of LCU error messages
\begin{tabular}{l|l|l}
\hline No: & Message/cause & Correction \\
\hline 1 & \begin{tabular}{l} 
Address Error: \\
Error in configuration file \\
EPROM is not properly seated in its socket
\end{tabular} & \begin{tabular}{l} 
a) Delete the REF542 EEPROM, create a new configura- \\
tion and import it. \\
b) Check EPROM seating (service)
\end{tabular} \\
\hline 2 & \begin{tabular}{l} 
IDMT Extremely Inv \\
The protective function IDMT has been tripped with the \\
current-time characteristic "extremely inverse". Dura- \\
tion and level of the measured current value are above \\
the set current-time characteristic.
\end{tabular} & No error, only status message! \\
\hline 3 & \begin{tabular}{l} 
IDMT Long Time Inv \\
The protective function IDMT has been tripped with the \\
current-time characteristic "long-time inverse". Duration \\
and level of the measured current value are above the \\
set current-time characteristic.
\end{tabular} & No error, only status message! \\
\hline 4 & \begin{tabular}{l} 
IDMT Normal Inv \\
The protective function IDMT has been tripped with the \\
current-time characteristic "normal inverse". Duration \\
and level of the measured current value are above the \\
set current-time characteristic.
\end{tabular} & No error, only status message! \\
\hline 5 & \begin{tabular}{l} 
IDMT Very Inv \\
The protective function IDMT has been tripped with the \\
current-time characteristic "very inverse". Duration and \\
level of the measured current value are above the set \\
current-time characteristic.
\end{tabular} & No error, only status message! \\
\hline 6 & \begin{tabular}{l} 
Nr Of Starts \\
The protective function number of motor starts has \\
been tripped. Too many startup attempts within a set \\
period were made. The motor is in danger of thermal \\
overload.
\end{tabular} & \begin{tabular}{l} 
CONFIG ERROR \\
Internal error
\end{tabular} \\
\hline 8 & \begin{tabular}{l} 
Bad FUPLA E1 \\
In normal circumstances this error is caught by the con- \\
figuration program. An unknown LED number was assi- \\
gned in the configuration.
\end{tabular} & \begin{tabular}{l} 
Check the LED numbers in the application and reload the \\
changed application into the REF542.
\end{tabular} \\
\hline 7 & No error, only status message! \\
\hline
\end{tabular}

Table 51: Causes and options for correction in the event of LCU error messages
\begin{tabular}{|c|c|c|}
\hline No: & Message/cause & Correction \\
\hline 9 & \begin{tabular}{l}
Bad FUPLA E2 \\
In normal circumstances this error is caught by the configuration program. Too many power pulse counter function blocks were configured for the LC display screen.
\end{tabular} & Check the number of power pulse counters shown on the LC display screen and then reload the changed application into the REF542. \\
\hline 10 & \begin{tabular}{l}
Bad FUPLA E3 \\
In normal circumstances this error is caught by the configuration program. The signal number of a direct write-read object is outside the set range.
\end{tabular} & Check the signal numbers of the direct write-read objects in the application and reload the changed application into the REF542. \\
\hline 11 & \begin{tabular}{l}
Bad FUPLA E4 \\
In normal circumstances this error is caught by the configuration program. Too many power pulse counters were configured in the function chart.
\end{tabular} & Check the number of power pulse counters in the application and reload the changed application into the REF542. \\
\hline 12 & \begin{tabular}{l}
Bad FUPLA E5 \\
In normal circumstances this error is caught by the configuration program. The memory list is full and the function block can no longer be stored in the EEPROM (digital memory object or power pulse counter).
\end{tabular} & Check the number of digital memory objects or power pulse counters in the application and then reload the changed application into the REF542. \\
\hline 13 & \begin{tabular}{l}
Bad FUPLA E6 \\
In normal circumstances this error is caught by the configuration program. RESET list for the reset page is full; power pulse counters cannot be deleted via the reset page!
\end{tabular} & Check the number of power pulse counters in the application and reload the changed application into the REF542. \\
\hline 14 & \begin{tabular}{l}
Bad FUPLA E7 \\
In normal circumstances this error is caught by the configuration program. An unknown sensor was configured for a threshold object.
\end{tabular} & Check the threshold objects in the application and reload the changed application into the REF542. \\
\hline 15 & \begin{tabular}{l}
Bad FUPLA E8 \\
In normal circumstances this error is caught by the configuration program. There are more thrust modules than switching objects in the configuration.
\end{tabular} & Check the number of thrust modules and switching objects in the application and then reload the changed application into the REF542. \\
\hline 16 & \begin{tabular}{l}
Bad FUPLA E9 \\
In normal circumstances this error is caught by the configuration program. An incorrect time parameter was set in the fault recorder function block.
\end{tabular} & Check the fault recorder configuration in the application and reload the changed application into the REF542. \\
\hline 17 & \begin{tabular}{l}
Bad FUPLA E10 \\
In normal circumstances this error is caught by the configuration program. There are too many protective functions in the configuration.
\end{tabular} & Check the number of protective functions in the application and reload the changed application into the REF542. \\
\hline 18 & \begin{tabular}{l}
Bad FUPLA E11 \\
In normal circumstances this error is caught by the configuration program. There are too many switching objects in the configuration.
\end{tabular} & Check the number of switching objects in the application and reload the changed application into the REF542. \\
\hline
\end{tabular}

\section*{CHANGE SET ERROR}

You have tried to change a protective parameter locally on the LCU although there is still an alarm that has not been acknowledged. When changing a protective parameter an item in its setting range was violated.

Acknowledge the alarm successfully and then change the desired protective parameter.
b) Check the setting range of the parameters.

Table 51: Causes and options for correction in the event of LCU error messages
\begin{tabular}{|c|c|c|}
\hline No: & Message/cause & Correction \\
\hline 20 & \begin{tabular}{l}
Wait CHECK of Change \\
You have changed the parameter set or \\
You have changed protective parameters locally.
\end{tabular} & No error, only status message! \\
\hline 21 & \begin{tabular}{l}
Block Error \\
An error has occurred while saving information in the EEPROM.
\end{tabular} & Delete the REF542 EEPROM, create a new configuration and import it; otherwise check the EEPROM seating (Service). \\
\hline 22 & \begin{tabular}{l}
Blocked Rotor \\
The protective function monitoring on blocking rotor has been tripped. The measured motor speed has fallen below a set speed value.
\end{tabular} & No error, only status message! \\
\hline 23 & \begin{tabular}{l}
Bus Error \\
Error in configuration file \\
EPROM is not properly seated in its socket
\end{tabular} & \begin{tabular}{l}
a) Delete the REF542 EEPROM, create a new configuration and import it. \\
b) Check EPROM seating (service)
\end{tabular} \\
\hline 24 & \begin{tabular}{l}
CALIBRATION DSP FAULT \\
Calibration data deleted or corrupted in EEPROM; the REF542 works with standard values.
\end{tabular} & Recalibrate REF542. \\
\hline 25 & \begin{tabular}{l}
Clearing EEPROM \\
You have deleted the EEPROM contents while starting the unit by pressing both cursor keys simulaneously.(Under normal conditions this message appears for such a short time that it cannot be read!)
\end{tabular} & Delete the configuration and import a new configuration into the REF542. \\
\hline 26 & \begin{tabular}{l}
Config not loaded \\
After being successfully imported, the configuration cannot be saved in the EEPROM: \\
Configuration too large \\
EEPROM defective
\end{tabular} & \begin{tabular}{l}
a) Import a smaller test configuration to test the principal functions. If necessary, reduce the size of the configuration. \\
b) Notify service.
\end{tabular} \\
\hline 27 & \begin{tabular}{l}
Configuration loaded \\
Message after successful export of the configuration from the EEPROM
\end{tabular} & No error, only status message! \\
\hline 28 & \begin{tabular}{l}
Configuration saved \\
Message after the configuration has been successfully saved in the EEPROM.
\end{tabular} & No error, only status message! \\
\hline 29 & \begin{tabular}{l}
CONFIG DSP ERROR \\
Error in configuration: Message only appears after switching on or after import
\end{tabular} & \begin{tabular}{l}
Check the configuration and import a test configuration to test the principal functions. \\
Otherwise: Notify service. \\
This error message generates event E21, which can be processed by a higher-order control system.
\end{tabular} \\
\hline 30 & \begin{tabular}{l}
CONFIG LON ERROR \\
LON sensors cannot be configured: Message only appears after switching on or after import LON EPROM is not properly seated in its socket LON EPROM defective
\end{tabular} & \begin{tabular}{l}
a) Check LON EPROM seating (Service) \\
b) Notify service. \\
This error message generates event E48, which can be processed by a higher-order control system.
\end{tabular} \\
\hline
\end{tabular}

Table 51: Causes and options for correction in the event of LCU error messages
\begin{tabular}{|c|c|c|}
\hline No: & Message/cause & Correction \\
\hline 31 & \begin{tabular}{l}
Files deleted \\
Data on the reset page on the LCU have been deleted. Depending on the selection, energy values, maximum values, circuit breaker data, trip data or fault records will be deleted.
\end{tabular} & No error, only status message! \\
\hline 32 & \begin{tabular}{l}
Diff Protection \\
The protective function transformer differential protection has been tripped.
\end{tabular} & No error, only status message! \\
\hline 33 & \begin{tabular}{l}
Distance Protection \\
The protective function distance protection for selectively tripping short circuits depending on the fault distance has been tripped.
\end{tabular} & No error, only status message! \\
\hline 34 & \begin{tabular}{l}
Division by zero \\
Error in configuration file. \\
EPROM is not properly seated in its socket
\end{tabular} & \begin{tabular}{l}
a) Delete the REF542 EEPROM, create a new configuration and import it. \\
b) Check EPROM seating (service)
\end{tabular} \\
\hline 35 & \begin{tabular}{l}
DSP CONFIGURED \\
While importing a configuration from a PC into the REF542 the parameters on the DSP are sent.
\end{tabular} & No error, only status message! \\
\hline 36 & \begin{tabular}{l}
EEPROM_DATA_DISTURBED \\
Error in data checksum in the EEPROM. The data in the EEPROM no longer match the originally imported configuration.
\end{tabular} & \begin{tabular}{l}
Notify service. \\
This error message generates event E10, which can be processed by a higher-order control system.
\end{tabular} \\
\hline 37 & \begin{tabular}{l}
Inrush \\
The protective function inrush current blocking was in working. A maximum current was detected by its characteristic as inrush current. The trip signal of another maximum current protective function was blocked.
\end{tabular} & No error, only status message! \\
\hline 38 & \begin{tabular}{l}
FUPLA Down Load \\
A new configuration is being imported. The LCU receives the FUPLA (function chart) data.
\end{tabular} & No error, only status message! \\
\hline 39 & \begin{tabular}{l}
LCU Down Load \\
A new configuration is being imported. The LCU receives the LCU data in which, for example, the display view is defined.
\end{tabular} & No error, only status message! \\
\hline 40 & \begin{tabular}{l}
WIRE Down Load \\
A new configuration is being imported. The LCU receives the WIRE data. The connections (wire) in the function chart between the various function blocks are saved here.
\end{tabular} & No error, only status message! \\
\hline 41 & \begin{tabular}{l}
EraseAddrBlockError \\
Error when saving the configuration in the EEPROM; a memory cell cannot be written to or deleted.
\end{tabular} & Notify service. This error message generates event E8, which can be processed by a higher-order control system. \\
\hline 42 & \begin{tabular}{l}
GndIDMT Extremely Inv \\
The protective function IDMT for earthfault currents with the current-time characteristic "extremely inverse" has been tripped. Duration and level of the measured current value exceed the set current-time characteristic.
\end{tabular} & No error, only status message! \\
\hline
\end{tabular}

Table 51: Causes and options for correction in the event of LCU error messages
\begin{tabular}{|c|c|c|}
\hline No: & Message/cause & Correction \\
\hline 43 & \begin{tabular}{l}
Gnd IDMT Long Time Inv \\
The protective function IDMT for earrthfault currents with the current-time characteristic "long-time inverse" has been tripped. Duration and level of the measured current value exceed the set current-time characteristic.
\end{tabular} & No error, only status message! \\
\hline 44 & \begin{tabular}{l}
Gnd IDMT Normal Inv \\
The protective function IDMT for earthfault currents with the current-time characteristic "normal inverse" has been tripped. \\
Duration and level of the measured current value exceed the set current-time characteristic.
\end{tabular} & No error, only status message! \\
\hline 45 & \begin{tabular}{l}
Gnd IDMT Very Inv \\
The protective function IDMT for earthfault currents with the current-time characteristic "very inverse" has been tripped. \\
Duration and level of the measured current value are above the set current-time characteristic.
\end{tabular} & No error, only status message! \\
\hline 46 & \begin{tabular}{l}
Wrong Parameter Value \\
You have tried to input an incorrect parameter in local/ input mode.
\end{tabular} & Check the setting range of the parameter and input it again. \\
\hline 47 & \begin{tabular}{l}
ERROR SUPERVISION \\
The output relay fault monitoring has been tripped. An output relay did not switch.
\end{tabular} & Notify service to replace the binary input/output board. \\
\hline 48 & \begin{tabular}{l}
Frequency Supervision \\
The protective function frequency monitoring has been tripped. The measured frequency deviates from the rated frequency by more than the set amplitude.
\end{tabular} & No error, only status message! \\
\hline 49 & \begin{tabular}{l}
Overl Def Dir Low \\
The protective function overcurrent with directional decision (Overl Def Dir Low) has been tripped. The measured current has exceeded a set value for the configured minimum time.
\end{tabular} & No error, only status message! \\
\hline 50 & \begin{tabular}{l}
Overl Def Dir High \\
The protective function overcurent with directional decision (Overl Def Dir High) has been tripped. The measured current has exceeded a set value for the configured minimum time.
\end{tabular} & No error, only status message! \\
\hline 51 & \begin{tabular}{l}
Gnd Dir Low \\
The protective function earthfault protection with directional decision (Gnd Dir Low) has been tripped. The measured current has exceeded a set value for the configured minimum time.
\end{tabular} & No error, only status message! \\
\hline 52 & \begin{tabular}{l}
Gnd Dir High \\
The protective function earthfault protection with directional decision (Gnd Dir High) has been tripped. The measured current has exceeded a set value for the configured minimum time.
\end{tabular} & No error, only status message! \\
\hline
\end{tabular}

Table 51: Causes and options for correction in the event of LCU error messages
\begin{tabular}{|c|c|c|}
\hline No: & Message/cause & Correction \\
\hline 53 & \begin{tabular}{l}
Illegal Instruction \\
Error in configuration file. \\
EPROM is not properly seated in its socket
\end{tabular} & \begin{tabular}{l}
a) Delete the REF542 EEPROM, create a new configuration and import it. \\
b) Check EPROM seating (service)
\end{tabular} \\
\hline 54 & \begin{tabular}{l}
No R/W with RS-232 \\
You are attempting to import a configuration to the LCU although the ALARM LED is on. A configuration may not be imported during a persistent alarm.
\end{tabular} & Acknowledge the alarm successfully and import the configuration again. \\
\hline 55 & \begin{tabular}{l}
Upload Version \\
You are importing the current version numbers into the configuration memory.
\end{tabular} & No error, only status message! \\
\hline 56 & \begin{tabular}{l}
Directional Power \\
The protective function directional power has been tripped. The result of the internal power calculation of the REF542 has a different sign from the set limit value and exceeds it.
\end{tabular} & No error, only status message! \\
\hline 57 & \begin{tabular}{l}
MemFullError \\
Error in saving the configuration in the EEPROM; not enough memory!
\end{tabular} & Reduce the size of the configuration (optimize). This error message generates event E2, which can be processed by a higher-order control system. \\
\hline 58 & \begin{tabular}{l}
Motor start \\
The protective function motor starting monitoring has been tripped. The starting current when the motor was starting was too high.
\end{tabular} & No error, only status message! \\
\hline 59 & \begin{tabular}{l}
Nodes disconnected \\
This message only appears when the LON bus is activated as the process bus in the hardware configuration: [Number of non-active LON sensors]
\end{tabular} & Test the sensors (connection, function). Otherwise: Notify service. \\
\hline 60 & \begin{tabular}{l}
NOT_IDENT_EEPROMDATA \\
This message only appears in the production test: The EEPROM has not yet been initialized.
\end{tabular} & \begin{tabular}{l}
Notify service. \\
This error message generates event E9, which can be processed by a higher-order control system.
\end{tabular} \\
\hline 61 & \begin{tabular}{l}
Synchro Check \\
The protective function synchrocheck has been tripped. The voltages of two systems that are to be coupled together deviate from each other in phase and/or amplitude in set limits.
\end{tabular} & No error, only status message! \\
\hline 62 & \begin{tabular}{l}
Parameter NOT saved \\
You attempted to change too many parameters simultaneously on the LCU in local/input mode.
\end{tabular} & Change the parameters again and save them more often during the process. \\
\hline 63 & \begin{tabular}{l}
Privilege \\
Error in configuration file. \\
EPROM is not properly seated in its socket
\end{tabular} & \begin{tabular}{l}
a) Delete the REF542 EEPROM, create a new configuration and import it. \\
b) Check EPROM seating (service)
\end{tabular} \\
\hline 64 & \begin{tabular}{l}
READ HOST ERROR \\
This message only appears when the LON bus is activated as the interbay bus in the hardware configuration: LON EPROM is not properly seated in its socket LON EPROM defective
\end{tabular} & \begin{tabular}{l}
a) Check LON EPROM seating (Service) \\
b) Notify service.
\end{tabular} \\
\hline
\end{tabular}

Table 51: Causes and options for correction in the event of LCU error messages
\begin{tabular}{|c|c|c|}
\hline No: & Message/cause & Correction \\
\hline 65 & \begin{tabular}{l}
READY DSP ERROR \\
This message only appears when the LON bus is activated as the interbay bus in the hardware configuration: Internal problem at the SPI interface of the control and command processor (microcontroller).
\end{tabular} & Notify service. \\
\hline 66 & \begin{tabular}{l}
Ready Error \\
Error in configuration file. \\
EPROM is not properly seated in its socket
\end{tabular} & \begin{tabular}{l}
a) Delete the REF542 EEPROM, create a new configuration and import it. \\
b) Check EPROM seating (service)
\end{tabular} \\
\hline 67 & \begin{tabular}{l}
SCU running mode \\
A new configuration has been imported to the LCU. The subsequent startup phase is now complete and the unit is ready for operation. \\
The protective functions are ready for operation shortly after the beginning of the startup phase.
\end{tabular} & No error, only status message! \\
\hline 68 & \begin{tabular}{l}
Runtime error \\
In the event of a malfunction this message is retrieved from the system libraries.
\end{tabular} & Notify service. \\
\hline 69 & \begin{tabular}{l}
Unbalanced Load \\
The protective function unbalanced load has been tripped. A difference that exceeds a set value has occurred between the measured currents.
\end{tabular} & No error, only status message! \\
\hline 70 & \begin{tabular}{l}
Upload DSP Data \\
The DSP data are being imported. The LCU sends the current measured values over the RS232 interface to a computer for further processing.
\end{tabular} & No error, only status message! \\
\hline 71 & \begin{tabular}{l}
FUPLA Up Load \\
The current configuration is being imported. The LCU sends the FUPLA (function chart) data.
\end{tabular} & No error, only status message! \\
\hline 72 & \begin{tabular}{l}
LCU Up Load \\
The current configuration is being imported. The LCU sends the LCU data in which, for example, the display view is defined.
\end{tabular} & No error, only status message! \\
\hline 73 & \begin{tabular}{l}
WIRE Up Load \\
The current configuration is being imported. The LCU sends the WIRE data. The connections (wire) in the FUPLA (function chart) between the various function blocks are saved here.
\end{tabular} & No error, only status message! \\
\hline 74 & \begin{tabular}{l}
Software changed \\
This message only appears after switching on or after the import of a new configuration. The configuration in the EEPROM and the versions of the control and command processor (microcontroller) does not match.
\end{tabular} & Delete the REF542 EEPROM, create a new configuration and import it. \\
\hline 75 & \begin{tabular}{l}
COIL ERROR CARD1 I \\
The trip circuit 1 is broken on the binary input and output board (I/O board) 1.
\end{tabular} & \begin{tabular}{l}
Check the trip circuit. \\
This error message generates two events, which can be processed by a higher-order control system. Trip circuit monitoring generates E16 and trip circuit monitoring E17.
\end{tabular} \\
\hline
\end{tabular}

Table 51: Causes and options for correction in the event of LCU error messages
\begin{tabular}{|c|c|c|}
\hline No: & Message/cause & Correction \\
\hline 76 & \begin{tabular}{l}
COIL ERROR CARD1 II \\
The trip circuit 2 is broken on the binary input and output board (I/O board) 1.
\end{tabular} & \begin{tabular}{l}
Check the trip circuit. \\
This error message generates two events, which can be processed by a higher-order control system. Trip circuit monitoring generates E18 and trip circuit monitoring E19.
\end{tabular} \\
\hline 77 & \begin{tabular}{l}
COIL ERROR CARD2 I \\
The trip circuit 1 is broken on the binary input and output board (I/O board) 2.
\end{tabular} & \begin{tabular}{l}
Check the trip circuit. \\
This error message generates two events, which can be processed by a higher-order control system. Trip circuit monitoring generates E20 and trip circuit monitoring E21.
\end{tabular} \\
\hline 78 & \begin{tabular}{l}
COIL ERROR CARD2 II \\
The trip circuit 2 is broken on the binary input and output board (I/O board) 2.
\end{tabular} & \begin{tabular}{l}
Check the trip circuit. \\
This error message generates two events, which can be processed by a higher-order control system. Trip circuit monitoring generates E22 and trip circuit monitoring E23.
\end{tabular} \\
\hline 79 & \begin{tabular}{l}
StatusRegError \\
Error in configuration file. \\
EPROM is not properly seated in its socket
\end{tabular} & \begin{tabular}{l}
a) Delete the REF542 EEPROM, create a new configuration and import it. \\
b) Check EPROM seating (service) \\
This error message generates an event E7, which can be processed by a higher-order control system.
\end{tabular} \\
\hline 80 & \begin{tabular}{l}
Supply down \\
Fault in the REF542 auxiliary supply voltage. This message cannot be seen under normal circumstances, because a display without auxiliary supply voltage is not possible.
\end{tabular} & \begin{tabular}{l}
Check the auxiliary voltage supply. \\
This error message generates an event E35, which can be processed by a higher-order control system.
\end{tabular} \\
\hline 81 & \begin{tabular}{l}
Suspend Error \\
Error in configuration file. \\
EPROM is not properly seated in its socket
\end{tabular} & \begin{tabular}{l}
a) Delete the REF542 EEPROM, create a new configuration and import it. \\
b) Check EPROM seating (service) \\
This error message generates an event E6, which can be processed by a higher-order control system.
\end{tabular} \\
\hline 82 & \begin{tabular}{l}
Thermal overload \\
The protective function thermal overload has been tripped. The motor temperature calculated from the phase currents by the REF542 has exceeded a set value.
\end{tabular} & No error, only status message! \\
\hline 83 & \begin{tabular}{l}
Thermal Supervision \\
The protective function thermal protection has been tripped. The value measured with a LON-compatible temperature probe has exceeded a set value for the configured period.
\end{tabular} & No error, only status message! \\
\hline 84 & \begin{tabular}{l}
TIMEOUT_ERROR \\
The connection between the REF542 and the configuration PC is faulty.
\end{tabular} & \begin{tabular}{l}
- Test the connection between PC and REF542 repeat the transfer. \\
- If necessary, repeat the transfer with another PC. If the error occurs during the import process: Delete the EEPROM of the REF542 beforehand. This error message generates an event E30, which can be processed by a higher-order control system.
\end{tabular} \\
\hline 85 & \begin{tabular}{l}
Too many str to read \\
A command that cannot be processed by the REF542, because it has too many individual queries, is received over the SPABUS (interbay bus). This does not affect the
\end{tabular} & \begin{tabular}{l}
- Test the interbay bus command and \\
- Test the versions of the SPA bus board and the microcontroller (control and command processor) for a noncompatible version combination.
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
Otherwise: Notify service.
}

Table 51: Causes and options for correction in the event of LCU error messages
\begin{tabular}{l|l|l}
\hline No: & Message/cause & Correction \\
\hline 86 & \begin{tabular}{l} 
Trace \\
Error in configuration file. \\
EPROM is not properly seated in its socket
\end{tabular} & \begin{tabular}{l} 
a) Delete the REF542 EEPROM, create a new configura- \\
tion and import it. \\
Check EPROM seating (service)
\end{tabular} \\
\hline 87 & \begin{tabular}{l} 
Resid OverV Def Low \\
The protective function residual overvoltage has been \\
tripped. The measured residual voltage deviates from \\
that calculated by a set value.
\end{tabular} & No error, only status message! \\
\hline 88 & \begin{tabular}{l} 
Resid OverV Def High \\
The protective function residual overvoltage has been \\
tripped. The measured residual voltage deviates from \\
that calculated by a set value.
\end{tabular} & No error, only status message! \\
\hline 89 & \begin{tabular}{l} 
Undervoltage Def Low \\
The protective function undervoltage def low has been \\
tripped. The measured voltage has fallen below a set \\
value for the configured minimum time.
\end{tabular} & No error, only status message! \\
\hline 90 & \begin{tabular}{l} 
Undervoltage Def High \\
The protective function undervoltage def high has been \\
tripped. The measured voltage has fallen below a set \\
value for the configured minimum time.
\end{tabular} & No error, only status message! \\
\hline 91 & \begin{tabular}{l} 
Undervoltage Inst \\
The protective function undervoltage instantaneous has \\
been tripped. The measured voltage has fallen below a \\
set value for the configured minimum time.
\end{tabular} & No error, only status message! \\
\hline 92 & \begin{tabular}{l} 
Overvoltage Def Low \\
The protective function overvoltage def low has been \\
tripped. The measured voltage has exceeded a set value \\
for the configured minimum time.
\end{tabular} & No error, only status message! \\
\hline 93 & \begin{tabular}{l} 
Overvoltage Def High \\
The protective function overvoltage def high has been \\
tripped. The measured voltage has exceeded a set value \\
for the configured minimum time.
\end{tabular} & No error, only status message! \\
\hline 94 & \begin{tabular}{l} 
Overvoltage Inst \\
The protective function overvoltage instantaneous has \\
been tripped. The measured voltage has exceeded a set \\
value for the configured minimum time.
\end{tabular} & No error, only status message! \\
The protective function overcurrent def low has been \\
tripped. The measured current has exceeded a set value
\end{tabular}

Table 51: Causes and options for correction in the event of LCU error messages
\begin{tabular}{|c|c|c|}
\hline No: & Message/cause & Correction \\
\hline 98 & \begin{tabular}{l}
UNDEFINED PROT ERROR \\
The protection and measuring processor (DSP) reports an unknown protective function after switching on or after the import of a configuration.
\end{tabular} & \begin{tabular}{l}
Check the DSP version and notify service. Older versions do not support all protective functions of the newer configurations. \\
This error message generates an event E 42 , which can be processed by a higher-order control system.
\end{tabular} \\
\hline 99 & \begin{tabular}{l}
Gnd Non Dir Hi \\
The protective earthfault protection high has been tripped. The measured current has exceeded a set value for the configured minimum time.
\end{tabular} & No error, only status message! \\
\hline 100 & \begin{tabular}{l}
Gnd Non Dir Low \\
The protective function earthfault protection low has been tripped. The measured current has exceeded a set value for the configured minimum time.
\end{tabular} & No error, only status message! \\
\hline 101 & Unit Interrupt Internal error. & Notify service. \\
\hline 102 & \begin{tabular}{l}
Low load \\
The protective function low load has been tripped. The calculated effective power has fallen below a set value for the configured minimum time.
\end{tabular} & No error, only status message! \\
\hline 103 & \begin{tabular}{l}
VppLowError \\
Error when writing the EEPROM. A memory cell cannot be written because the programmer voltage of the EEPROM is too low.
\end{tabular} & Notify service. \\
\hline 104 & \begin{tabular}{l}
Wait new config \\
No new configuration was found in the EEPROM when the unit was started. Under normal conditions this message appears for such a short time that it cannot be read.
\end{tabular} & No error, only status message! \\
\hline 105 & \begin{tabular}{l}
Waiting for DSP ready \\
This message appears briefly in the startup phase of the REF542. However, if the message remains visible, communications between the protection and measuring processor (DSP) and the control and command processor (MC) is not possible.
\end{tabular} & Check whether the DSP and MC EPROMs are correctly seated in the sockets (Service). Otherwise: Notify service. \\
\hline 106 & \begin{tabular}{l}
Waiting LON node \\
Test output on commissioning the LON interbay bus. This message does not appear in normal operation.
\end{tabular} & No error, only status message! \\
\hline 107 & \begin{tabular}{l}
Waiting LON node 1 \\
This message only appears if the LON bus is activated as process bus in the hardware configuration and the unit has just been switched on or a new configuration has been imported: \\
LON EPROM is not properly seated in its socket LON EPROM defective
\end{tabular} & \begin{tabular}{l}
Check whether the LON EPROM is correctly seated in the socket. \\
Otherwise: Notify service.
\end{tabular} \\
\hline 108 & \begin{tabular}{l}
WRITE HOST ERROR \\
Internal error during communication between the control and command processor (MC) and the protection and measurement processor (DSP).
\end{tabular} & \begin{tabular}{l}
Notify service. \\
This error message generates an event E20, which can be processed by a higher-order control system.
\end{tabular} \\
\hline
\end{tabular}

Table 51: Causes and options for correction in the event of LCU error messages
\begin{tabular}{l|l|l}
\hline No: & Message/cause & Correction \\
\hline 109 & \begin{tabular}{l} 
Writing Byte Error \\
Error in configuration file. \\
EPROM is not properly seated in its socket
\end{tabular} & \begin{tabular}{l} 
a) Delete the REF542 EEPROM, create a new configura- \\
tion and import it. \\
b) Check EPROM seating (service) \\
This error message generates an event E3, which can be \\
processed by a higher-order control system.
\end{tabular} \\
\hline 110 & \begin{tabular}{l} 
Wrong Parameter Value \\
An illegal value for a parameter was input at the LCU.
\end{tabular} & Check the setting range of the parameter. \\
\hline 111 & \begin{tabular}{l} 
Wrong Version DSP \\
The versions of the protection and measuring processor \\
(DSP) and of the control and command processor (MC) \\
do not match.
\end{tabular} & \begin{tabular}{l} 
Check the DSP and MC versions for compatibility. Notify \\
service.
\end{tabular} \\
\hline 112 & \begin{tabular}{l} 
WRONG CONFIGURATION \\
The configuration in the EEPROM and the version of the \\
control and command processor (MC) does not match \\
and therefore the protection and measuring processor \\
(DSP) reports an unknown function block. This message \\
only appears after switching on or after the import of a \\
new configuration.
\end{tabular} & Notify service. \\
\hline
\end{tabular}

\subsection*{9.3.2 Correction in the event of configuration program error messages}

The table below contains additional information on the individual messages. The desired message can be quickly found by the number in "Table 50: Configuration program messages" on page 9-4. The message itself is also listed alphabetically in the message column.

The other columns show the reason for the message and, if it is an error message, brief instructions on how to deal with the error.

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{|c|c|c|c|}
\hline No: & Message & Cause & Correction \\
\hline 1 & 8 P Font selection failed & The program tried to change the font. The required font is not present or the font file is defective. & Reinstall this system font in Microsoft Windows \({ }^{\circledR}\). \\
\hline 2 & Warning: Uploaded file was generated with version: & You are trying to import a configuration from the REF542 that was created with a more recent version of the configuration software. & Check and compare the versions of the REF542 and the configuration software. \\
\hline 3 & Warning: be sure to have no elements chosen, which are no more available! & The type of the binary input and output board as been changed in the existing application. & Check whether the application is using inputs and/or outputs that are no longer available. \\
\hline 4 & Current file not saved! Really open a new file without saving ? & Changes have been made in the current application and you are attempting to create a new application without saving the old application beforehand. & Save the current configuration first and only then create a new one! \\
\hline 5 & Analog inputs not configured & The analog inputs are not configured & Configure at least one analog input. \\
\hline 6 & Nr of moving failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 7 & Failure with open comm & There are more than 10 energy counters in the application. & Reduce the umber of energy counters. \\
\hline 8 & Number of wires & There are too many connections in the application. & Optimize the number of connections in use. \\
\hline 9 & Choose only energy counter 1 .. 10 & There are more than 10 energy counters in the application. & Reduce the number of energy counters. \\
\hline 10 & Display will be cleared. Do you want to continue ? & You are about to delete the entire display configuration. & \begin{tabular}{l}
Accept : The current display configuration will be deleted; then a new configuration is required. \\
Cancel:The existing display configuration will remain.
\end{tabular} \\
\hline 11 & Display: Field bus address ... not used by any switching object. Check symbols ! & A switching icon with an interbay bus address that does not appear in the FUPLA has been selected in the display. & Change the interbay bus address in the switching icon of the LC display screen with the corresponding editor or change the corresponding interbay bus address in the configuration dialog of the switching object in the FUPLA. \\
\hline 12 & LED Text for display & An error has occurred when configuring the display text of an indicator light. & Revise the text. More than 21 characters are allowed! \\
\hline
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{l|l|l|l}
\hline No: & Message & Cause & Correction \\
\hline 13 & REF542 texts & \begin{tabular}{l} 
A problem with the display texts for \\
the REF542 has appeared.
\end{tabular} & \begin{tabular}{l} 
Check whether the *.stc files are in the \\
Language directory. If not, save the appli- \\
cation on a diskette, uninstall and then re- \\
install the configuration program.
\end{tabular} \\
\hline \(\mathbf{1 4}\) & Application is OUT OF MEMORY & \begin{tabular}{l} 
The configuration software cannot be \\
started.
\end{tabular} & \begin{tabular}{l} 
Use a computer with more RAM.
\end{tabular} \\
\hline 15 & AR used without CB & \begin{tabular}{l} 
An autoreclosure has been config- \\
ured, but there is no power circuit- \\
breaker in the application.
\end{tabular} & \begin{tabular}{l} 
Configure a 2-2 switching object as power \\
circuit-breaker. The autoreclosure will only \\
function if there is a power circuit-breaker \\
in the application.
\end{tabular} \\
\hline 16 & Now starts drawing check & The drawing test has been started. & \begin{tabular}{l} 
After the drawing has been successfully \\
checked, the message successfully \\
completed appears. If errors occur during \\
the drawing test, an error list will be output \\
after the test.
\end{tabular} \\
\hline \(\mathbf{1 7}\) & Binary input \(\mathbf{1 ~ = = \mathbf { 0 }}\) & Wire upload & Binary input \(\mathbf{2}=\mathbf{= 0}\)
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{l|l|l|l}
\hline No: & Message & Cause & Correction \\
\hline 30 & LCU upload active & \begin{tabular}{l} 
The display data are being received \\
from the REF542.
\end{tabular} & Press the ESC key to stop this action. \\
\hline 31 & Fupla upload active & \begin{tabular}{l} 
The data are being received from the \\
REF542.
\end{tabular} & Press the ESC key to stop this action. \\
\hline 32 & Wire upload active & \begin{tabular}{l} 
The connection data are being re- \\
ceived from the REF542.
\end{tabular} & Press the ESC key to stop this action. \\
\hline 33 & \begin{tabular}{l} 
Import operation will overwrite all \\
current data
\end{tabular} & \begin{tabular}{l} 
When exporting data (application or \\
fault record data), data open in the \\
PC will be overwritten.
\end{tabular} & Press the ESC key to stop this action. \\
\hline 34 & Wrong sensor nominal value! & \begin{tabular}{l} 
An error in the setting of the sensor \\
rated value occurred while configur- \\
ing the analog inputs of the REF542.
\end{tabular} & Correct corresponding value. \\
\hline 35 & \begin{tabular}{l} 
The device identifer is invalid or \\
unsupported
\end{tabular} & \begin{tabular}{l} 
The value input is outside the speci- \\
fied range.
\end{tabular} & Correct corresponding value. \\
\hline 36 & The specified byte size is invalid & \begin{tabular}{l} 
The desired telegram size for data \\
transmission between PC and \\
REF542 is not valid.
\end{tabular} & \begin{tabular}{l} 
Check the PC settings in the menu Data \\
Transfer/Serial Port
\end{tabular} \\
\hline 37 & \begin{tabular}{l} 
Failure at configuration of an analog \\
output
\end{tabular} & \begin{tabular}{l} 
An error has occurred when configur- \\
ing the analog output.
\end{tabular} & Correct corresponding value. \\
\hline 44 & Data upload & \begin{tabular}{l} 
LCU upload was fault
\end{tabular} & \begin{tabular}{l} 
Data are being exported from the \\
REF542.
\end{tabular} \\
\hline 38 & \begin{tabular}{l} 
Loading of new display texts will \\
overwrite current texts
\end{tabular} & \begin{tabular}{l} 
The wrong display language has \\
been used in the configuration of the \\
displays.
\end{tabular} & \begin{tabular}{l} 
The former texts will be overwritten. The \\
former texts must be reimported to restore \\
them. \\
from \\
frogram found corrupt or incomplete
\end{tabular} \\
\hline 39 & \begin{tabular}{l} 
Direct read write object: Invalid field \\
bus address \\
from the REF542. The configuration to stop this action. \\
program found corrupt or incomplete \\
data.
\end{tabular} & \begin{tabular}{l} 
The interbay bus address [Variable] \\
of a direct write-read object has been \\
used more than once
\end{tabular} & \begin{tabular}{l} 
Correct the interbay bus address in the \\
configuration dialog of the corresponding \\
function block direct write-read object.
\end{tabular} \\
program and of the REF542, if necessary \\
compare them and retry the export.
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{|c|c|c|c|}
\hline No: & Message & Cause & Correction \\
\hline 46 & Wire upload was fault & Connection data have just been exported from the REF542. The configuration program found corrupt or incomplete data. & Check the versions of the configuration program and of the REF542, if necessary compare them and retry the export. \\
\hline 47 & Get data from REF542 & The data are being received from the REF542. & Press the ESC key to stop this action. \\
\hline 48 & Reading Fault Recorder Data & A fault record is being exported from the REF542. & Press the ESC key to stop this action. \\
\hline 49 & Upload file not interpretable & You are trying to export a new application from the REF542 with older configuration software. & Use the associated configuration program to process the application. \\
\hline 50 & Energy counter \%hu is more than once configured! & The energy counter has been configured with the number [Variable] more than once. & \begin{tabular}{l}
Renumber the energy counter. Setting range: 1 ... 10 \\
Every number can only be assigned once.
\end{tabular} \\
\hline 51 & Rising event failure ! & The value input is outside the specified range. & Correct corresponding value. \\
\hline 52 & Failure with open comm & The value input is outside the specified range. & Correct corresponding value. \\
\hline 53 & Successful ready & \begin{tabular}{l}
The current application has been checked. \\
The test algorithm did not find an error.
\end{tabular} & This application can now be exported from the PC to the REF542 or saved on data media and the configuration program closed, if applicable. \\
\hline 54 & The function can't allocate the queues & There is a problem with the serial interface on the PC. & Check the relevant PC settings. \\
\hline 55 & There is still a CB chosen & When configuring another 2-2 switching object you also wanted to define it as a power circuit-breaker. & Only define one power circuit-breaker in the application. \\
\hline 56 & Too many characters. max 21. & Too many characters were used when entering text & Revise the text. No more than 21 characters are allowed! \\
\hline 57 & Wrong lowtime parameter ! & The value input is outside the specified range. & Correct corresponding value. \\
\hline 58 & Wrong hightime parameter ! & The value input is outside the specified range. & Correct corresponding value. \\
\hline 59 & Display failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 60 & Wrong factor (I Transformer/I NetNominal) & The value input is outside the specified range. & \begin{tabular}{l}
Change the parameter. \\
- Rated transformer current or \\
- network rated current
\end{tabular} \\
\hline 61 & Wrong interrupt channel. & The desired interrupt channel for a protective function is not available. & Only the channel number of a physical and configured output can be used. The interrupt channel refers to the direct output channel. \\
\hline 62 & Wrong time parameter ! & The value input is outside the specified range. & Correct corresponding value. \\
\hline 63 & Failure at configuration of protection functions & An error has occurred when configuring the protective function. & Correct the corresponding parameter in the protective function. \\
\hline
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{|c|c|c|c|}
\hline No: & Message & Cause & Correction \\
\hline 64 & Nominal voltages fault for synchro check & \begin{tabular}{l}
a) The sensor or transformer configuration is not suitable. \\
b) Different rated voltages were input for the sensors/transformers.
\end{tabular} & \begin{tabular}{l}
a) Check and, if necessary, correct the sensor or transformer configuration. \\
b) Correct corresponding values
\end{tabular} \\
\hline 65 & Error at opening doc file & A documentation file cannot be created. & The documentation file is defective or open in another program. \\
\hline 66 & Main setting failure & An invalid value was set in the 1 st parameter set. & Correct corresponding value. \\
\hline 67 & Second setting failure & An invalid value was set in the 2nd parameter set. & Correct corresponding value. \\
\hline 68 & failure with build comm dcb & There is a problem with the serial interface on the PC. & Check the PC settings. \\
\hline 69 & Communication failure & You are in the process of trying to exchange data between the PC and the REF542. However, a connection cannot be established. & \begin{tabular}{l}
Possible causes of this communications problem: \\
- You are trying to send data to the REF542 during a persistent alarm on the REF542. \\
=>First acknowledge the alarm OR \\
- The connector cable is defective =>Replace connector cable.
\end{tabular} \\
\hline 70 & Failure in init com & There is a problem with the serial interface on the PC. & Check the relevant PC settings. \\
\hline 71 & Failure with open comm & There is a problem with the serial interface on the PC. & Check the relevant PC settings. \\
\hline 72 & Failure with set comm state & There is a problem with the serial interface on the PC. & Check the relevant PC settings. \\
\hline 73 & Failure sensor 1 & The value input is outside the specified range. & Correct corresponding value. \\
\hline 74 & Failure sensor 2 & The value input is outside the specified range. & Correct corresponding value. \\
\hline 75 & Failure sensor 3 & The value input is outside the specified range. & Correct corresponding value. \\
\hline 76 & Failure sensor 4 & The value input is outside the specified range. & Correct corresponding value. \\
\hline 77 & Failure sensor 5 & The value input is outside the specified range. & Correct corresponding value. \\
\hline 78 & Failure sensor 6 & The value input is outside the specified range. & Correct corresponding value. \\
\hline 79 & Failure sensor 7 & Error in the configuration of the 7th analog output. & Correct the configuration of the 7th analog output. \\
\hline 80 & Active time failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 81 & Wrong nr. of starts & The value input for the maximum allowable number of startups is outside the specified range. & Correct corresponding value. Setting range: 1 ... 10 startups. \\
\hline
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\(\left.\begin{array}{l|l|l|l}\hline \text { No: } & \text { Message } & \text { Cause } & \text { Correction } \\ \hline 82 & \text { Display failure } & \begin{array}{l}\text { An error has occurred when configur- } \\ \text { ing the LC display screen of the } \\ \text { REF542. }\end{array} & \begin{array}{l}\text { Observe the detailed error message in the } \\ \text { message window. }\end{array} \\ \hline 83 & \text { Failure at reading an application } & \begin{array}{l}\text { The application has serious errors. It } \\ \text { is not being interpreted correctly. }\end{array} & \text { Revise the application or create it again. } \\ \hline 84 & \text { Selection failed ! } & \begin{array}{l}\text { a) There was an error in selecting } \\ \text { the fault recorder. The fault } \\ \text { record in the REF542 is incom- } \\ \text { plete }\end{array} & \begin{array}{l}\text { a) } \\ \text { b) }\end{array} \\ \hline 85 & \text { Try to seconfigure the fault recorder. }\end{array}\right\}\)

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{|c|c|c|c|}
\hline No: & Message & Cause & Correction \\
\hline 101 & Wrong phase parameter & The selected allowable phase difference is outside the valid range. & Correct corresponding value. \\
\hline 102 & Environment Temperature failure & The value input is outside the specified range. & Correct the corresponding value for the ambient temperature in the configuration dialog of the protective function thermal replica. \\
\hline 103 & Netnumber failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 104 & Warning temperature failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 105 & x-parameter bitmap failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 106 & Wrong x-parameter in x -end found & The value input is outside the specified range. & Correct corresponding value. \\
\hline 107 & Wrong x-parameter in x-start found & The value input is outside the specified range. & Correct corresponding value. \\
\hline 108 & y-parameter bitmap failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 109 & Wrong y-parameter in y-end found & The value input is outside the specified range. & Correct corresponding value. \\
\hline 110 & Wrong y-parameter in \(y\)-start found & The value input is outside the specified range. & Correct corresponding value. \\
\hline 111 & Wrong time configuration & The value input is outside the specified range. & Correct corresponding value. \\
\hline 112 & Maximum reverse load failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 113 & Wrong operating hours & The value input is outside the specified range. & Correct corresponding value. \\
\hline 114 & Wrong parameter & The value input is outside the specified range. & Correct corresponding value. \\
\hline 115 & Wrong I/In parameter & The value input is outside the specified range. & Correct corresponding value. \\
\hline 116 & Wrong k paramete & The value input is outside the specified range. & Correct corresponding value. \\
\hline 117 & Wrong minimum motorcurrent parameter & The value input is outside the specified range. & Correct corresponding value. \\
\hline 118 & Wrong motorcurrent start threshold parameter & The value input is outside the specified range. & Correct corresponding value. \\
\hline 119 & Nominal current failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 120 & Wrong a parameter & The value input for parameter \(a\) is outside the specified range. & Please correct parameter a. \\
\hline 121 & Wrong b parameter & The value input for parameter \(b\) is outside the specified range. & Please correct parameter b. \\
\hline 122 & Select font failed & The program has found that a font is not available or a font file is corrupt. & Please reinstall the system fonts in Microsoft Windows \({ }^{\circledR}\). \\
\hline 123 & Active protection set failure & An invalid value was input while entering the parameter set of the protective function that is to be activated. & Correct corresponding value. Setting range: 1 or 2. \\
\hline
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{|c|c|c|c|}
\hline No: & Message & Cause & Correction \\
\hline 124 & Signal value failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 125 & Wrong startvalue & The value input is outside the specified range. & Correct corresponding value. \\
\hline 126 & Wrong time window & An invalid time parameter was used in a function block. & Correct corresponding time parameter. \\
\hline 127 & Operating time failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 128 & Time const off failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 129 & Time const fault failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 130 & Time const normal failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 131 & Minimum operating current failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 132 & Failure in switching object & An error occurred in the configuration of a switching object. & Correct the corresponding switching object. \\
\hline 133 & Failure in analog object with field bus address: ... & The interbay bus address n of a threshold object has been used more than once & Correct the interbay bus address in the configuration dialog of the threshold object. \\
\hline 134 & Division rate failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 135 & Filtertime failure & The filter time set in a switching object is not in the allowable range. & Correct the corresponding value in the configuration dialog of the switching object. \\
\hline 136 & Fupla upload & Data are being exported from the REF542. & Press the ESC key to stop this action. \\
\hline 137 & Hardware modified & The type of binary input and output board has been changed in the existing application. & Check whether the selected inputs and outputs are still available. \\
\hline 138 & The device's baud rate is unsupported & The value input is outside the specified range. & Please correct corresponding value. \\
\hline 139 & Wrong Icumemfile size & The configuration of the REF542 display is too large. & Please reduce the number of icons and lines that can be displayed. \\
\hline 140 & Wrong wirememfile size & Your application contains too many connections. & Optimize the number of connections. \\
\hline 141 & Hardware is not configured! & The hardware of the device that is to be configured has not yet been set in the application. & Please configure the hardware of the device that you wish to use. The hardware must be configured first to open the program draw mode! \\
\hline 142 & Hardware number ... is a signal output. & The selected output is a signaling output. The time parameter for the impulse length will be ignored. & If the time parameter is required, another power output must be selected. \\
\hline 143 & Led hardware number failure & The value input is outside the specified range. & \begin{tabular}{l}
Correct the number of the corresponding indicator light. \\
Setting range: \(3 \ldots 9\)
\end{tabular} \\
\hline 144 & Anlaog object hardware number failure & The value input is outside the specified range. & \begin{tabular}{l}
Please correct number of the threshold object. \\
Setting range: 1 ... 70
\end{tabular} \\
\hline
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{|c|c|c|c|}
\hline No: & Message & Cause & Correction \\
\hline 145 & Hardware Number failure & The interbay bus address set for a switching object is in error. & \begin{tabular}{l}
Please correct the interbay bus address in the configuration dialog of the switching object. \\
Setting range: 5 ... 59 and 111 ... 127
\end{tabular} \\
\hline 146 & Failed to create main window & The configuration program cannot be started. & Use a computer with more RAM. Uninstall the current software and reinstall it again. \\
\hline 147 & Main window & The program has a problem with the Windows installation. A font is missing & Please reinstall the Microsoft Windows \({ }^{\circledR}\) system fonts. \\
\hline 148 & Your application has got no objects & You have created an application with no function blocks. The unit cannot carry out control and/or protective functions. & If the unit is to carry out control and/or protective functions, the function blocks required for this must be implemented in the application. \\
\hline 149 & Your application has got no wire informations & \begin{tabular}{l}
You have created an application with no connections between the function blocks. \\
The unit cannot carry out control and/ or protective functions. This application cannot be sent to the REF542.
\end{tabular} & Connect the function blocks in accordance with the desired functions. Every function block must have at least one connection. \\
\hline 150 & Your application has got too many wires & There are too many connections in the application. & Optimize the number of connections in use. \\
\hline 151 & INTERNAL ERROR & The configuration program cannot be started. & \begin{tabular}{l}
- Uninstall the configuration program and reinstall it. Otherwise: \\
- Notify service.
\end{tabular} \\
\hline 152 & Is not accessible & The path name is not valid. & Use a valid path name. \\
\hline 153 & Wrong calibration-/scalingfactor & The calibration factor input for the relevant analog input is wrong. & Correct corresponding value. \\
\hline 154 & Invalid channel given in bitmap & The value input (interbay bus address) is outside the specified range. & Correct corresponding value. \\
\hline 155 & No display text file available & You have tried to change the REF542 display language. The program has found that there are no files with display texts. & Check whether the *.stc files are in the Language directory. If not, save the application on a diskette and after uninstallation reinstall the configuration program. \\
\hline 156 & No connection to REF542 & You are in the process of trying to exchange data between the PC and the REF542. However, a connection cannot be established. & \begin{tabular}{l}
Possible causes of this communications problem: \\
a) You are trying to send data to the REF542 during a persistent alarm on the REF542. \\
=>First acknowledge the alarm. \\
b) The connector cable is defective =>Replace connector cable.
\end{tabular} \\
\hline 157 & No wire information in this file & \begin{tabular}{l}
You have created an application with no connections between the function blocks. \\
The unit cannot carry out control and/ or protective functions. This application cannot be sent to the REF542.
\end{tabular} & Connect the function blocks in accordance with the desired functions. Every function block must have at least one connection. \\
\hline 158 & Configuration failure & A general error has occurred in the configuration. & Observe the detailed error messages when checking the application. \\
\hline 159 & Led Number... is more than once configured & The indicator light has been configured with the number [Variable] more than once. & Please renumber the indicator lights. Setting range: \(0 \ldots 3\) \\
\hline
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{|c|c|c|c|}
\hline No: & Message & Cause & Correction \\
\hline 160 & Power output \(2=0\) & When configuring the switching object no physical output was assigned to binary input 2. & Assign a physical power output to the binary input. \\
\hline 161 & Power output \(3=\mathbf{0}\) & When configuring the switching object no physical output was assigned to binary input 3. & Assign a physical power output to the binary input. \\
\hline 162 & Power output \(4=0\) & When configuring the switching object no physical output was assigned to binary input 4. & Assign a physical power output to the binary input. \\
\hline 163 & Power Calculation & The configuration of the analog inputs is not suitable for the power calculation. & \begin{tabular}{l}
Check the configuration of the analog inputs. \\
- 3-phase power calculation: \\
3-current and 3-voltage \\
- Power calculation according to Aron 2 -current and 3 -voltage \\
It is not significant whether conventional transformers or sensors are involved.
\end{tabular} \\
\hline 164 & CB failure & You wished to define another 2-2 switching object as power circuitbreaker. & Only one power circuit-breaker may be defined in the application. \\
\hline 165 & Read error & There was an error in the export of a fault record. & \begin{tabular}{l}
- Wait a moment and try to export the fault record again. or \\
- Switch off the REF542 and restart it; export the fault record again.
\end{tabular} \\
\hline 166 & Maximum 21 characters.. & A text input contains more than 21 characters. & Revise the text. \\
\hline 167 & More than 10 energy counter configured & There are more than 10 energy counters in the application. & Reduce the number of energy counters. \\
\hline 168 & More than 100 direct read writes configured & More than 100 direct write-read objects are implemented in the application. & Reduce the number of direct write-read object function blocks. \\
\hline 169 & More than 12 protection functions configured & There are more than 12 protective functions in the application. & \begin{tabular}{l}
Reduce the number of protective function to a maximum of 12. \\
(Also observe the upper limit of 120 protective parameters and \(100 \%\) DSP load!)
\end{tabular} \\
\hline 170 & More than 70 analog objects configured & There are more than 70 threshold objects in the application. & Reduce the number of threshold objects. \\
\hline 171 & Do you want to save your modifications in ...? & You have made changes in an existing application and wish to save them under the name XXXX. & \begin{tabular}{l}
Accept will save the application under the selected name. \\
Cancel will close this menu.
\end{tabular} \\
\hline 172 & Do you want to save your modifications? & You have made changes since the last save and wish to close the program. & Save the file to retain the changes. (If necessary, change the name to retain the original version.) \\
\hline 173 & Energy factor failure! & The value input is outside the specified range. & Correct corresponding value. \\
\hline 174 & Net contains more than one output & One network number (connection number) links several binary inputs. & \begin{tabular}{l}
Assign a unique number to every connection with an input. \\
Logical interconnections of binary inputs must be implemented with OR interconnections.
\end{tabular} \\
\hline 175 & Net nominal current failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{|c|c|c|c|}
\hline No: & Message & Cause & Correction \\
\hline 176 & File new & Changes have been made in the current application and you are attempting to create a new application without saving the old application beforehand. & Save the former configuration if necessary and then create a new application. \\
\hline 177 & Take new wire text ? & A connection has been implemented with an existing connection number and a new text for this connection has been input. The new text can be applied for all connections with this connection number or the former text can be retained. & \begin{tabular}{l}
OK: The currently input text for the connection is applied for all connections with the same number. \\
Cancel: The currently input text for the connection will be ignored and the former text applied for the new connection.
\end{tabular} \\
\hline 178 & Number parameter failure! & The value input is outside the specified range. & Correct corresponding value. \\
\hline 179 & Number parameter failure! & \begin{tabular}{l}
There is an error with the internal connections in the application. Possible causes: \\
a) Too many function blocks in the FUPLA. \\
b) An older application was loaded into a newer program
\end{tabular} & \begin{tabular}{l}
a) Delete all connections in this application and connect the function blocks again. \\
b) Check the version; if necessary, use an older version of the configuration program.
\end{tabular} \\
\hline 180 & Only \%hu Netnumbers free & There are still [Variable] connections available in the application. & Optimize the application if more connections are still required. \\
\hline 181 & Object with given field bus address not found & You have searched for a function block with a specific interbay bus address. That function block is not in the application. & Check the input. \\
\hline 182 & Object with given sequence number not found & You have searched for a function block with a specific number. That function block is not in the application. & Check the input. \\
\hline 183 & Object with no valid connections & There is a function block in the application to which there are no connections. & Connect the function block in accordance with the desired functions or delete it. \\
\hline 184 & Pole change relais not configurable & You wanted to configure outputs 5 and 6 of a switching object as pole reversal relays. & Outputs 5 and 6 can only be configured separately (e.g. with 1-0 switching objects). \\
\hline 185 & Problems with FILE HANDLING & The configuration program cannot be started. & Use a computer with more RAM. \\
\hline 186 & Problems with WINDOWS RESOURCES & The configuration program cannot be started. & Use a computer with more RAM. \\
\hline 187 & Really exit without saving the file? & Changes have been made in the current application and you wish to close the program without saving the old application beforehand. & Save the current application (under another name if necessary) and then leave the configuration program. \\
\hline 188 & Reduced hardware size & There are too many function blocks in the application. & Reduce the number of function blocks used in the application. \\
\hline 189 & Swiobj 0-1 failure & The configuration of switching object \(0-1\) is incorrect. & Correct the corresponding switching object. \\
\hline 190 & Swiobj 0-2 failure & The configuration of switching object \(0-2\) is incorrect. & Correct the corresponding switching object. \\
\hline 191 & Swiobj 0-3 failure & The configuration of switching object \(0-3\) is incorrect. & Correct the corresponding switching object. \\
\hline
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{|c|c|c|c|}
\hline No: & Message & Cause & Correction \\
\hline 192 & Swiobj 1-0 failure & The configuration of switching object 1-0 is incorrect. & Correct the corresponding switching object. \\
\hline 193 & Swiobj 1-1 failure & The configuration of switching object \(1-1\) is incorrect. & Correct the corresponding switching object. \\
\hline 194 & Swiobj 1-2 failure & The configuration of switching object \(1-2\) is incorrect. & Correct the corresponding switching object. \\
\hline 195 & Swiobj 2-0 failure & The configuration of switching object \(1-2\) is incorrect. & Correct the corresponding switching object. \\
\hline 196 & Swiobj 2-2 failure & The configuration of switching object 2-2 is incorrect. & Correct the corresponding switching object. \\
\hline 197 & Swiobj 2-2 no out failure & The configuration of the switching object 2-2 without power output is incorrect. & Correct the corresponding switching object. \\
\hline 198 & Swiobj 4-3 failure & The configuration of the switching object 4-3 motor is incorrect. & Correct the corresponding switching object. \\
\hline 199 & Swiobj 6-5 failure & The configuration of the switching object 6-5 magnet motor is incorrect. & Correct the corresponding switching object. \\
\hline 200 & Failure in switching object nr.: ... & The address [Variable] of a switching object has been used more than once & Correct the address of the switching object. \\
\hline 201 & The hardware isn't available (locked by an other device) & The desired interface to the data transmission between PC and REF542 does not exist or is already occupied. & Check the relevant PC settings. It is possible that the interface is occupied by the mouse. \\
\hline 202 & Analog object ... field bus address: ... is more than once configured ! & The interbay bus address [Variable] of a threshold object has been used more than once & Correct the interbay bus address of the threshold object. \\
\hline 203 & LCU download active & The display data are being sent to the REF542. & You can cancel this action with the ESC key. \\
\hline 204 & Data download & Data are being sent from the PC to the REF542. & You can cancel this action with the ESC key. \\
\hline 205 & Data download & Data are being sent to the REF542. & \begin{tabular}{l}
You can cancel this action with the ESC key. \\
Then switch the REF542 and off (reset).
\end{tabular} \\
\hline 206 & Fupla download active & FUPLA data are being sent to the REF542. & You can cancel this action with the ESC key. \\
\hline 207 & Send telegram: [Variable] & This message occurs on download, the measured value scan or on the version query. & You can cancel this action with the ESC key. \\
\hline 208 & Wire download active & The connection data are being sent to the REF542. & You can cancel this action with the ESC key. \\
\hline 209 & Sensor 1-3 nominal value failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 210 & Sensor 4-6 nominal value failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 211 & Sensor 7 nominal value failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 212 & Wrong sensor configuration & The configuration of the analog inputs is incorrect. & Configure the analog inputs in accordance with the function shown in the error message. Ensure that it matches the other functions. \\
\hline
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{l|l|l|l}
\hline No: & Message & Cause & Correction \\
\hline 213 & \begin{tabular}{l} 
Wrong sensors for power calcula- \\
tion 3 phases
\end{tabular} & \begin{tabular}{l} 
The configuration of the analog in- \\
puts is not suitable for the power cal- \\
culation.
\end{tabular} & \begin{tabular}{l} 
Configure the analog inputs accordingly. \\
3-phase power calculation: \\
\(3 \cdot c u r r e n t ~ a n d ~ 3 \cdot v o l t a g e ~\)
\end{tabular} \\
It
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{|c|c|c|c|}
\hline No: & Message & Cause & Correction \\
\hline 226 & Drawing check & The current application is being checked. & After the drawing has been successfully checked, the message Successfully completed appears. If errors occur during the drawing test, an error list will be output after the test. \\
\hline 227 & This will destroy the current configuration! & You are trying to send new data to the REF542. Any existing configurations will be deleted as a result. & \begin{tabular}{l}
If you wish to overwrite the current configuration in the REF542, press the Continue button. \\
If you wish to retain the old configuration in the REF542, press the Cancel button
\end{tabular} \\
\hline 228 & Unknown struct found \%hu & You are trying to export a configuration from the REF542, but have used an older configuration software for this. & Check the versions of the REF542 and the configuration software. If necessary, install the corresponding configuration software and try to export the configuration again. \\
\hline 229 & Unrecognised data type request & You are trying to read a newer configuration in the configuration software or to open a newer configuration. & Compare the versions of the configuration program and of the REF542. Use the configuration software with which the application was created. Otherwise data loss cannot be ruled out! \\
\hline 230 & Unrecognised data type to send & You have edited a new application with an older configuration software and are now trying to send the modified file to the REF542. & Use the associated configuration software to edit the application. \\
\hline 231 & Invalid net number & You have tried to assign an invalid network number. & Correct corresponding value. Setting range: 11 ... 512 \\
\hline 232 & Invalid parameter: Min. Curr. & Error in the parameter for the minimum current. & Correct corresponding value. \\
\hline 233 & Invalid parameter: Max. Unbal. & Error in the parameter for the maximum allowable negative phase. & Correct corresponding value. \\
\hline 234 & Invalid path & The path name is not valid. & Enter a correct path name. \\
\hline 235 & Different nominal voltages used & The value input is outside the specified range. & Correct the corresponding rated voltage. The rated voltages at the voltage inputs and the rated voltage of the 7th input must be equal! \\
\hline 236 & Invalid usage of protection functions & There is an illegal combination of protective functions in the application. & Check that the combination of configured protective functions is allowed. \\
\hline 237 & Wire with given net number not found & You have searched for a connection with a specific network number. That connection is not in the application. & Check the input. \\
\hline 238 & Connection to REF542 lost & You are trying to exchange data between the PC and the REF542. However, a connection cannot be established. & \begin{tabular}{l}
Possible causes of this communications problem: \\
- You are trying to send data to the REF542 during a persistent alarm on the REF542. \\
=>First acknowledge the alarm. \\
- The connector cable is defective =>Replace connector cable.
\end{tabular} \\
\hline 239 & Connection to REF542 broken & During data transfer the ESC key was used to stop the transmission. & If you want to export data from the PC to the REF542 later: Remember to switch the bay control and protection unit off and on again first! \\
\hline 240 & Netnumber failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{|c|c|c|c|}
\hline No: & Message & Cause & Correction \\
\hline 241 & REF542 version and configuration program not compatible! & The versions of the REF542 and the configuration software are not compatible. & Use compatible versions. \\
\hline 242 & Choose only positive numbers & The value entered is not positive. Please enter values \(>0\) only & Correct corresponding value. \\
\hline 243 & Choose correct number & The value input is outside the specified range. & Correct corresponding value. \\
\hline 244 & Choose menupoint: versions to see current Versions & The versions of the REF542 and the configuration software are not compatible. & Use compatible versions. \\
\hline 245 & Warning: maximum of protection functions configured !! & You have just implemented the 12th protective function. You cannot implement any more protective functions in this application. & Ensure that no more protective functions are required. \\
\hline 246 & WARNING !! Problems with internal wires & \begin{tabular}{l}
There is an error with the internal connections in the application. Possible causes: \\
a) Too many function blocks in the FUPLA. \\
b) An older application was loaded with a newer program
\end{tabular} & \begin{tabular}{l}
a) Delete all connections and connect the function blocks again. \\
b) Use the configuration program version with which the application was created.
\end{tabular} \\
\hline 247 & Deletion warning & You want to delete an icon while configuring the LC display screen. & OK: The selected icon will be deleted. Cancel: The selected icon will not be deleted. \\
\hline 248 & Warning sensor 1 & The calibration factor input for the relevant analog input caused an error. & Please correct this value. Setting range: 0.9 < calibration factor < 1.1 \\
\hline 249 & Warning sensor 2 & The calibration factor input for the relevant analog input caused an error. & Please correct this value. Setting range: 0.9 < calibration factor \(<1.1\) \\
\hline 250 & Warning sensor 3 & The calibration factor input for the relevant analog input caused an error. & \begin{tabular}{l}
Please correct this value. \\
Setting range: \(0.9<\) calibration factor \(<1.1\)
\end{tabular} \\
\hline 251 & Warning sensor 4 & The calibration factor input for the relevant analog input caused an error. & \begin{tabular}{l}
Please correct this value. \\
Setting range: 0.9 < calibration factor < 1.1
\end{tabular} \\
\hline 252 & Warning sensor 5 & The calibration factor input for the relevant analog input caused an error. & Please correct this value. Setting range: 0.9 < calibration factor \(<1.1\) \\
\hline 253 & Warning sensor 6 & The calibration factor input for the relevant analog input caused an error. & \begin{tabular}{l}
Please correct this value. \\
Setting range: 0.9 < calibration factor < 1.1
\end{tabular} \\
\hline 254 & Warning sensor 7 & The calibration factor input for the relevant analog input caused an error. & Please correct this value. Setting range: 0.9 < calibration factor < 1.1 \\
\hline 255 & Value outside of limits: & The value input is outside the specified range. & Correct corresponding value. \\
\hline 256 & Value not understandable! & The program cannot understand the value that was input. & \begin{tabular}{l}
Please enter the value that corresponds to a parameter. \\
Example: The program expected the input of a number and a letter was entered instead.
\end{tabular} \\
\hline 257 & Choose only value: a-b & The value input is outside the specified value range of between \(a\) and \(b\). & Correct corresponding value. Value range: \(\mathrm{a}<\) value < b . \\
\hline 258 & operating hours & The value input is outside the specified range. & Correct corresponding value. \\
\hline 259 & Choose only factor 0.1 .. 1000 & The value input is outside the specified range. & Correct corresponding value. \\
\hline
\end{tabular}

Table 52: Causes and options for correction in the event of configuration program error messages
\begin{tabular}{|c|c|c|c|}
\hline No: & Message & Cause & Correction \\
\hline 260 & only 1 or 2 accepted & An invalid value was input while entering the parameter set that is to be activated for the protective function. & Correct corresponding value. \\
\hline 261 & choose only x:0 .. 96 & The value input is outside the specified range. & Correct corresponding value. \\
\hline 262 & choose only y:66 .. 247 & The value input is outside the specified range. & Correct corresponding value. \\
\hline 263 & choose only & The value input is outside the specified range. & Correct corresponding value. \\
\hline 264 & x-parameter failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 265 & y-parameter failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 266 & Drawing & Your are conducting an action in draw mode with the mouse. & Observe the detailed message in this message box. \\
\hline 267 & Choose only time 0 .. 30 min & The value input is outside the specified range. & Correct corresponding value. \\
\hline 268 & Time parameter failure & The value input is outside the specified range. & Correct corresponding value. \\
\hline 269 & Time parameter ignored & You want to use outputs 7 and/or 8 when configuring a switching object. Both of these outputs are signal relays with reduced switching power and the time parameter will therefore be ignored. & Depending on the power required at the output a power output should be selected. The technical data can be found in the description of the specific input and output board. \\
\hline 270 & Too many Switchobjects used & You have selected more than 8 icons for the display. & Reduce the number of icons desired for the display. \\
\hline 271 & Wire file too big! Only ... byte allowed. Your file is ... byte big. Remove some wires! (1 Wire = 14 byte) & There are too many connections used in the application. & Optimize the connections in the application. \\
\hline 272 & More than 120 protection parameters used & There are too many protective functions in the application. & \begin{tabular}{l}
Remove a protective function so a maximum of 120 protective parameters are used. \\
(Observe the upper limit of 12 protective functions with maximum \(100 \%\) DSP load.)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{9.4 Further information}

The following subsection contains additional information on contact addresses in the event of a guarantee claim or damage. Naturally, feel free to contact your ABB sales office if you have other questions. A list of ABB sales offices can be found at the end of this section.
If the unit has been acquired from one of our licensees, please contact the licensee first in the event of any questions.

\section*{Contact in the event of malfunction}

If a malfunction that cannot be corrected occurs, please contact our service department:

ABB Calor Emag Mittelspannung GmbH
Service department available 24 hours: 02102/121212

\section*{Contact for guarantee claims}

As long as the unit is still under guarantee, contact the ABB sales office in the event of any guarantee claims.

\section*{Contact after the guarantee period}

For all questions after the guarantee has expired, please also contact our service department at the number given above.

\section*{Obtaining spare parts and accessories}

To obtain spare parts and accessories for your bay control and protection unit, please contact the ABB sales office.

Chapter "3.6 Overview of the technical data" on page 3-45 contains an overview of the equipment variations available.

\section*{Replacement of parts, modules or boards}

For warranty reasons the ABB sales office should be consulted regarding the replacement of parts, modules or boards.
ABB personnel should carry out all replacements.

\section*{Changing the configuration}

For warranty reasons the \(A B B\) sales office should be consulted regarding changes to the existing configuration. It is also worth having ABB personnel make any changes required.
However, it is principally the operator's responsibility to configure the REF542 after expiry of the guarantee period and after consultation with the ABB sales office.

Note However, because of the complexity and many functions of the unit, we strongly recommend against making arbitrary changes to the configuration!

\section*{Opening the unit}

During the guarantee period only ABB personnel may open the unit. After that the operator may open the unit at the operator's risk or after consultation with the ABB sales office.

\section*{Caution ABB Calor Emag Mittelspannung GmbH assumes no responsibility for damages resulting from improper use of REF542.}

\subsection*{9.4.1 ACE Center}

A list of ABB Calor Emag Mittelspannung GmbH service centers can be found below.
If you do not know exactly which ABB sales office supplied your unit, contact the nearest ACE Center.

Table 53: Addresses of German Centers
\begin{tabular}{l|l|l}
\hline Address & Telephone & Fax \\
\hline \begin{tabular}{l} 
ABB Calor Emag Mittelspannung GmbH \\
Main Office \\
Oberhauserstr. 33 \\
D-40472 Ratingen
\end{tabular} & \(+49(0) 2102121230\) & \(+49(0) 2102121916\) \\
\hline \begin{tabular}{l} 
ABB Calor Emag Mittelspannung GmbH \\
Sales East \\
Rankestr. 35 \\
D-01139 Dresden
\end{tabular} & \(+49(0) 3612193217\) & \(+49(0) 3612193218\) \\
\hline \begin{tabular}{l} 
ABB Calor Emag Mittelspannung GmbH \\
Sales West \\
Josef-Baumann-Str. 21 \\
D-44805 Bochum
\end{tabular} & \(+49(0) 2348917510\) & \(+49(0) 2348917540\) \\
\hline ABB Calor Emag Mittelspannung GmbH & \(+49(0) 6213862003\) \\
Sales South \\
Käfertalerstr. 250 \\
D-68167 Mannheim
\end{tabular}

\section*{10 Decommissioning and Storage}

In this chapter you will find information
- On decommissioning the unit
- Storing the REF542 after decommissioning or before commissioning.

\subsection*{10.1 Storage}

Please observe the following minimum requirements for optimum storage:
- Units with standard packaging or without packaging
- Dry and well ventilated storage space, conditions in accordance with DIN VDE 0670 Part 1000/IEC 60694,
- If packaging is used, it must be undamaged or
- units without packaging must be well covered with protective sheets; however, ensure sufficient air circulation to prevent corrosion.
Check the unit regularly for condensation.

Table 54: Technical data for storage and environmental conditions
\begin{tabular}{l} 
General Data \\
\begin{tabular}{|l|ll|l} 
Temperature Range & Operation: & \(-10^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}\) & Non-condensing humidity \(<95 \%\) \\
& Storage: & \(-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\) & \\
& Transport: & \(-20^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}\) & \\
\hline Earthquake safety & DIN IEC 60068-3-3 & & \\
& DIN IEC 60068-2-6 & & \\
& DIN IEC 60068-2-59 & & \\
& CEI IEC 61166 & \\
& CEI IEC 60980 & & \\
\hline
\end{tabular} IEC 60255-4 \\
\hline
\end{tabular}

\subsection*{10.2 Decommissioning}

Please observe the following directions when decommissioning the unit:
- Isolate the bay.
- Transfer the configuration from the REF542 to the PC and save it on data media.
- Switch off the REF542 auxiliary supply voltage.
- Switch off the remaining miniature circuit breakers as well.
- If applicable, isolate all current transformers.
- Disconnect the REF542 from the measuring circuits.
- Unscrew the unit cover.
- Remove all plug connectors.
- If only the unit itself is to be replaced: Unscrew the signal converter for the analog inputs.
- Loosen the four fastening screws on the REF542.
(On the sides and the bottom of the unit)
\({ }_{4}^{4}\) Chapter "6.3.2 Installation on the front panel of a substation" on page 6-4
- Remove the unit.
- \(\quad\) Check the unit for damage.
- Tighten the four fastening screws again.
- Screw the unit cover down.
- Pack the REF542 properly; preferably in the original packaging.
- Store the unit on its side beforehand as specified.

It is not necessary to decommission the configuration program. If you wish to uninstall the configuration program, follow the relevant directions.
4) Chapter "4.6 Uninstall" on page 4-25

\section*{11 Appendices}

This section contains additional and more detailed information on specific items in the documentation. The corresponding location in the text always includes a cross reference to a subsection in this appendix.

\subsection*{11.1 Requirements for the current transformers when implementing distance protection}

\section*{Introduction}

The response of distance protection units is primarily influenced by the quality of the current measuring signals. With current transformer saturations, which are generally caused by slowly d.c. component, the current measuring signals can be so strongly deformed that proper function of the distance protection unit cannot always be guaranteed. For this reason the current transformers, depending on magnitude of the fault current at the installation site, must meet certain requirements.

The design of current transformers for protection purposes to ensure fault-free functioning of the distance protection unit is discussed below. In general, the occurrence of saturation is only delayed to the extent that fast tripping is enabled. The delayed fault impedance may be strongly faulted because after the formation of the highspeed tripping, saturation of the current transformer can no longer be discounted.

\section*{Requirements}

Current transformers of the type TPS, TPX or TPY, with a precision conforming to IEC 60044-6 or transducers of class 5P conforming to IEC 60185 or better, may be used. Linearized transformers of the type TPZ should not be used, because only alternating values can be transferred and no direct components. The current transformer should be selected primarily so the ratio between the maximum occurring phase fault current and the primary rated current is continuously less than 100. In addition, the dynamic range of the REF542 must be taken into account (ca. 47. \(I_{n}\) ). The transformation ratio of the current transformer should also be set so the minimum phase fault current that must be detected at the distance protection unit can be easily set. Because the burden for current transformers is determined by the secondary rated current, transformers with 1 A secondary rated current should be preferred to the types with 5 A secondary rated current.

The REF542 distance protection unit is in principal designed to include a certain degree of insensitivity to current transformer saturation. However, the minimum design requirements for current transformers to meet protection needs must be taken into account: Reliable transmission of the maximum occurring stationary phase fault current must be possible. The stationary fault current in the immediate vicinity of where the current transformer is installed must not result in saturation. This refers to errors in both the forwards and the backwards direction.

It is best to use the knee point voltage on the secondary side of the current transformer in the design. In the event of the above minimum requirement, the minimum knee point voltage is calculated as follows:
\(E_{2 \text { min }} \geq \frac{I_{K \max } \cdot I_{S n}}{I_{P n}} \cdot\left(R_{C T}+R_{L}+\frac{0,1}{I_{R E F 542}^{2}}\right)\)

Where:
\(\mathrm{E}_{2 \text { min }} \quad\) minimum knee point voltage under symmetrical fault current condition,
kmax
\(I_{\text {sn }}\)
\(\mathrm{I}_{\text {REF542 }}\)
\(\mathrm{R}_{\mathrm{CT}}\)
\(\mathrm{R}_{\mathrm{L}}\)
maximum symmetrical fault current on the primary side, rated current of the current transformer on the secondary side, rated current of the REF542 distance protection unit, resistance of the secondary coil of the current transformer (interior burden), resistance of the lead and additional burdens.

Normally the maximum phase fault current occurs with a three-phase short circuit. However, in high-voltage networks with low resistance earthing in some circumstances the single-phase short circuit may supply a larger current than the three-phase short circuit. For this reason, both short-circuit calculations should always be carried out. To calculate the knee point voltage, the resistance of the phase leads in the three-phase malfunction and the resistance of the loop formed by the corresponding phase lead and the earth lead in the event of a earth fault must be used as the basis.

The REF542 distance protection unit can in principle be operated with this minimum knee point voltage. In the event of faults where the phase fault current is superimposed by a DC element, saturation of the current transformer may occur. In such a case the tripping is only formed after the decay of the DC element, after about 3 times the DC time constant. The fast tripping, which is generally 28 ms with sinusoidal measured quantities, can no longer be generated as a result of the current transformer saturation. As a result, the possibility of selectivity problems in the protected network can no longer be ruled out.

In the event of possible saturation of the current transformer, we recommend that the first impedance zone be operated by the distance protection with a first zone time of 30 ms . This setting is required to reduce the load on the current transformer as much as possible. The current transformer then only needs to transfer the transient phase fault current faultlessly in this short, specified period.

The current transformer should be designed so the short circuit location is in the middle of the set first impedance zone. Here the current transformer must be able to transfer the phase fault current faultlessly to the secondary side for a period of 25 ms , to enable the power circuit-breaker to trip after 30 ms .

This specification is the result of computer simulations.


Figure 263: An example from the computer simulation

The above graph shows an example. The current transformer is burdened with the rated power and stressed with the limit overcurrent, which is set to several times the rated current in accordance with the rated overcurrent factor. The network time constant for the DC element is 50 ms . Furthermore \(\mathrm{I}_{1}\) is the primary current, \(\mathrm{I}_{2}\) is the secondary current and \(\mathrm{I}_{3}\) is the current in the REF542 calculated with the DFT, the digital Fourier transformation. As a result of the current transformer saturation, only a current with about \(35 \%\) amplitude was detected in the range of the first zone time measurement in the first 25 ms after the occurrence of the fault. As a result the fault is seen at three times the distance. Therefore, so as not to endanger the discrimination, the minimum requirement formulated above must be met.

The phase fault current calculation can be used to determine the maximum amplitude of the stationary phase fault current and the resulting DC time constant. The minimum required knee point voltage for phase fault currents with decaying DC elements can then be determined with the following equation:
\(E_{2 D C} \geq \frac{I_{K \max } \cdot I_{S n}}{I_{P n}} \cdot\left(R_{C T}+R_{L}+\frac{0,1}{I_{\text {REF } 542}^{2}}\right) \cdot K(c t)\)
Where:
\(\mathrm{E}_{2 \mathrm{DC}}\) : required knee point voltage with phase fault currents with DC element
\(I_{k m a x}\) : maximum stationary phase fault current on the primary side,
\(\mathrm{I}_{\mathrm{sn}} \quad\) rated current of the current transformer on the secondary side,
I REF542: rated current of the REF542 distance protection unit,
\(\mathrm{R}_{\mathrm{CT}}\) : resistance of the secondary coil of the current transformer (interior burden),
\(R_{L}\) : resistance of the lead and additional burden,
\(\mathrm{K}(\mathrm{ct})\) : \(\quad\) Factor for the design of the current transformer with phase fault currents with DC element.

The factor \(\mathrm{K}(\mathrm{ct})\) is used to set the dimensions of the current transformer so saturation does not occur as a result of the corresponding DC element within the first 25 ms after the fault occurrence. The factor \(\mathrm{K}(\mathrm{ct})\) can be derived from the graph below.


Figure 264: Factor \(K(c t)\) for setting upper dimension of the current transformer in the presence of phase fault currents with decaying DC elements

\subsection*{11.2 Event list of switching objects}

The channel number over which the events are transmitted is set in the configuration dialog of the switching object in the interbay bus address input field. To enable the individual events to be sent to the higher-order control system as well, the transmission of events must be generally enabled.
\({ }^{〔}\) ) Chapter "5.3.2 Global Settings" on page 5-2
The events of the individual switching objects must also be enabled. To do this, start the configuration dialog of the switching object (double-click the left mouse button on the switching object). Click the button events in the dialog window.

The dialog that appears lists the possible events of that switching object. Mark the adjacent checkbox so the event will be generated and sent as required. The default is no event marked.
Table 55: Event list of switching objects
\begin{tabular}{l|l}
\hline \multicolumn{2}{l}{ Switching object 0-1 } \\
\multicolumn{1}{l}{ E0: input closed } & E1: input opened \\
\hline Switching object 0-2 & E2: input closed \\
\hline E1: input opened & \\
\hline E4: fault position & \\
\hline Switching object 0-3 & E3: Line \\
\hline E0: moving & E4: fault position \\
\hline E1: earth & E6: output closed \\
\hline E2: open & E8: end position not reached back \\
\hline Switching object 1-0 & E21: selected back \\
\hline E5: output opened & E23: by pass inactive \\
\hline E7: end position not reached started & \\
\hline E22: selected started & E0: input closed \\
\hline E24: by pass active & E6: output closed \\
\hline Switching object 1-1 & E8: end position not reached outgoing \\
\hline E1: input opened & E21: selected outgoing \\
\hline E5: output opened & E23: interlocking transfer inactive \\
\hline E7: end position not reached incoming & \\
\hline E22: selected incoming & E4: fault position \\
\hline E24: interlocking transfer active & E2: input closed \\
\hline Switching object 1-2 & E6: output closed \\
\hline E0: movement & E8: end position not reached back \\
\hline E1: input opened & E21: selected back \\
\hline E5: output opened pass inactive \\
\hline E7: end position not reached started & \\
\hline E22: selected started & E24: by pass active \\
\hline Continued next page & \\
\hline
\end{tabular}

REF542 bay control and protection unit (SCU)
Handbook

Table 55: Event list of switching objects
\begin{tabular}{l|l}
\hline Switching object 2-1 & E0: input closed \\
\hline E1: input opened & E6: output closed \\
\hline E5: output opened & E10: output 2 closed \\
\hline E9: output 2 opened & E8: end position not reached back \\
\hline E7: end position not reached started & E21: selected back \\
\hline E22: selected started & E23: by pass inactive \\
\hline E24: by pass activ &
\end{tabular}

Switching object 2-2/switching object 2-2 without power output
\begin{tabular}{l|l} 
E0: moving & E4: error \\
\hline E1: input opened & E2: input closed \\
\hline E5: output opened & E6: output closed \\
\hline E9: output 2 opened & E10: output 2 closed \\
\hline E7: end position not reached started & E8: end position not reached back \\
\hline E22: selected started & E21: selected back \\
\hline E24: by pass active & E23: by pass inactive \\
\hline
\end{tabular}

Switching object 4-3 motor
\begin{tabular}{l|l}
\hline E0: moving & E4: error \\
\hline E1: earth & E2: open \\
\hline E3: Line & \\
\hline E14: Earth intermediate & E13: Intermediate line \\
\hline E15: Line intermediate & E16: Intermediate earth \\
\hline E5:T o Open 1->0 & E9: To Close 1->0 \\
\hline E6: To Open 0->1 & E10: To Close 0->1 \\
\hline E8: Errorsupervision & E12: Errorsupervision
\end{tabular}

Switching object 6-5 magnet motor
\begin{tabular}{l|l}
\hline E0: moving & E4: error \\
\hline E1: earth & E2: open \\
\hline E3: Line & \\
\hline E14: Earth intermediate & E13: Intermediat Line \\
\hline E15: Line ilntermediate & E16: Intermediate earth \\
\hline E5: To Open 1->0 & E9: To Close 1->0 \\
\hline E6: To Open 0->1 & E10: To Close 0->1 \\
\hline E17: Block magnet 1 interlocking & E18: Time out block magnet 1 \\
\hline E19: Block magnet 2 interlocking & E20: Time out block magnet 2 \\
\hline E8: Errorsupervision & E12: Errorsupervision
\end{tabular}

\section*{Switching object 2-2: H bridge}
\begin{tabular}{l|l} 
E0: moving & E4: error \\
\hline E1: input opened & E2: input closed \\
\hline E9: pulse pin left \(1->0\) & E10: pulse pin left \(0->1\) \\
\hline E13: pulse pin right \(1->0\) & E14: pulse pin right \(0->1\) \\
\hline E11: interlocking error left & E15: interlocking error right \\
\hline E12: block error & E16: block error \\
\hline E22: end position not reached started & E21: end position not reached back \\
\hline
\end{tabular}

\footnotetext{
Continued next page
}

Table 55: Event list of switching objects
\begin{tabular}{l|l}
\hline Switching object 4-4: H bridge & \\
\hline E0: Line moving & E4: Line error \\
\hline E1:Line open & E2: Line close \\
\hline E5: Earth moving & E8: earth error \\
\hline E6: Earth open & E7: earth close \\
\hline E9: pulse pin left 1->0 & E10: pulse pin left 0->1 \\
\hline E13: pulse pin right 1->0 & E14: pulse pin right 0->1 \\
\hline E11: interlocking error left & E15: interlocking error right \\
\hline E12: block error & E16: block error \\
\hline E22: end position not reached started & E21: end position not reached back \\
\hline
\end{tabular}

\subsection*{11.3 Event list of protective functions}

The channel number over which the events are sent is shown in the left column.
To enable specific events to be sent to the higher-order control system as well, transmission of events must first be generally enabled.
\({ }^{4}\) ) Chapter "5.3.2 Global Settings" on page 5-2
The events of the individual protective functions must also be enabled. To do this, start the configuration dialog of the protective function (double-click the left mouse button on the switching object). Click the button events in the dialog window.

The dialog that appears lists the possible events of that protective function. Mark the adjacent checkbox so the event will be generated and sent as required. The default is no event marked.
Table 56: Event list of protective functions
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Inrush-Blocking} \\
\hline 50 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 50 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 50 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 50 & E 6 & trip started & E 7 & Tripping back \\
\hline 50 & E 12 & Tripp block started & E 13 & Trip block started \\
\hline 50 & E 18 & Protection block started & E 19 & Protection block back \\
\hline \multicolumn{5}{|l|}{Over-Current-Directional-High-Set} \\
\hline 54 & E 0 & Start L1 started & E 1 & Start L1 Back \\
\hline 54 & E 2 & Start L2 started & E 3 & Start L2 Back \\
\hline 54 & E 4 & Start L3 started & E 5 & Start L3 Back \\
\hline 54 & E 6 & Trip started & E 7 & Trip back \\
\hline 54 & E 8 & AR activ & E 9 & AR inactive \\
\hline 54 & E 10 & 2 AR & & \\
\hline 54 & E 11 & 1 AR & & \\
\hline 54 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 54 & E 18 & Protection block started & E 19 & Protection block back \\
\hline 54 & E 20 & AR block started & E 21 & AR block back \\
\hline
\end{tabular}

Table 56: Event list of protective functions
\begin{tabular}{l}
\hline Overcurrent Directional Low Set \\
\begin{tabular}{l|l|l|l|l}
55 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 55 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 55 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 55 & E 6 & Trip started & E 7 & Trip back \\
\hline 55 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 55 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}
\end{tabular}

Overcurrent instantaneous
\begin{tabular}{l|l|l|l|l}
\hline 51 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 51 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 51 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 51 & E 6 & Trip started & E 7 & Trip back \\
\hline 51 & E 8 & AR & E 9 & AR inactive \\
\hline 51 & E 10 & 2 AR & & \\
\hline 51 & E 11 & 1AR & & \\
\hline 51 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 51 & E 18 & Protection block started & E 19 & Protection block back \\
\hline 51 & E 20 & AR block started & E 21 & AR block back \\
\hline
\end{tabular}

Overcurrent high set
\begin{tabular}{l|l|l|l|l}
52 & E 0 & Start L1started & E 1 & Start L1 back \\
\hline 52 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 52 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 52 & E 6 & Trip started & E 7 & Trip back \\
\hline 52 & E 8 & AR active & E 9 & AR inactive \\
\hline 52 & E 10 & 2 AR & & \\
\hline 52 & E 11 & 1AR & & \\
\hline 52 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 52 & E 18 & Protection block started & E 19 & Protection block back \\
\hline 52 & E 20 & AR block started & E 21 & AR block back \\
\hline
\end{tabular}

Overcurrent low set
\begin{tabular}{l|l|l|l|l}
53 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 53 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 53 & E 4 & Start L3 started & E 5 & Start L3back \\
\hline 53 & E 6 & Trip started & E 7 & Trip back \\
\hline 53 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 53 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

IDMT normal inverse
\begin{tabular}{l|l|l|l|l}
56 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 56 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 56 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 56 & E 6 & Trip started & E 7 & Trip back \\
\hline 56 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 56 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

\footnotetext{
Continued next page
}

Table 56: Event list of protective functions
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{IDMT very inverse} \\
\hline 57 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 57 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 57 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 57 & E 6 & Trip started & E 7 & Trip back \\
\hline 57 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 57 & E 18 & Protection block started & E 19 & Protection block back \\
\hline \multicolumn{5}{|l|}{IDMT extremely inverse} \\
\hline 58 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 58 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 58 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 58 & E 6 & Trip started & E 7 & Trip back \\
\hline 58 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 58 & E 18 & Protection block started & E 19 & Protection block back \\
\hline \multicolumn{5}{|l|}{IDMT longtime inverse} \\
\hline 59 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 59 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 59 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 59 & E 6 & Trip started & E 7 & Trip back \\
\hline 59 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 59 & E 18 & Protection block started & E 19 & Protection block back \\
\hline \multicolumn{5}{|l|}{Earthfault high set} \\
\hline 66 & E 0 & Start started & E 1 & Start back \\
\hline 66 & E 6 & Trip started & E 7 & Trip back \\
\hline 66 & E 8 & AR active & E 9 & AR inactive \\
\hline 66 & E 10 & 2 AR & & \\
\hline 66 & E 11 & 1AR & & \\
\hline 66 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 66 & E 18 & Protection block started & E 19 & Protection block back \\
\hline 66 & E 20 & AR block started & E 21 & AR block back \\
\hline \multicolumn{5}{|l|}{Earthfault low set} \\
\hline 67 & E 0 & Start started & E 1 & Start back \\
\hline 67 & E 6 & Trip started & E 7 & Trip back \\
\hline 67 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 67 & E 18 & Protection block started & E 19 & Protection block back \\
\hline \multicolumn{5}{|l|}{Earthfault directional high set} \\
\hline 72 & E 0 & Start Started & E 1 & Start back \\
\hline 72 & E 6 & Trip started & E 7 & Trip back \\
\hline 72 & E 8 & AR active & E 9 & AR inactive \\
\hline 72 & E 10 & 2 AR & & \\
\hline 72 & E11 & 1 AR & & \\
\hline 72 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 72 & E 18 & Protection block started & E 19 & Protection block back \\
\hline 72 & E 20 & AR block started & E 21 & AR block back \\
\hline
\end{tabular}

Table 56: Event list of protective functions

\section*{Earthfault directinal low set}
\begin{tabular}{l|l|l|l|l}
73 & E 0 & Start started & E 1 & Start back \\
\hline 73 & E 6 & Trip started & E 7 & Trip back \\
\hline 73 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 73 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

Earthfault IDMT normal inverse
\begin{tabular}{l|l|l|l|l}
68 & E 0 & Start started & E 1 & Start back \\
\hline 68 & E 6 & Trip started & E 7 & Trip back \\
\hline 68 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 68 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

Earthfault IDMT very inverse
\begin{tabular}{l|l|l|l|l}
69 & E 0 & Start started & E 1 & Start back \\
\hline 69 & E 6 & Trip started & E 7 & Trip back \\
\hline 69 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 69 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

Earthfault IDMT extremely inverse
\begin{tabular}{l|l|l|l|l}
70 & E 0 & Start started & E 1 & Start back \\
\hline 70 & E 6 & Trip started & E 7 & Trip back \\
\hline 70 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 70 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

\section*{Earthfault IDMT longtime inverse}
\begin{tabular}{l|l|l|l|l}
\hline 71 & E 0 & Start started & E 1 & Start back \\
\hline 71 & E 6 & Trip started & E 7 & Trip back \\
\hline 71 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 71 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

Overvoltage instantaneous
\begin{tabular}{l|l|l|l|l}
60 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 60 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 60 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 60 & E 6 & Trip started & E 7 & Trip back \\
\hline 60 & E 8 & AR active & E 9 & AR inactive \\
\hline 60 & E 10 & 2 AR & & \\
\hline 60 & E 11 & 1 AR & & \\
\hline 60 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 60 & E 18 & Protection block started & E 19 & Protection block back \\
\hline 60 & E 20 & AR block started & E 21 & AR block back \\
\hline
\end{tabular}

Table 56: Event list of protective functions
Overvoltage high set
\begin{tabular}{l|l|l|l|l}
61 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 61 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 61 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 61 & E 6 & Trip started & E 7 & Trip back \\
\hline 61 & E 8 & AR active & E 9 & AR inactive \\
\hline 61 & E 10 & 2 AR & & \\
\hline 61 & E 11 & 1 AR & & \\
\hline 61 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 61 & E 18 & Protection block started & E 19 & Protection block back \\
\hline 61 & E 20 & AR block started & E 21 & AR block back \\
\hline
\end{tabular}

Overvoltage low set
\begin{tabular}{l|l|l|l|l}
62 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 62 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 62 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 62 & E 6 & Trip started & E 7 & Trip back \\
\hline 62 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 62 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

Undervoltage instantaneous
\begin{tabular}{l|l|l|l|l}
63 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 63 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 63 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 63 & E 6 & Tripping started & E 7 & Trip back \\
\hline 63 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 63 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

Undervoltage high set
\begin{tabular}{l|l|l|l|l}
\hline 64 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 64 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 64 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 64 & E 6 & Trip started & E 7 & Trip back \\
\hline 64 & E 8 & AR active & E 9 & AR inactive \\
\hline 64 & E 10 & 2 AR & & \\
\hline 64 & E 11 & 1AR & & \\
\hline 64 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 64 & E 18 & Protection block started & E 19 & Protection block back \\
\hline 64 & E 20 & AR block started & E 21 & AR block back \\
\hline
\end{tabular}

Undervoltage low set
\begin{tabular}{l|l|l|l|l}
65 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 65 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 65 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 65 & E 6 & Trip started & E 7 & Trip back \\
\hline 65 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 65 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

Table 56: Event list of protective functions
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Residual overvoltage high set} \\
\hline 82 & E 0 & Start started & E 1 & Start back \\
\hline 82 & E 6 & Trip started & E 7 & Trip back \\
\hline 82 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 82 & E 18 & Protection block started & E 19 & Protection block back \\
\hline \multicolumn{5}{|l|}{Residual overvoltage low set} \\
\hline 83 & E 0 & Start started & E 1 & Start back \\
\hline 83 & E 6 & Trip started & E 7 & Trip back \\
\hline 83 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 83 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

\section*{Thermal overload}
\begin{tabular}{l|l|l|l|l}
74 & E 0 & Start started & E 1 & Start back \\
\hline 74 & E 6 & Trip started & E 7 & Trip back \\
\hline 74 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 74 & E 14 & Warning started & E 15 & Warning back \\
\hline 74 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

\section*{Motor start protection}
\begin{tabular}{l|l|l|l|l}
\hline 80 & E 0 & Start started & E 1 & Start back \\
\hline 80 & E 6 & Trip started & E 7 & Trip back \\
\hline 80 & E 12 & Trip block staretd & E 13 & Trip block back \\
\hline 80 & E16 & Block signal started & E17 & Block signal back \\
\hline 80 & E 18 & Protection blocke started & E 19 & Protection block back \\
\hline
\end{tabular}

Blocking rotor
\begin{tabular}{l|l|l|l|l}
86 & E 0 & Start L1 started & E 1 & Start L1 back \\
\hline 86 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 86 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 86 & E 6 & Trip started & E 7 & Trip back \\
\hline 86 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 86 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

Number of starts
\begin{tabular}{l|l|l|l|l}
\hline 87 & E 0 & Start started & E 1 & Start back \\
\hline 87 & E 6 & Trip started & E 7 & Trip back \\
\hline 87 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 87 & E 14 & Warning started & E 15 & Warning back \\
\hline 87 & E 18 & Protection block started & E 19 & Protection block back \\
\hline \multicolumn{5}{l}{ Continued next page }
\end{tabular}

Table 56: Event list of protective functions
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Distance protection} \\
\hline 81 & E 0 & Start L1started & E 1 & Start L1 back \\
\hline 81 & E 2 & Start L2 started & E 3 & Start L2 back \\
\hline 81 & E 4 & Start L3 started & E 5 & Start L3 back \\
\hline 81 & E 6 & Trip started & E 7 & Trip back \\
\hline 81 & E 8 & AR active & E 9 & AR inactive \\
\hline 81 & E 10 & 1 AR Shot started & E 11 & 1 AR Shot started \\
\hline 81 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 81 & E 14 & 2 AR Shot started & E 15 & 2 AR Shot started \\
\hline 81 & E 16 & Z1< started & E 17 & Z1< back \\
\hline 81 & E 18 & Protection block started & E 19 & Protection block back \\
\hline 81 & E 20 & AR block started & E 21 & AR block back \\
\hline 81 & E 22 & G-Start started & E 23 & G-Start back \\
\hline 81 & E 24 & E-Start started & E 25 & E-Start back \\
\hline 81 & E 26 & CB OK started & E 27 & CB OK back \\
\hline 81 & E 28 & Signal comparison started & E 29 & Signal comparison back \\
\hline 81 & E 30 & AR block DSP started & E 31 & AR block DSP back \\
\hline \multicolumn{5}{|l|}{Thermal supervision} \\
\hline 78 & E 0 & Start incoming & E 1 & Start outgoing \\
\hline 78 & E 6 & Tripping incoming & E 7 & Tripping outgoing \\
\hline 78 & E 12 & Tripping blocked incoming & E 13 & Tripping blocked outgoing \\
\hline 78 & E 14 & Warning incoming & E 15 & Warning outgoing \\
\hline 78 & E 18 & Protection blocked incoming & E 19 & Protection blocked outgoing \\
\hline \multicolumn{5}{|l|}{Unbalanced load} \\
\hline 75 & E 0 & Start started & E 1 & Start back \\
\hline 75 & E 6 & Trip started & E 7 & Trip back \\
\hline 75 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 75 & E 18 & Protection block started & E 19 & Protection block back \\
\hline \multicolumn{5}{|l|}{Directional power} \\
\hline 76 & E 0 & Start started & E 1 & Start back \\
\hline 76 & E 6 & Trip started & E 7 & Trip back \\
\hline 76 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 76 & E 18 & Protection block started & E 19 & Protection block back \\
\hline \multicolumn{5}{|l|}{Low load} \\
\hline 77 & E 0 & Start started & E 1 & Start back \\
\hline 77 & E 6 & Trip started & E 7 & Trip back \\
\hline 77 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 77 & E 18 & Protection block started & E 19 & Protection block back \\
\hline \multicolumn{5}{|l|}{Frequency supervision} \\
\hline 84 & E 0 & Start started & E 1 & Start back \\
\hline 84 & E 6 & Trip started & E 7 & Trip back \\
\hline 84 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 84 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

Table 56: Event list of protective functions

\section*{Synchron Check}
\begin{tabular}{l|l|l|l|l}
85 & E 0 & Start started & E 1 & Start back \\
\hline 85 & E 6 & Trip started & E 7 & Trip back \\
\hline 85 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 85 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

\subsection*{11.4 Typical examples of sensor or transducer connections}

The following pages show examples for wiring analog inputs (measuring inputs) on the REF542 with sensors or transducers. Typical examples of usage in practice have been shown here.

The following symbols are used in the circuit diagrams:
Table 57: Symbols used in the connection diagrams of the REF542
\begin{tabular}{|c|c|c|c|}
\hline Symbol & Label & Symbol & Label \\
\hline ------- & Mechanical, pneumatic or hydraulic connection & \% & Three-phase transformer \\
\hline \(\frac{1}{2}\) & Earth & 马E & Voltage transformer \\
\hline \[
\#
\] & Conductor in a shielded cable &  & Cable current transformer \\
\hline \[
\psi
\] & Several conductors in one cable & \[
\downarrow^{k}
\] & Power circuit-breaker \\
\hline - & Conductor connection & 1— & Current sensor \\
\hline \[
{ }_{\mathrm{T}}^{1}
\] & Voltage divider, not adjustable (voltage sensor here) & \[
\nabla
\] & Cable sealing end \\
\hline \(E\) & Current transformer & & \\
\hline
\end{tabular}

The following designations are also used:
- RU.../L1-L2-L3: Voltage sensor (voltage divider) in conductor L1, L2 or L3
- TI.../L1-L2-L3: Current transformer in conductor L1, L2 or L3
- TI/A: External signal converter to connect the cable current transformer to the REF542 when the sensor inputs of the -X3 terminal are used
- TI/O: Cable current transformer to detect the earth current
- TU.../L1-L2-L3: Voltage transformer in conductor L1, L2 or L3
- UI.../L1-L2-L3: Current sensor (Rogowski coil) in conductor L1, L2 or L3
- X2: Signal converter terminals on the REF542
- X3: Terminals on the REF542 for the analog inputs

Please also note the following information:
- The circuit diagrams all contain the maximum number of connections for the sample configuration in question. Various connections may be left out depending on the customer specifications.
- Current and voltage sensors have specific colors for the conductors, which are shown in the circuit diagrams: \(\mathrm{rd}=\) red and \(\mathrm{bl}=\mathrm{blue}\).
- The configuration/phase angle of conductors L1, L2 and L3 is indicated in every circuit diagram.


Figure 265: Typical sensor circuitry in sensors or transducers for supply or feeder bays


Figure 266: Typical sensor circuitry in sensors or transducers for busbar measuring


Figure 267: Typical circuitry in sensors for six current inputs


Figure 268: Typical circuitry in sensors for paralleling monitoring with measuring field


Figure 269: Typical circuitry in transducers for paralleling monitoring with measuring field

\subsection*{11.5 IDMT protection and earthfault IDMT protection families of curves}

The four different families of curves are used for setting the protective function tripping for the IDMT protection and the earthfault IDMT protection.
↔Chapter "5.4.8.7 IDMT" on page 5-109
\({ }_{4}{ }^{4}\) Chapter "5.4.8.12 Earthfault IDMT" on page 5-122
They indicate the connection between the start value and the period during which the start value is active. The start value is entered into the configuration dialog of the relevant protective function and is the quotient from the starting current (already converted by the transducer!) and rated current of the transducer. If the start value is reached, the protective function is started. If the start value is exceeded for at least the set delay period, the protective function will be tripped.

The period between starting and tripping depends on the fault current amount. The dependence is defined in the four families of curves, the current-time characteristics (IDMT characteristic). The start value is set there via the period between starting and tripping.

The formula for the trip time according to British Standard (BS) 142 and IEC 60255-3 is as follows::
\(t=\frac{k \cdot \beta}{\pi / I_{E B}{ }^{\alpha-1}}\)
\(t=\frac{k}{\left(\left(G / G_{S}\right)^{\left.\alpha_{-}-1\right)}\right.}\)

BS 142
IEC 60266-3
\(\mathrm{t}: \quad\) Time until the protective function trips under sustained overcurrent
\(k: \quad\) Curve parameter \((0 \leq k \leq 1)(B S 142)\) or
time value (IEC 60255-3)
\(\alpha: \quad\) Constant according to the list below
\(\beta: \quad\) Constant according to the list below (BS 142)
\(1 / I_{E B}\) : Fault current factor
\(\mathrm{I}=\mathrm{G}: \quad\) Actual measured current; already converted by the transducer/sensor
\(\mathrm{I}_{\mathrm{EB}}=\mathrm{G}_{\mathrm{S}}\) : Base current setting value: Minimum current at which the protection is activated; already converted by the transducer/sensor

The following table shows the two constants \(\alpha\) and \(\beta\) of the four different current-time characteristics. To retain the specific families of curves, the formula in accordance with BS 142 is used and the k-factor of 0.1 to 1 is increased in increments of 0.1 .
\begin{tabular}{llll}
\hline Current-time characteristic & \(\alpha\) & \(\beta\) (BS142) & k (IEC 60255-3) \\
\hline normal inverse & 0.02 & 0.14 & 0.14 \\
very inverse & 1.0 & 13.5 & 13.5 \\
extremely inverse & 2.0 & 80.0 & 80.0 \\
long time inverse & 1.0 & 120.0 & 120.0 \\
\hline
\end{tabular}

The formula for the trip curves and the selection of constants conforms to BS 142 (British Standard) and IEC 60255-3. The dependent maximum current time protection and earth fault-dependent maximum current time protection protective functions only react from the fault current factor 1.14. A corresponding limit is input in the diagrams. There is also a limit at 30 ms . This is the minimum signal processing time of the output relays.

Note The start value and the fault current factor are different parameters. The trip time can only be determined with the fault current factor from the diagrams!

The parameters for the start value can be set in the protective function configuration dialog. It is linked to the fault current factor with the following formula:
\[
\begin{aligned}
\text { Fault current factor } & =\frac{I}{\frac{I}{E B}}=\frac{I}{\text { Startvalue } \cdot I_{N}} \\
I & =\text { actually measured current (transformed) } \\
\text { Start value } & =\frac{I_{E B}}{t_{N}}=\text { Base current setting value }
\end{aligned}
\]

Note The relay period must also be added to the trip times determined from the cur-rent-time characteristics. (Binary input/output board with transistor relays: 15 ms , and with conventional relays: 30 ms )

\section*{Example}

All current values are already converted by the transducer, i.e. they are proportional to the actual currents flowing in the object that is to be protected!

The dependent maximum current time protection protective function or earth fault-dependent maximum current time protection are to be started only if the converted, measured current exceeds twice the base current setting value.

The delay period between starting and tripping should now be determined when the current-time characteristic "normal-inverse" is based on the k-factor of 0.1 . The current flowing through the object to be protected is 3 A (converted).

First the start value is calculated:
Start value \(=\frac{1}{t_{N}}=\begin{aligned} & 2 A \\ & 4 A\end{aligned}=2\)
The fault current factor is calculated from the start value and the actually flowing current (converted):

Fault current factor \(=\begin{aligned} & I_{>} \\ & +\end{aligned}=\begin{gathered}I_{>} \\ \text {start value } \cdot I_{N}\end{gathered}=\begin{gathered}3 \mathrm{~A} \\ 2 \cdot 1 \mathrm{~A}\end{gathered}=1,5\)
Now, in the current-time characteristic "normal-inverse" the curve with the k-factor 0.1 is selected (the lowest) and the time for the fault current factor of 1.5 is read.

There is a time delay of about 1.7 s between starting and tripping. Then the corresponding relay period of the binary input/output board is added. (Board with transistor relays: 15 ms , and board with conventional relays: 30 ms )
11.5.1 Current-time characteristic "normal inverse"

More information on the families of curves can also be found in Chapter "11.5 IDMT protection and earthfault IDMT protection families of curves" on page 11-20


Figure 270: Current-time characteristic "normal inverse"

\subsection*{11.5.2 Current-time characteristic "very inverse"}

More information on the families of curves can also be found in Chapter "11.5 IDMT protection and earthfault IDMT protection families of curves" on page 11-20


Figure 271: Current-time characteristic "very inverse"

\subsection*{11.5.3 Current-time characteristic "extremely inverse"}

More information on the families of curves can also be found in Chapter "11.5 IDMT protection and earthfault IDMT protection families of curves" on page 11-20


Figure 272: Current-time characteristic "extremely inverse"

\subsection*{11.5.4 Current-time characteristic "long time inverse"}

More information on the families of curves can also be found in Chapter "11.5 IDMT protection and earthfault IDMT protection families of curves" on page 11-20


Figure 273: Current-time characteristic "long time inverse"

\subsection*{11.6 Tripping characteristics thermal overload protection}

The following curves show the trip time depending on the relative current \(I / I_{e}\) and the time constant \(\tau . I_{\mathrm{e}}\) has a setting range of \(0.3 \ldots 1.2 \cdot I_{\mathrm{n}}\) (rated motor current).

All time constants are selected equally for the curves. The maximum temperature (trip temperature) corresponds to the allowable motor operating temperature.

Note The relay period and the delay period parameters (time parameter in the configuration dialog) must be added to the trip times derived from the curves.
(Binary input/output board with transistor relays: 15 ms , and with conventional relays: 30 ms )

\subsection*{11.6.1 Motor cold start}
\[
t(I, \tau)=-\tau \cdot \ln \left[1-\binom{1}{t_{e}}^{-2}\right]
\]


Figure 274: Trip curves of the independent thermal protection with cold start

\subsection*{11.6.2 Motor warm start: \(20 \%\) of the operating temperature}
\[
t(I, \tau, x)=-\tau \cdot \ln \left(1-\binom{I}{t_{e}}^{-2} \cdot(1-x)\right)
\]

The variable x in the equation above represents the temperature of the motor. It has been set to equal 0.2 to calculate the following trip curve. This corresponds to a motor warm start at a motor temperature of \(20 \%\) of the maximum allowable temperature (operating temperature). Here \(\mathrm{I}=0.447 \mathrm{I} \mathrm{I}\).


Figure 275: Trip curves of the independent thermal protection with a warm start at \(20 \%\) of the operating temperature

\subsection*{11.6.3 Motor warm start: \(\mathbf{5 0 \%}\) of the operating temperature}
\[
t(I, \tau, x)=-\tau \cdot \ln \left(1-\binom{I}{t_{e}}^{-2} \cdot(1-x)\right)
\]

The variable \(x\) in the equation above represents the temperature of the motor. It has been set to equal 0.5 to calculate the following trip curve. This corresponds to a motor warm start at a motor temperature of \(50 \%\) of the maximum allowable temperature (operating temperature). Here \(\mathrm{I}=0.707 \mathrm{I}_{\mathrm{e}}\).


Figure 276: Trip curve of the independent thermal protection with a warm start at \(50 \%\) of the operating temperature

\subsection*{11.7 Measuring principle of the REF542}

\subsection*{11.7.1 Measured-value processing}

The seven analog inputs are sampled at an effective frequency of 1.2 kHz for current and voltage measurement. In fact, they are oversampled at a frequency of 2.4 kHz . The period between two measurements is \(1 / 1200\left[\mathrm{~s}^{-1}\right]=0.833 \mathrm{~ms}\). At the basic frequency of 50 Hz a period duration is \(1 / 50\left[\mathrm{~s}^{-1}\right]=20 \mathrm{~ms}\). The analog inputs are sampled \(20[\mathrm{~ms}] /\) \(0.833[\mathrm{~ms}]=24\) times during one period of the system current or the system voltage.
To optimize the calculations for the REF542, only one half-wave of the input quantities is considered. This is possible without restriction because a sinusoidal curve of the currents and voltages may be assumed.

The following graph shows the frequency response of the band-pass filter at frequencies above 50 Hz . It corresponds to a band-pass filter with a frequency range of 45 Hz to 350 Hz .


Figure 277: Frequency response of the band-pass filter at frequencies above 50 Hz In the measurement a closed U-core transformer was used as signal converter.

\section*{Calculation of the rms value}

The only measured values filtered by the band-pass filter are distributed as follows at a sinusoidal input quantity with a frequency of 50 Hz and the effective sampling rate of 1.2 kHz .

The dotted window in the following diagram shows the time range in which 12 measurements are taken. This window moves by 0.833 ms on the time axis with every newly recorded measured value.


Figure 278: Distribution of the sampling values of the measured value acquisition of the REF542

The sampling value is represented by the gray dots. To calculate the rms value (rms=root mean square) the measured quantity is reduced to half of the sampling values. The calculation is then done with the following recursive formula:
\(X_{(n)_{\text {RMS }}}^{2}=\frac{2}{n_{\text {tot }}} \cdot\left(X_{(n-1)_{\text {RMS }}}^{2} \cdot \frac{n_{\text {tot }}}{-2}+X_{n}^{2}-X_{\left(n-\frac{n_{\text {tot }}^{2}}{2}\right)}\right)\)
\(\mathrm{n}_{\text {tot }}\) : Number of measurements in one period; here 24 RMS: Index of the rms value (root mean square)

The recursive formula calculates a new rms value from the current sampling value and the previous 23 sampling values with every new sampling value (every 0.833 ms ). The resulting sequence of measured values after starting the recursive calculation can be found in the following graph. The individual measured values are represented by the gray dots.


Figure 279: Approximation of the calculated \(r m s\) values to the actual \(r m s\) value
It can be clearly seen that a sufficiently precise result for the rms value is calculated as soon as half of the measured values have been processed. This is shown by the broken horizontal line in the graph and it corresponds to \(1 / \sqrt{ } 2\) times the maximum amplitude value from the previous graph.
Because a new measured value is received every 0.833 ms , a new rms value is also calculated in this time grid with the previously described recursive formula. Therefore, the rms value is evaluated every 0.833 ms to detect whether starting or tripping of a protective function is required.

\section*{Calculation time}

The internal calculation time for calculating the rms value from the required 12 measured values is therefore about 10 ms . If the signal runtimes and the closing times of the individual relays are added, a maximum signal processing time from occurrence of the fault to the trip impulse of the REF542 is approximately \(50-65 \mathrm{~ms}\). The final value depends on the protective function and the type of binary input and output boards in use. The input/output board with transistor relays is always 15 ms faster.
To enable the protective functions to send the trip signal to the binary input/output board with appropriate speed, they have the option of addressing an output channel directly. The number of the output used for this purpose is entered in the input field output channel in the configuration dialog.

\section*{Measured value acquisition when using an application with distance protection}

The distance protection also operates initially with the measured values described in the above section. However, for the impedance calculation the discrete Fourier transformation (DFT) is used.
\({ }^{\wedge} \downarrow\) Chapter "Determining the impedance" on page 5-162

\subsection*{11.7.2 Measurement or calculation of Uo, lo}

If the two quantities earth current or neutral point voltage (voltage displacement) cannot be measured with their own sensors or transducers, the REF542 can calculate them internally. To enable this the various conductor quantities must be recorded as measured values. They are calculated by vectorial addition and yield amplitude and phase of the corresponding quantity:
\[
\begin{gathered}
3 \underline{l}_{0}=\underline{I}_{L 1}+\underline{I}_{L 2}+\underline{I}_{L 3} \\
3 \underline{U}_{0}=\underline{U}_{1 E}+\underline{U}_{2 E}+\underline{U}_{3 E}
\end{gathered}
\]

Here this refers to the line currents and phase voltages in each case.
The measured quantities are referred to as earth current \(\mathrm{I}_{0}\) and as residual (zero sequence) voltage \(U_{0}\). To distinguish them, the calculated quantities are referred to as neutral current \(\mathrm{I}_{0}\) and neutral voltage \(\mathrm{U}_{0}\).

Note When using a transducer to measure \(U_{0}\) or \(I_{0}\), a more sensitive protection setting is possible.

More information on measuring or calculation of \(U_{0}\) and \(I_{0}\) can be found in
Chapter "11.8 Network neutral point earthing" on page 11-35. The options for earthing the network neutral point and its effect on phase to earth fault errors are treated in detail there.

\subsection*{11.7.3 Calculation of the \(\cos \varphi\)}

To record \(\cos \varphi\), the REF542 requires the conductor-earth voltage and the line current from at least one phase. The maximum value and its time position for calculating \(\varphi\) are derived from each of the discrete acquired and digitalized measured values.

The REF542 calculates the angle \(\varphi\) from the time displacement of these two maximum values. Among other things, it is important for the protective functions with directional decision and for the power calculation.

\subsection*{11.7.4 Calculation of the frequency}

For determining the network frequency the first configured voltage input is normally considered. If none of the analog measuring inputs is wired with a voltage sensor/ transducer, the first current input is used. The zero crossings per time unit are counted to calculate the frequency.

The frequency calculation begins from a voltage/current level of \(0.35 \%\) of the rated value. However, correct values are only received from a level of \(1 \%\).

\subsection*{11.7.5 Power calculation}

\subsection*{11.7.5.1 Active power calculation}

In an operating and balanced loaded three-phase system is sufficient to measure the power flow in one phase. The total power is derived from three times the display. If any load cases are permissible, two or three watt-meters are required to record the power in a triple-conductor network. The calculation of the total power is explained in the following paragraphs.

\section*{Calculation according to Aron circuit two current and three voltage sensors/transducers}

This procedure can be used for any networks and is not specifically for three-phase networks. For example, a physically correct result can be derived even in disturbed three-phase systems (e.g. asymmetrical voltages, failure of one voltage). The advantage of the Aron circuit is that only two line currents are required. The following circuit diagram shows the Aron circuit. The three phase voltages are used because the REF542 measures only them and uses them to calculate the external phase-to-neutral voltages.


Figure 280: Aron circuit for two line currents and three phase voltages
The complex calculation is used to derive the formula. It is initially assumed that there is no neutral-point conductor (neutral conductor). The result is that the sum of the line currents is zero:
\(\underline{I}_{1}+\underline{I}_{2}+\underline{I}_{3}=0 \Leftrightarrow \underline{I}_{3}=-\left(\underline{I}_{1}+\underline{I}_{2}\right)\)
The line voltages can be shown by adding the phase voltages:
\(\underline{U}_{12}=\underline{U}_{1 E}-\underline{U}_{2 E}\)
\(\underline{U}_{23}=\underline{U}_{2 E}-\underline{U}_{3 E}\)
\(\underline{U}_{31}=\underline{U}_{3 E}-\underline{U}_{1 E}\)

For the effective power the following generally applies:
\(P=\operatorname{Re}\left\{\underline{U}_{1 E} \cdot \underline{I}^{*}{ }_{1}+\underline{U}_{2 E} \cdot \underline{I}^{*}{ }_{2}+\underline{U}_{3 E} \cdot \underline{l}^{*}{ }_{3}\right\}\)
* bedeutet : konjugiert komplex

By applying the above equations to the effective power equation and then after additional conversions, the result is:
\[
\begin{aligned}
P & =\operatorname{Re}\left\{\underline{U}_{13} \cdot \underline{I}_{1}+\underline{U}_{23} \cdot \underline{I}_{2}^{*}\right\} \\
& =\operatorname{Re}\left\{U_{13} \cdot e^{j \varphi_{1 u}} \cdot I_{1} \cdot e^{-j \varphi_{1 i}}+U_{23} \cdot e^{j \varphi_{2 u}} \cdot I_{2} \cdot e^{-j \varphi_{2 i}}\right\} \\
& =\operatorname{Re}\left\{U_{13} \cdot I_{1} \cdot e^{j\left(\varphi_{1 u}-\varphi_{1 i}\right)}+U_{23} \cdot I_{2} \cdot e^{j\left(\varphi_{2 u}-\varphi_{2 i}\right)}\right\} \\
& =\operatorname{Re}\left\{\left(U_{13} \cdot I_{1} \cdot\left(\cos \varphi_{1}+j \sin \varphi_{1}\right)\right)+\left(U_{23} \cdot I_{2} \cdot\left(\cos \varphi_{2}+j \sin \varphi_{2}\right)\right)\right\}
\end{aligned}
\]

If the real component of the complex function is formed, the following equation is eventually derived:
\[
P=\left(U_{13} \cdot I_{1} \cdot \cos \varphi_{1}+U_{23} \cdot I_{2} \cdot \cos \varphi_{2}\right)
\]

By replacing one current with the two others the above formula for the total effective power can also be derived with the other currents and voltages.

\section*{Note}

The Aron circuit cannot detect power that flows to earth in the event of malfunction!

\section*{Calculation with three current and voltage sensors}

As an alternative the effective power calculation for balanced or asymmetrical networks can also be done when three current and voltage sensors or transformers each are in use. The measurement recorders must measure the three line currents and the three phase voltages in that case. The total effective power is then a combination of the power in the three phases.
\[
\begin{aligned}
P & =P_{1}+P_{2}+P_{3} \\
& =\left(U_{10} \cdot I_{1} \cdot \cos \varphi_{1}+U_{20} \cdot I_{2} \cdot \cos \varphi_{2}+U_{30} \cdot I_{3} \cdot \cos \varphi_{3}\right)
\end{aligned}
\]

Note Because the assumption "sum of currents equals zero" (Aron circuit) no longer applies, the power that flows to earth in the event of a malfunction will also be recorded.

\subsection*{11.7.5.2 Reactive power calculation}

The reactive power is calculated by multiplying the effective power with the tangent of the phase difference \(\varphi\) :
\[
Q=P \cdot \tan \varphi
\]

\subsection*{11.8 Network neutral point earthing}

Because the most common fault in distribution and transmission networks is the sin-gle-line fault with earth contact, the network neutral point handling is important in the operation of a network. The fault statistics of the association of German power suppliers (VDEW) indicate that in \(70 \%\) to \(90 \%\) of all cases the problem is a single-line fault with earth contact. The single-line fault is in most cases the consequence of a breakdown of the insulation (particularly in cables) or is caused by a flashover on an overhead cable. These flashovers are caused by atmospheric influences. Finally, such earth faults, particularly in cable networks, frequently cause 2 and 3 -line faults by progressive destruction of the insulation.

In a network with low-resistance neutral earthing, if a single-line fault phase fault occurs, current flows back through the earth to the voltage source. In a network with highresistance neutral point, the return path is theoretically not possible, because there is no conducting connection and therefore no closed current circuit. In practice, however, line capacitances to earth occur in the carriers, producing a current flow that is considerably smaller in amplitude than with the low-resistance earth short-circuit.

The difference between the two single-line fault types is shown even in their designation. The "single-line earth short-circuit" in a network with low-resistance neutral earthing is distinguished from the "single-line earth fault" in a network with high-resistance neutral point.

An earth fault in the network without neutral-point connection does not result in shortcircuit currents and therefore does not need to be shut off immediately. However, the earth fault location must be found and corrected, because the current at the earth fault
location and the resulting increase of the phase voltage of the intact conductor place a higher stress on the equipment insulation. The external phase-to-neutral voltages between the conductors remain unchanged, while, as stated above, the voltage of the intact conductor rises from the neutral to the delta voltage value.

Networks with the following are classified in the earth fault series:
- Isolated, coil-earthed (Petersen coil) and
- High-resistance neutral point

As previously noted, the phase fault currents are very low but the voltage increase is significant.

Networks with the following are classified in the earth fault series:
- Low-resistance neutral point

In contrast to the above, the single-line fault currents are very high and the voltage increase remains low.

The diagram below shows the circuit diagram of a carrier and the vector diagram of the currents and voltages. The following subsections use the diagram to explain the effect of earth faults in various types of earthed networks.


Figure 281: Equivalent circuit of a carrier or a cable
The network neutral point is still kept open and will be described in more detail in the following sections for the individual options, such as:
- Low-resistance neutral earthing,
- Resistor neutral earthing,
- Isolated neutral point,
- Neutral point with Petersen coil.

\subsection*{11.8.1 Low-resistance neutral earthing,}

The highest zero-sequence currents occur with low-resistance neutral earthing. They are only limited and determined by the magnitude of the earth impedances \(\underline{Z}_{\mathrm{Exx}}\) and
the primary equipment impedances \(\left(\underline{Z}_{Q}, \underline{Z}_{L}\right)\) between the operating voltage and the fault location. In these cases, the fault currents are of the magnitude of the multiphase fault currents, and a separate earth-fault protection is not required.


Figure 282: Single-line fault with low-resistance neutral earthing
The zero-sequence current can be measured from the summation of the current transformers in the neutral \(3 \cdot \underline{I}_{0}=\underline{I}_{L 1}+\underline{\underline{I}}_{L 2}+\underline{\underline{I}}_{L 3}\).

If a direction-selective protection in required, the voltage displacement must be used as the measurement criterion. In the REF542 the zero-sequence voltage \(3 \cdot \underline{U}_{0}=\underline{U}_{L 1}\) \(+\underline{U}_{\mathrm{L} 2}+\underline{U}_{\mathrm{L} 3}\) is used, which is calculated from the three measured phase voltages. The zero-sequence voltage can be taken from a separate voltage transformer in open delta circuit, which is then connected to a separate voltage measurement input on the REF542.
\({ }^{4}\) "Figure 286: Measuring the displacement voltage with open delta winding" on page 11-42

The network must be cleared after every earth fault in a network with low-resistance neutral earthing.

\subsection*{11.8.2 Resistance earthed neutral point}

The network neutral point is earthed over a resistive resistor in this variation. The resistor is designed to limit the phase fault current to a desired value after incoming network phase-fault current calculation.

\section*{Low-resistance resistance earthed neutral point}

There is the low-resistance resistance earthed neutral point, the ratios of the zero-sequence current values and the voltage load, which are similar to the low-resistance neutral earthing, with only the phase difference between current and voltage being different. (Refer to the vector diagram in the next figure).
The fault current limiting also limits damage incidents. An additional earth fault protec-
tion device is not required, because the fault current is always set to be greater than the maximum load current.


Figure 283: Single-line fault with neutral earthing over resistance
The zero-sequence current can be measured from the summation of the current transformer in the neutral path \(3 \cdot \underline{\underline{I}}_{0}=\underline{I}_{L 1}+\underline{\underline{l}}_{L 2}+\underline{\underline{l}}_{L 3}\). If a direction-selective protection in required, the voltage displacement must be used as the measurement criterion. In the REF542 the zero-sequence voltage \(3 \cdot \underline{U}_{0}=\underline{U}_{\mathrm{L} 1}+\underline{\mathrm{U}}_{\mathrm{L} 2}+\underline{\mathrm{U}}_{\mathrm{L} 3}\) is used for this. It is calculated from the three phase voltages.
The zero-sequence voltage can be derived from a separate voltage transformer in open delta circuit, which is then connected to a separate voltage measurement input on the REF542.
(1)"Figure 286: Measuring the displacement voltage with open delta winding" on page 11-42

\section*{High resistance earthed neutral point}

The second variation is the high resistance earthed neutral point, which is closer to that of the Petersen-compensated neutral point with the same advantages and disadvantages.
\({ }^{\text { }}\) ) Chapter "11.8.4 Network with Petersen coil" on page 11-40

\subsection*{11.8.3 Isolated neutral point}

If the network does not have a neutral connection to earth, i.e. is an isolated operation, in the event of a earth fault malfunction the capacitive current will enter via the line capacitances to earth. They will generate a capacitive fault current at the fault location, which depends on the network configuration and can be several hundred amperes.

The network may continue in operation, but the fault must be located and corrected. The fault current can cause damage and there is the danger of a two-line fault occurring in the event of a cross-country fault.

The phase voltages in the intact conductors increase by \(\sqrt{ } 3\) times and stress the equipment insulation, thereby causing risk to life by touch voltages. The \(90^{\circ}\) phase displacement between fault current and voltage makes an arc extinction very difficult.

The detection of earth faults with high-resistance earthed network neutral points is made more difficult by the detection of the low earth fault currents.
Sensitive current transformers must be used for this purpose and special earth fault detection circuits with special current and voltage transformers need to be designed.


Figure 284: Single-line fault with isolated network neutral point
A sensitive residual current transformer must be used to detect the low earth fault currents. This can only be done in overhead cable networks with special and expensive current transformers.
A modified current transformer can be used with cable units, which are applied to all three conductor cables and therefore only measure the residual current
\(3 \cdot \underline{I}_{0}=\underline{I}_{L 1}+\underline{I}_{L 2}+\underline{L}_{L 3}\).
The transformation ratio of the converted transformer may be set to be lower than the rated current of the feeder, because it detects the residual current only in the event of a malfunction. The lower limit of the transformation ratio of the converted transformer is set by its thermal maximum currents, because in the event of a cross-country fault it measures the high single-phase fault current at the relevant fault location of the crosscountry fault.

The voltage displacement is detected as zero-sequence voltage \(3 \cdot \underline{\mathrm{U}}_{0}=\underline{\mathrm{U}}_{\mathrm{L} 1}+\underline{\mathrm{U}}_{\mathrm{L} 2}+\underline{\mathrm{U}}_{\mathrm{L} 3}\) and is derived from the sum of the three measured phase voltages.
A earth fault message is generated with the protection equipment.
The earth fault must be located and corrected, because in the event of a cross-country fault there will be two fault locations, which must be detected and shut off separately.

\subsection*{11.8.4 Network with Petersen coil}

The principle of this neutral-point circuit, which was published at the beginning of the 19th century by Waldemar Petersen, is the installation of a variable reactance choke between neutral and earthing point. With the single-line earth contact the capacitive earth fault current on one hand and the inductive choke current of the Petersen coils on the other hand flows over the fault location. If the coil current is adjusted to the line capacitances to earth of the network, both currents will be of equal value but opposite in phase, i. e. the fault location has no current. In practice a very low residual effective current resulting from the real resistances of the operation and earth impedances remains. Because of the current compensation the fault location has no current. The network may continue in operation, but the earth fault must be located. In the event of a cross-country fault, a two-line fault occurs and so long as the earth fault is present the phase voltages on the intact conductor have the increased phase-to-phase values. In addition, increased transient overvoltages and oscillations occur with asymmetrical line capacitances to earth.

The low residual real current makes it more difficult to locate the earth fault. The residual real current is 2 to \(3 \%\) of the total earth fault current. Sensitive current transformers must be used to detect earth faults and special earth fault detection circuits with special current and voltage transformers need to be designed.

A sensitive residual current transformer must be used to detect the low earth fault currents. This can only be done in overhead cable networks with special and expensive current transformers.

A modified current transformer can be used with cable units, which are applied to all three conductor cables and therefore only measure the residual current
\(3 \cdot \underline{I}_{0}=\underline{I}_{L 1}+\underline{I}_{L 2}+\underline{I}_{L 3}\). The transformation ratio of the converted transformer may be set to be lower than the rated current of the feeder, because it detects the residual current only. The lower limit of the transformation ratio of the converted transformer is set by its thermal maximum currents, because in the event of a cross-country fault it measures the high single-phase fault current at the relevant fault location of the cross-country fault.


Figure 285: Single-line fault with coil-earthed network neutral point.

The voltage displacement is detected as zero-sequence voltage \(3 \cdot \underline{U}_{0}=\underline{U}_{L 1}+\underline{U}_{L 2}+\underline{U}_{\mathrm{L} 3}\) and is derived from the sum of the three measured phase voltages.

A earth fault message is then generated with the protection equipment. The earth fault must be located and corrected, because in the event of a cross-country fault there will be two fault locations, which must be detected and shut off separately.

\subsection*{11.8.5 Earth fault signal}

If a earth fault is to be detected and reported only, as is done with isolated, petersen coil earthed or high-resistance earthed network neutral points, an existing earth fault may be found by measuring the voltage displacement in the entire network. In the event of a earth fault, this neutral-point voltage displacement will occur in the entire network of this voltage level.

The neutral-point voltage displacement may be detected by three measuring methods.
The first method detects the zero-sequence voltage \(3 \cdot \underline{U}_{0}=\underline{U}_{L 1}+\underline{U}_{L 2}+\underline{U}_{L 3}\) by measuring the three phase voltages calculating \(3 \cdot \underline{U}_{0}\) in the protection device. This method is implicitly assumed in
- "Figure 282: Single-line fault with low-resistance neutral earthing" on page 11-37,
- "Figure 283: Single-line fault with neutral earthing over resistance" on page 11-38,
- "Figure 284: Single-line fault with isolated network neutral point" on page 11-39 and
- "Figure 285: Single-line fault with coil-earthed network neutral point." on page 11-40

The calculated value is then fed to a neutral point displacement measurement function in the protection device.

In the second measuring method the zero-sequence voltage \(3 \cdot \underline{U}_{0}=\underline{U}_{\mathrm{L} 1}+\underline{\mathrm{U}}_{\mathrm{L} 2}+\underline{\mathrm{U}}_{\mathrm{L} 3}\) is derived by measuring the three phase voltages with a three-phase voltage transformer set in the open delta winding, which is then connected to a single-line voltage measurement input on the protection equipment and processed by the neutral point displacement measurement function. This variation is shown in "Figure 286: Measuring the displacement voltage with open delta winding" on page 11-42.

A third method for detecting the earth fault is to measure the voltage displacement between the zero and earthing point of a power or zig-zag earthing reactor with a singlephase voltage transformer. The measured voltage is fed to the voltage measurement input on the protection equipment. This is shown in "Figure 287: Measuring the displacement voltage in the transformer neutral" on page 11-42.

Note that the measured voltage is not equivalent to the zero-sequence voltage 3.U0 but only to one third of the zero-sequence voltage \(-\underline{U}_{0}\), because this is the neutralpoint displacement voltage of the affected conductor in the event of a malfunction, which is equal to the phase voltage.


Figure 286: Measuring the displacement voltage with open delta winding


Figure 287: Measuring the displacement voltage in the transformer neutral

\subsection*{11.9 Setup example for motor protection}

\section*{Known motor data/device data}

The following values are used to calculated the straight motor protection functions.
\begin{tabular}{ll}
\hline Power P & 1700 kW \\
\hline Rated motor current \(\mathrm{I}_{\mathrm{n}}\) & 205 A \\
\hline \begin{tabular}{l} 
Ratio of motor starting current to \\
rated motor current \(\mathrm{I}_{\mathrm{A}} / \mathrm{I}_{\mathrm{n}}\)
\end{tabular} & 4.2 \\
\hline Maximum starting time \(\mathrm{t}_{\mathrm{E}}\) & 18 s \\
\hline Cooling time constant for the rotating machine \(\mathrm{t}_{\mathrm{A}}\) & 30 min. \\
\hline Cooling time constant for the stationary machine \(\mathrm{t}_{\mathrm{A}}\) & 3 h \\
\hline Rated c. t. current \(\mathrm{I}_{\mathrm{n}, \mathrm{c} . \mathrm{t}}\) & 250 A \\
\hline
\end{tabular}

The above information is generally known. All other required inputs in this example will be provided by the customer or will have to estimated.

\section*{Dependent thermal protection}
\({ }^{〔}\) ) Chapter "5.4.10.1 Thermal overload protection" on page 5-144
\begin{tabular}{lll}
\hline T nom & \(115^{\circ} \mathrm{C}\) & \begin{tabular}{l} 
Operating temperature of the motor (value provided by cus- \\
tomer)
\end{tabular} \\
\hline I nom & 205 A & Rated current of the motor \\
\hline T ini & \(50 \%\) & \begin{tabular}{l} 
Start temperature as percentage of the operating tempera- \\
ture (value provided by customer)
\end{tabular} \\
\hline TC Off & \begin{tabular}{l}
\(3 \mathrm{~h}=\) \\
10800 s
\end{tabular} & Cooling time constant of the stationary motor \\
\hline TC normal & \begin{tabular}{l}
\(30 \mathrm{~min}=\) \\
1800 s
\end{tabular} & Cooling time constant of the motor in standard operation \\
TC error & 10800 s & \begin{tabular}{l} 
Cooling time constant of the motor while starting or malfunc- \\
tion (no value. This time constant is set to be equal to or \\
greater than that of the stationary motor. This ensures that a \\
premature trip does not occur in the event of a malfunction)
\end{tabular} \\
\hline T max & \(125^{\circ} \mathrm{C}\) & \begin{tabular}{l} 
Maximum allowable temperature of the motor (value provided \\
by customer)
\end{tabular} \\
\hline T warn & \(115^{\circ} \mathrm{C}\) & \begin{tabular}{l} 
Motor temperature at which a warning signal should be gen- \\
erated (value provided by customer)
\end{tabular} \\
\hline T ambient & \(30^{\circ} \mathrm{C}\) & \begin{tabular}{l} 
Average ambient temperature at the motor installation loca- \\
tion (value provided by customer)
\end{tabular} \\
\hline Time & 1 s & \begin{tabular}{l} 
Delay period between reaching maximum temperature and \\
tripping the protective function
\end{tabular} \\
\hline
\end{tabular}

\section*{Startup monitoring}
\({ }^{\text { }}\) ) Chapter "5.4.10.2 Motor start" on page 5-148
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
Motor current \\
Ie
\end{tabular} & \(205 \mathrm{~A} / 250 \mathrm{~A}=0,82\) & \begin{tabular}{l} 
Rated motor current standardized to the \\
rated c.t. current
\end{tabular} \\
\hline Starting value 4.2 & \begin{tabular}{l} 
Motor starting current standardized to the \\
rated motor current (response time)
\end{tabular} \\
\hline Time & \(18 \mathrm{~s}=18000 \mathrm{~ms}\) & \begin{tabular}{l} 
Delay period with detected motor start be- \\
tween reaching the start value and tripping \\
the protective function.
\end{tabular} \\
\hline \begin{tabular}{ll} 
Motor start \\
IM \(/\) Ie
\end{tabular} & 0.8 & \begin{tabular}{l} 
Standardized motor current assumed by \\
the protective function by a starting proce- \\
dure, \\
value provided by customer
\end{tabular} \\
\hline
\end{tabular}

\section*{Monitoring on blocking rotor}

The settings of the starting monitoring may be used. To enable fast tripping on blocking rotor it is important to monitor it with a tachogenerator or a speed switch.

\section*{Number of startups}
\({ }^{4}\) ) Chapter "5.4.10.4 Number of starts" on page 5-155
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
No. of warm \\
starts
\end{tabular} & 2 & \begin{tabular}{l} 
Maximum allowable number of warm starts \\
(no default. Value in accordance with IEC \\
proposal)
\end{tabular} \\
\hline \begin{tabular}{lll} 
No. of cold \\
starts
\end{tabular} & 3 & \begin{tabular}{l} 
Maximum allowable number of cold starts \\
(no default. Value in accordance with IEC \\
proposal)
\end{tabular} \\
\hline Time & 3600 s & \begin{tabular}{l} 
Reset period until the number of cold or \\
warm starts is reduced by one and a new \\
start attempt will be allowed.
\end{tabular} \\
\hline Temperature for 0.8 & \begin{tabular}{l} 
Standardized motor current assumed by \\
the protective function by a starting proce- \\
dure, \\
value provided by customer start
\end{tabular} &
\end{tabular}

\subsection*{11.10 Diagrams of all function blocks}

The following table shows diagrams of all function blocks. It includes references to the section (with page number) in which the function block is described.
Table 58: Diagrams of all function blocks
\begin{tabular}{|c|c|c|}
\hline Chapter 5.4.1.1 on page 5-21 & \begin{tabular}{l}
Alarm LED \\
Chapter 5.4.1.2 on page 5-23
\end{tabular} & \begin{tabular}{l}
Alarm acknowledgement \\
Chapter 5.4.1.3 on page 5-24
\end{tabular} \\
\hline \begin{tabular}{l}
Local-remote switchover \\
Chapter 5.4.1.4 on page 5-24
\end{tabular} & \begin{tabular}{l}
Danger-OFF switch \\
Chapter 5.4.1.5 on page 5-25
\end{tabular} & Chapter 5.4.1.6 on page 5-25 \\
\hline Chapter 5.4.2.2 on page 5-31 & \begin{tabular}{l}
Switching object 0-2 \\
Adr.:6 \\
Chapter 5.4.2.3 on page 5-32
\end{tabular} & Chapter 5.4.2.4 on page 5-34 \\
\hline \begin{tabular}{l}
Switching object 1-0 \\
Adr.: \% \\
Chapter 5.4.2.5 on page 5-36
\end{tabular} & \begin{tabular}{l}
Switching object 1-1 \\
A.dr.:'s \\
Chapter 5.4.2.6 on page 5-38
\end{tabular} & \begin{tabular}{l}
Switching object 1-2 \\
Adr. 10 \\
Chapter 5.4.2.7 on page 5-40
\end{tabular} \\
\hline \begin{tabular}{l}
Switching object 2-1 \\
Adr.:11 \\
Chapter 5.4.2.8 on page 5-43
\end{tabular} & \begin{tabular}{l}
Switching object 2-2 \\
Adr.:12 \\
Chapter 5.4.2.9 on page 5-45
\end{tabular} & \begin{tabular}{l}
Switching object 2-2 as power circuitbreaker \\
Adr. 14 \\
Chapter 5.4.2.10 on page 5-48
\end{tabular} \\
\hline
\end{tabular}

Table 58: Diagrams of all function blocks
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Switching object 2-2 with no power output \\
Adr. 13 \\
Chapter 5.4.2.11 on page 5-48
\end{tabular} & \begin{tabular}{l}
Switching object 4-3 motor \\
Adr.: 5 \\
Chapter 5.4.2.12 on page 5-49
\end{tabular} & \begin{tabular}{l}
Switching object 6-5 magnet motor \\
Adr.: 6 \\
Chapter 5.4.2.13 on page 5-52
\end{tabular} \\
\hline  & \begin{tabular}{l}
Switching object 4-4 H bridge \\
Adr.: 6 \\
Chapter 5.4.2.15 on page 5-59
\end{tabular} & \begin{tabular}{l}
Module for thrust \\
Adr. 5 \\
Chapter 5.4.2.16 on page 5-63
\end{tabular} \\
\hline \begin{tabular}{l}
Trip circuit supervision \\
Chapter 5.4.2.17 on page 5-64
\end{tabular} & Chapter 5.4.3.1 on page 5-66 & Chapter 5.4.3.2 on page 5-66 \\
\hline Chapter 5.4.3.2 on page 5-66 & \begin{tabular}{l}
AND logic gates with inverted output \\
Chapter 5.4.3.3 on page 5-67
\end{tabular} & \begin{tabular}{l}
AND logic gate with inverting input 1 \\
Chapter 5.4.3.4 on page 5-67
\end{tabular} \\
\hline \begin{tabular}{l}
AND logic gate with inverting input 2 \\
Chapter 5.4.3.4 on page 5-67
\end{tabular} & \begin{tabular}{l}
AND logic gate with 2 inputs \\
Chapter 5.4.3.5 on page 5-68
\end{tabular} & \begin{tabular}{l}
AND logic gate with 4 inputs \\
Chapter 5.4.3.5 on page 5-68
\end{tabular} \\
\hline
\end{tabular}

Table 58: Diagrams of all function blocks
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
OR logic gate with 8 inputs \\
Chapter 5.4.3.5 on page 5-68
\end{tabular} & \begin{tabular}{l}
OR logic gate with 2 inputs \\
Chapter 5.4.3.6 on page 5-68
\end{tabular} & \begin{tabular}{l}
OR logic gate with 4 inputs \\
Chapter 5.4.3.6 on page 5-68
\end{tabular} \\
\hline \begin{tabular}{l}
OR logic gate with 8 inputs \\
Chapter 5.4.3.6 on page 5-68
\end{tabular} & \begin{tabular}{l}
OR logic gates with inverting output \\
Chapter 5.4.3.7 on page 5-69
\end{tabular} & \begin{tabular}{l}
Exclusive OR logic gates with 2 inputs \\
Chapter 5.4.4.1 on page 5-70
\end{tabular} \\
\hline \begin{tabular}{l}
Exclusive OR logic gates with 4 inputs \\
Chapter 5.4.4.1 on page 5-70
\end{tabular} & \begin{tabular}{l}
 \\
Chapter 5.4.4.1 on page 5-70
\end{tabular} & \begin{tabular}{l}
Exclusive OR logic gate with 2 inputs and inverting output \\
Chapter 5.4.4.2 on page 5-70
\end{tabular} \\
\hline \begin{tabular}{l}
Exclusive OR logic gate with 4 inputs and inverting output \\
Chapter 5.4.4.2 on page 5-70
\end{tabular} & \begin{tabular}{l}
Exclusive OR logic gate with 8 inputs and inverting output \\
Chapter 5.4.4.2 on page 5-70
\end{tabular} & Chapter 5.4.5.1 on page 5-72 \\
\hline \begin{tabular}{l}
RS flip-flop with timing input \\
Chapter 5.4.5.2 on page 5-73
\end{tabular} &  & Chapter 5.4.5.4 on page 5-74 \\
\hline Chapter 5.4.5.5 on page 5-75 &  & \begin{tabular}{l}
Monoflop non-retriggerable \\
Chapter 5.4.5.7 on page 5-76
\end{tabular} \\
\hline
\end{tabular}

Table 58: Diagrams of all function blocks
\begin{tabular}{|c|c|c|}
\hline  &  &  \\
\hline \begin{tabular}{l}
Pulse generator \\
24
\(\square\) \\
Hish Time [mu \(] 15 \mathrm{~ms}\) Lau Time [mu] 15 mr
\end{tabular} & \begin{tabular}{l}
Digital memory object \\
Chapter 5.4.5.11 on page 5-79
\end{tabular} & \begin{tabular}{l}
Threshold object \(\stackrel{0}{6}\)
\(\square\) \\
发倣 RNHL Adr.: 103 Mr .: 1 \\
Chapter 5.4.6.1 on page 5-80
\end{tabular} \\
\hline  &  & \begin{tabular}{l}
Energy impulse output \\
Chapter 5.4.6.4 on page 5-84
\end{tabular} \\
\hline \begin{tabular}{l}
LON sensor \\
Chapter 5.4.6.5 on page 5-85
\end{tabular} & \begin{tabular}{l}
Inrush current blocking \\
Chapter 5.4.8.1 on page 5-91
\end{tabular} & \begin{tabular}{l}
Overcurrent directional high \\
Chapter 5.4.8.2 on page 5-97
\end{tabular} \\
\hline \begin{tabular}{l}
Overcurrent directional low \\
Chapter 5.4.8.3 on page 5-100
\end{tabular} & \begin{tabular}{l}
Overcurrent instanteneous \\
Chapter 5.4.8.4 on page 5-102
\end{tabular} & \begin{tabular}{l}
Overcurrent high \\
Chapter 5.4.8.5 on page 5-105
\end{tabular} \\
\hline
\end{tabular}

Table 58: Diagrams of all function blocks
\begin{tabular}{|c|c|c|}
\hline Chapter 5.4.8.6 on page 5-107 & Chapter 5.4.8.7 on page 5-109 & Chapter 5.4.8.8 on page 5-112 \\
\hline Chapter 5.4.8.9 on page 5-114 & \begin{tabular}{l}
Earthfault directional high \\
Chapter 5.4.8.10 on page 5-116
\end{tabular} & Chapter 5.4.8.11 on page 5-120 \\
\hline Chapter 5.4.8.12 on page 5-122 & \begin{tabular}{l}
Overvoltage instanteneous \\
Chapter 5.4.9.1 on page 5-126
\end{tabular} & \begin{tabular}{l}
Overvoltage high \\
Chapter 5.4.9.2 on page 5-128
\end{tabular} \\
\hline Chapter 5.4.9.3 on page 5-130 & \begin{tabular}{l}
Undervoltage instanteneous \\
Chapter 5.4.9.4 on page 5-132
\end{tabular} & \begin{tabular}{l}
Undervoltage high \\
Chapter 5.4.9.5 on page 5-135
\end{tabular} \\
\hline \begin{tabular}{l}
Undervoltage low \\
Chapter 5.4.9.6 on page 5-137
\end{tabular} & \begin{tabular}{l}
Residual overvoltage high 6 \\
Chapter 5.4.9.7 on page 5-139
\end{tabular} & \begin{tabular}{l}
Residual overvoltage low 7 \\
Chapter 5.4.9.8 on page 5-141
\end{tabular} \\
\hline Chapter 5.4.10.1 on page 5-144 & Chapter 5.4.10.2 on page 5-148 & Chapter 5.4.10.3 on page 5-152 \\
\hline \begin{tabular}{l}
Number of starts \\
Chapter 5.4.10.4 on page 5-155
\end{tabular} &  & \begin{tabular}{l}
Thermal supervision \\
Chapter 5.4.12.1 on page 5-186
\end{tabular} \\
\hline
\end{tabular}

Table 58: Diagrams of all function blocks
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
Unbalanced load \\
Chapter 5.4.12.2 on page 5-189
\end{tabular} & \begin{tabular}{l}
Directional power \\
Chapter 5.4.12.3 on page 5-192
\end{tabular} & Chapter 5.4.12.4 on page 5-194 \\
\hline \begin{tabular}{l}
Frequency supervision \\
\%
\end{tabular} & Synchrocheck &  \\
\hline Chapter 5.4.12.5 on page 5-1 & Chapter 5.4.12.6 on page 5-199 & Chapter 5. \\
\hline \begin{tabular}{l}
Operating hours counter \\
Oporatina haurs: 0.000 h \\
Chapter 5.4.14.1 on page 5-206
\end{tabular} & \begin{tabular}{l}
Message generator \\
Evonto-s 1 100 E0 \\
Evont \(1-80\) 100 E0 \\
Chapter 5.4.14.2 on page 5-207
\end{tabular} & \begin{tabular}{l}
Direct write-read command \\
Chapter 5.4.14.3 on page 5-208
\end{tabular} \\
\hline
\end{tabular}

\subsection*{11.11 SPA bus List}

The following pages have the SPA bus list. It can be used to decode the data sent from the REF542.
Table 59: List of SPA Bus data


边


Table 59: List of SPA Bus data

\section*{Events} " Overcurrent definite time, high set" on page 11-60
" Overcurrent definite time, low set" on page 11-61
" Overcurrent directional, high set" on page 11-61
" Overcurrent directional, low set" on page 11-62
" Overcurrent IDMT normally inverse" on page 11-63
" Overcurrent IDMT Very inverse" on page 11-63
" Overcurrent IDMT Extremly inverse" on page 11-64
" Overcurrent IDMT Long-time inverse" on page 11-64
" Earthfault non-directional, high set" on page 11-65
" Earthfault non-directional, low set" on page 11-66
" Earthfault IDMT Normal Inverse" on page 11-66 " Earthfault IDMT Very Inverse" on page 11-66
" Earthfault IDMT Extremly Inverse" on page 11-67
" Earthfault IDMT Long time Inverse" on page 11-67
" Earthfault directional, high set" on page 11-68
"Earthfault directional, low set" on page 11-68
" on pas 11-69
Voltage protection functions" on page 11-69
"Overvoltag definite time high set" on page 11-70
" Overvoltage definite time, low set" on page 11-71
" Undervoltage instantaneous" on page 11-72
" Undervoltage definite time, high set" on page 11-72
Undervoltage definite time, low set" on page 11-73
" Residual overvoltage definite time high" on page 11-73
"Residual overvoltage definite time low" on page 11-74
" Motor protection function" on page 11-74 " Thermal Overload" on page 11-74 " Motorstart protection" on page 11-75 " Blocked rotor protection" on page 11-75 " Number of Starts" on page 11-76 Distance protection" on page 11-76 " Distance protection" on page 11-76
"Differential protection function" on page 11-79 Differential protection function" on page 11-79
" Other protection function" on page 11-80 " Unbalanced load" on page 11-80
"Directional power protection" on page 11-81
"Low load protection" on page 11-81
" Thermal supervision" on page 11-81
"Frequency supervision" on page 11-82
Synchro Check" on page 11-82
Table 59: List of SPA Bus data

Table 59: List of SPA Bus data

Table 59: List of SPA Bus data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{} & & & & & | k | k 6 & & Data & Events & Channel & Code & Data & Save & Values & & & & Single Values & Type & Factor \\
\hline & \multicolumn{5}{|l|}{MicroSCADA key} & & & & & & Dir & & Min & Max & Step & Unit & & & \\
\hline & D & & & & & & Status of operational/set key switch & 0=E27,1=E26 & 0 & V7 & R & n & 0 & 1 & 1 & & 0=operational; 1=set & US & \\
\hline \multirow[t]{4}{*}{} & & 6 & & & & & Binary inputs & & & & & & & & & & & & \\
\hline & , & 6 & 1 & & & & Card 1 & & & & & & & & & & & & \\
\hline & D & & 1 & & & & Binary input status, 1 to 14, I/O card 1 & & 2 & 11/14 & R & n & 0 & 9 & 1 & & 0=open status; \(1=\) closed status; \(9=\) not in use & US & \\
\hline & 1 & 6 & 1 & & & & Card 2 & & & & & & & & & & & & \\
\hline & D & 6 & 1 & & & & Binary input status, 15 to 28, 1/O card 2 & & 3 & |1/14 & R & n & 0 & 9 & 1 & & 0=open status; \(1=\) closed status; \(9=\) not in use & US & \\
\hline & 1 & 7 & & & & & Switch objects & & & & & & & & & & & & \\
\hline & 1 & 7 & 1 & & & & Status input & & & & & & & & & & & & \\
\hline & 1 & 7 & & 1 & & & Status 1 input & & & & & & & & & & & & \\
\hline & D & 7 & 1 & 1 & & & Status of an object, 1 input & 0=E1; \(1=E 0\) & 5..49,111... 127 & 14 & R & n & 0 & 1 & 1 & & 0=false; 1=true & US & \\
\hline & - & 7 & + & 2 & & & Status 2 input & & & & & & & & & & & & \\
\hline & D & 7 & 1 & 2 & & & Status of an object, 2 inputs & \[
\begin{aligned}
& 0=\mathrm{E} 0 ; 1=\mathrm{E} 2 ; \\
& 2=\mathrm{E} 1 ; 3=\mathrm{E} 4
\end{aligned}
\] & 5..49,111...127 & 11 & R & n & 0 & 3 & 1 & & 0=moving; 1=closed; 2=open; 3=error & US & \\
\hline & D & 7 & & 2 & & & Closed status of an object 2 inputs & & 5..49,111...127 & 12 & R & n & 0 & 1 & 1 & & 0=not closed; \(1=\) closed & US & \\
\hline & D & 7 & 1 & 2 & & & Open status of an object, 2 inputs & & 5..49,111... 127 & 13 & R & n & 0 & 1 & 1 & & 0=not open; 1=open & US & \\
\hline & 1 & 7 & 1 & 3 & & & Status 3 input & & & & & & & & & & & & \\
\hline & D & 7 & 1 & 3 & & & Status of an object, 3 inputs & \[
\begin{aligned}
& 0=E 0 ; 3=E 1 ; 2=E 2 ; \\
& 1=E 3 ; 4=E 4
\end{aligned}
\] & 5..49,111...127 & 15 & R & n & 0 & 4 & 1 & & 0=moving; 1=on line;2=isolated;3=on earth;4=error & US & \\
\hline & D & 7 & & 3 & & & Line status of an object, 3 inputs & & 5..49,111...127 & 16 & R & n & 0 & 1 & 1 & & \(0=\) not on line; \(1=0\) line & US & \\
\hline & D & 7 & 1 & 3 & & & Isolation/open status of an object, 3 inputs & & 5..49,111...127 & 17 & R & n & 0 & 1 & 1 & & 0=not isolated; \(1=\) isolated & US & \\
\hline & D & 7 & 1 & 3 & & & Earth status of an object, 3 inputs & & 5..49,111...127 & 18 & R & n & 0 & 1 & 1 & & \(0=\) not on earth; \(1=\) on earth & US & \\
\hline & D & 7 & 1 & 3 & & & End not reached & 1=E7;0=E8 & 5..49,111...127 & 19 & R & n & 0 & 1 & 1 & & \(0=\) nothing detected; \(1=\) end not reached & US & \\
\hline & 1 & 7 & 2 & & & & Status output & & & & & & & & & & & & \\
\hline & D & 7 & 2 & & & & Trip/Signal output status, output 1 of switching object & & 5.49,111... 127 & 151 & R & n & 0 & 9 & 1 & & 0=open status; \(1=\) closed status; \(9=\) not in use & US & \\
\hline & D & 7 & 2 & & & & Trip/Signal output status, output 2 of switching object & & 5..49,111...127 & 152 & R & n & 0 & 9 & 1 & & 0=open status; \(1=\) closed status; \(9=\) not in use & US & \\
\hline & 1 & 7 & 3 & & & & Direct output write & & & & & & & & & & & & \\
\hline & D & 7 & 3 & & & & Write to one output object & 0=E5;1=E6 & 5..49,111...127 & 01 & W & n & 0 & 1 & 1 & & 0=open it; \(1=\) close it & US & \\
\hline & D & 7 & 3 & & & & Write to two outputs object & 0=E9;1=E10 & 5..49,111... 127 & 01 & W & n & 0 & 1 & 1 & &  & US & \\
\hline & D & 7 & 3 & & & & Write 4/3 or 6/5 outputs object Isolator & & 5..49,111...127 & O2 & W & n & 0 & 1 & 1 & & 0=goto earth; \(1=\) goto line & US & \\
\hline & D & 7 & 3 & & & & Write 4/3 or 6/5 outputs object Earthing switch & & 5..49,111...127 & O3 & W & n & 0 & 1 & 1 & & 0=goto line; \(1=\) goto earth & US & \\
\hline & D & 7 & 3 & & & & Direct signal output write 1 to 2 & & 5..49,111...127 & O1 & W & n & 0 & 1 & 1 & & \(0=\) not active; \(1=\) active & US & \\
\hline & D & 7 & 3 & & & & Direct signal output write 3 to 4 & & 5..49,111...127 & 01 & W & n & 0 & 1 & 1 & & 0=not active; \(1=\) active & US & \\
\hline & 1 & 7 & 3 & & & & Double command output write & & & & & & & & & & & & \\
\hline & D & 7 & 3 & & & & Select & 0=E21;1=E22 & 5..49,111...127 & V1 & R/W & n & 0 & 1 & 1 & & 0=is notselected; \(1=\) select it/is selected & US & \\
\hline & & & 3 & & & & Write to one output object & & 5..49,111...127 & V2 & W & n & 1 & 1 & 1 & & 1 =switch it ON & US & \\
\hline & & 7 & 3 & & & & Write to one output object & 1=E6 & 5..49,111...127 & V3 & W & n & 1 & 1 & 1 & & 1=switch it OFF & US & \\
\hline & D & 7 & 3 & & & & Write to two output object & 0=E9;1=E10 & 5..49,111...127 & V2 & W & n & 1 & 1 & 1 & & \(1=\) close it & US & \\
\hline & D & 7 & 3 & & & & Write to two output object & 0=E5;1=E6 & 5..49,111... 127 & V3 & W & n & 1 & 1 & 1 & & \(1=0\) en it & US & \\
\hline & D & 7 & 3 & & & & Cancel select & & 5..49,111...127 & V4 & W & & 1 & 1 & 1 & & 1=cancel select & US & \\
\hline & D & 7 & 3 & & & & \begin{tabular}{l}
Interlocking Bypass \\
(ATTENTION!! use it with great care!)
\end{tabular} & \(0=E 23 ; 1=E 24\) & 5..49,111...127 & V7 & R/W & n & 0 & 1 & 1 & & \(0=\) is not activated; \(1=\) activate interlocking bypass/is activated & US & \\
\hline & 1 & 7 & 4 & & & & Supervision & & & & & & & & & & & & \\
\hline & D & 7 & 4 & & & & Number of cycles of switching object, SO22, CB & & 5..49,111... 127 & V100 & R/W & n & & & & & & US & \\
\hline & D & 7 & 4 & & & & Opening time switching object SO22 & & 5..49,111...127 & V101 & R & n & & & & & & US & \\
\hline & D & 7 & 4 & & & & Trip relays supervision, output 1 of switching object & & 5..49,111...127 & V102 & R & n & 0 & 1 & 1 & & 1=ok; 0=relay blocked alarm & US & \\
\hline & D & 7 & 4 & & & & Trip relays supervision, output 2 of switching object & & 5..49,111...127 & V103 & R & n & 0 & 1 & 1 & & 1=ok; 0=relay blocked alarm & US & \\
\hline & D & 7 & 4 & & & & Nr. of cycles isolator (SO43, SO65) & & 5..49,111...127 & V104 & R/W & PD & & & & & & US & \\
\hline & D & 7 & 4 & & & & Nr. of cycles earthing switch (SO43, SO65) & & 5..49,111...127 & V105 & R/W & PD & & & & & & US & \\
\hline & 1 & 7 & 5 & & & & Event mask & & & & & & & & & & & & \\
\hline & D & 7 & 5 & & & & Event 1 to 16 & & 5..49,111...127 & V21 & R & y & 0 & 65535 & 1 & & & UL & /1000 \\
\hline & D & 7 & 5 & & & & Event 17 to 32 & & 5..49,111...127 & V22 & R & y & 0 & 65535 & 1 & & & UL & \(1 / 1000\) \\
\hline & & & & & & & & & & & & & & & & & & & \\
\hline \[
{ }_{N}^{N_{N}}
\] & 1 & 8 & & & & & 4-4 Switch object & & & & & & & & & & & & \\
\hline \[
\begin{aligned}
& 80 \\
& \text { m }
\end{aligned}
\] & 1 & 8 & 1 & & & & Status input & & & & & & & & & & & & \\
\hline
\end{tabular}
Table 59: List of SPA Bus data

Table 59: List of SPA Bus data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline k1 & k2 & k3 & k4 \({ }^{\text {k }}\) & k5 k6 & Data & Events & Channel & Code & Data & Save & Values & & & & Single Values & Type & Factor \\
\hline \multicolumn{5}{|l|}{MicroSCADA key} & & & & & Dir & & Min & Max & Step & Unit & & & \\
\hline \(T\) & 12 & & & & Interlocking & & & & & & & & & & & & \\
\hline D & 12 & & & & Interlocking status & & 0 & V9 & R & n & 0 & 1 & 1 & & 0=ok; 1 =interlocking error & US & \\
\hline \(T\) & 12 & & & & Sensor configuration & & & & & & & & & & & & \\
\hline D & 12 & & & & Sensor 1 & & 0 & V30 & R & y & 0 & 4 & 1 & & \(0=\) not used; \(1=\) Volt.Trans;2=Cur.Trans;3=Cur.Rogo;4=Volt.Sen & US & \\
\hline D & 12 & & & & Sensor 2 & & 0 & V31 & R & y & 0 & 4 & 1 & & \(0=\) not used; \(1=\) Volt.Trans;2=Cur.Trans;3=Cur.Rogo;4=Volt.Sen & US & \\
\hline D & 12 & 3 & & & Sensor 3 & & 0 & V32 & R & y & 0 & 4 & 1 & & \(0=\) not used; \(1=\) Volt.Trans;2=Cur.Trans;3=Cur.Rogo;4=Volt.Sen & US & \\
\hline D & 12 & & & & Sensor 4 & & 0 & V33 & R & y & 0 & 4 & 1 & & \(0=\) not used; \(1=\) Volt.Trans;2=Cur.Trans;3=Cur.Rogo;4=Volt.Sen & US & \\
\hline D & 12 & 3 & & & Sensor 5 & & 0 & V34 & R & y & 0 & 4 & 1 & & \(0=\) not used; \(1=\) Volt.Trans;2=Cur.Trans;3=Cur.Rogo;4=Volt.Sen & US & \\
\hline D & 12 & 3 & & & Sensor 6 & & 0 & V35 & R & y & 0 & 4 & 1 & & \(0=\) not used; \(1=\) Volt.Trans;2=Cur.Trans;3=Cur.Rogo;4=Volt.Sen & US & \\
\hline D & 12 & 3 & & & Sensor 7 & & 0 & V36 & R & y & 0 & 4 & 1 & & \(0=\) not used; \(1=\) Volt.Trans;2=Cur.Trans;3=Cur.Rogo;4=Volt.Sen & US & \\
\hline 1 & 12 & & & & Net nominal values & & & & & & & & & & & & \\
\hline D & 12 & & & & Sensor 1 & & 0 & V37 & R & y & 1/10 & 300k & 1/10 & A/V & not configured is replied with 0 & SL & \\
\hline D & 12 & & & & Sensor 2 & & 0 & V38 & R & y & \(1 / 10\) & 300k & 1/10 & A/V & not configured is replied with 0 & SL & \\
\hline D & 12 & & & & Sensor 3 & & 0 & V39 & R & y & \(1 / 10\) & 300k & 1/10 & A/V & not configured is replied with 0 & SL & \\
\hline & & & & & Sensor 4 & & 0 & V40 & R & y & 1/10 & 300k & 1/10 & A/V & not configured is replied with 0 & SL & \\
\hline & & & & & Sensor 5 & & 0 & V41 & R & y & 1/10 & 300k & 1/10 & A/V & not configured is replied with 0 & SL & \\
\hline & & & & & Sensor 6 & & 0 & V42 & R & y & 1/10 & 300k & 1/10 & A/V & not configured is replied with 0 & SL & \\
\hline & & & & & Sensor 7 & & 0 & V43 & R & y & 1/10 & 300k & 1/10 & A/V & not configured is replied with 0 & SL & \\
\hline D & 12 & 4 & & & Frequency & & 0 & V25 & R & y & 50 & 60 & 10 & Hz & & SL & \\
\hline 1 & 12 & 5 & & & System event mask & & & & & & & & & & & & \\
\hline D & 12 & 5 & & & Event 1 to 16 & & 0 & V21 & R & y & 0 & 65535 & & & & UL & /1000 \\
\hline D & 12 & 5 & & & Event 17 to 32 & & 0 & V22 & R & y & 0 & 65535 & 1 & & & UL & /1000 \\
\hline D & 12 & 5 & & & Event 33 to 48 & & 0 & V23 & R & y & 0 & 65535 & 1 & & & UL & 11000 \\
\hline D & 12 & 5 & & & Event 49 to 64 & & 0 & V24 & R & y & 0 & 65535 & 1 & & & UL & /1000 \\
\hline \(T\) & 12 & 6 & & & Data communication & & & & & & & & & & & & \\
\hline D & 12 & 6 & & & Data communication address & & 0 & V200 & R/W & y & 0 & 999 & 1 & & 99=default & US & \\
\hline D & 12 & 6 & & & Data transfer rate & & 0 & V201 & R & y & 9600 & 9600 & 0 & & 9600=fixed & UL & 1000 \\
\hline \(T\) & 12 & 7 & & & Events & & & & & & & & & & & & \\
\hline D & 12 & 7 & & & Reading of event registers & & 0 & L & R & n & & & & & & & \\
\hline D & 12 & 7 & & & Re-reading of event registers & & 0 & B & R & n & & & & & & & \\
\hline D & 12 & 7 & & & Event generation on/off & \(0=E 1 ; 1=E 0\) & 0 & V52 & R/W & v & 0 & 1 & 1 & & \(0=\) Event generation disable, \(1=\) Event gener. enable & US & \\
\hline 1 & 12 & 8 & & & SCU mode & & & & & & & & & & & & \\
\hline D & 12 & 8 & & & Programm/run mode & 0=E30;1=E31 & 0 & 5198 & R/W & y & 0 & 1 & 0 & & 0=program mode; 1=run mode & US & \\
\hline D & 12 & 8 & & & Data store into EEPROM & 1=E32 & 0 & V151 & W & n & 1 & 1 & 0 & & 1=store and change to run mode & US & \\
\hline & & & & & Faultrecorder & & & & & & & & & & & & \\
\hline & & & & & Start/ end a session & & 0 & V20 & W & & 0 & 2 & 1 & & \(0=\) end session, \(1=\) transfer uncompressed, transfer compressed & & \\
\hline & & & & & Read number of stored records & & 0 & V20 & R & & 0 & 9 & & & & US & \\
\hline & & & & & Select a specific record & & 0 & M28 & W & & 1 & 9 & 1 & & & US & \\
\hline & & & & & Read directory info of selected record & & 0 & M28 & R & & & & & & & & \\
\hline & & & & & Read number of lines (each 64k) of selected record & & 0 & M29 & R & & 10 & 1023 & 1 & & & US & \\
\hline
\end{tabular}
Table 59: List of SPA Bus data



Table 59: List of SPA Bus data




Table 59: List of SPA Bus data




-

קのр
? (11)
\(\qquad\)
-



Table 59: List of SPA Bus data


Table 59: List of SPA Bus data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{array}{|l}
\hline \frac{9}{2} \\
\stackrel{y}{2} \\
\stackrel{y}{4} \\
\hline
\end{array}
\] & \[
8
\] & & \[
0
\] & 80ㅇㅇㅇㅇ울 & Biol & & \[
80
\] & & & & & & & \[
8
\] & & & & \[
28
\] & 808 & & \[
8
\] & & & & \[
38
\] & \[
8
\] & & & & & & 80운 \\
\hline  & \(\bigcirc\) & & & & & & & & ng & & 9 & & & & & & & & & & & & & & & & & & & & & -3 \\
\hline
\end{tabular}
Table 59: List of SPA Bus data



Table 59: List of SPA Bus data

Table 59: List of SPA Bus data

Table 59: List of SPA Bus data


Table 59: List of SPA Bus data

Table 59: List of SPA Bus data

Table 59: List of SPA Bus data

Table 59: List of SPA Bus data

Table 59: List of SPA Bus data

Table 59: List of SPA Bus data

Table 59: List of SPA Bus data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline  & 88 & \[
\begin{array}{|l|l|l|}
\hline 8 & 8 & 8 \\
\hline 20 & 80 \\
\hline
\end{array}
\] & &  & \[
8
\] &  & &  & So & &  &  & \[
28
\] & & & \[
8
\] &  & & & & & 8 & \[
02
\] & & & \[
8
\] &  & \[
28
\] & & & \[
88
\] & \[
88
\] \\
\hline ¢ & and & - & nos & an & - & - & \[
90
\] & an & 51 & & - & - & - & 0 & & - &  & & 0 & & & - & & & & - & & - & 0 & & \(\square\) &  \\
\hline
\end{tabular}


\footnotetext{


}
\(\qquad\)



\begin{tabular}{c|c|c}
\(0_{0}^{0}\) \\
\(\frac{0}{0}\) \\
\(\frac{0}{0}\) \\
0 & \\
\(\infty\)
\end{tabular}

\(\overline{0}-\dot{0}-\quad \frac{0}{0}\) ๓ ๓ ロ
Table 59: List of SPA Bus data

Table 59: List of SPA Bus data

Table 59: List of SPA Bus data




\section*{Appendices}
Table 59: List of SPA Bus data

\(R\) : read
\(W\) : write
y : saved after download or leaving program mode
with saving datga
\[
\begin{aligned}
& \begin{array}{cc}
\text { US : unsigned short } & X X X X\{X\}\} \\
\text { UL : unsigned long } & X\{X\{X\{X\}\}\} . X\{X\{X\}\} \\
\text { SL : signed long } & \{+\} \mid-X\{X\{X\{X\}\}\} . X\{X\{X\}\}
\end{array} \\
& \begin{array}{l}
\text { SL: signed long }\{+\} \mid-X\{X\{X\{X\}\}\} . X\{X\{X\}\} \\
\text { ST : string of maximal } 21 \text { characters } \\
\hline
\end{array}
\end{aligned}
\]




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & \[
01
\] & \[
\prod
\] & & & & & & & , & & , & , & , & & & & & & \\
\hline & & & & & & & & & & & & & & & & & & & & & & & & & \\
\hline & & ) & & & , &  &  &  & - & & & : & &  &  &  & yoy &  & god & & & - & & \(\stackrel{\square}{+}\) & \% \\
\hline
\end{tabular}
onitoring

Table 59: List of SPA Bus data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Events & Channel & Code & Data & Save & Values & & & & Single Values & Type & Factor \\
\hline & & & Dir & & Min & Max & Step & Unit & & & \\
\hline 1=E42 & 102 & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline 1=E43 & 102 & & & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline 1=E48 & 102 & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} & Data \\
\hline & & & & & \\
\hline \multirow[t]{5}{*}{} & E & & & & UNDEFINED_PROT_ER \\
\hline & & & & & CONFIGURATION error \\
\hline & E & & & & WRONG_CONFIGURAT \\
\hline & & & & & LON: definition of erro \\
\hline & E & & & & CONFIG_LON_ERROR \\
\hline
\end{tabular}

\subsection*{11.12 Feedback form}

Dear user

We are continuously improving the quality of our Handbook. This is why your opinion is important to us.

The following pages are provided for your wishes, suggestions and criticisms.
Please take advantage of this opportunity to let us know what you think. If you do not use the form provided, please include the document number and the release information (date and reference). Both can be found in the footer of the Handbook.

Thank you

ABB Calor Emag Mittelspannung GmbH
Abteilung: DECMS/S
Oberhausener Str. 33
D-40472 Ratingen/Germany
Phone +49 (0)2102 121230
Fax +49 (0)2102 121916

Have you found an error in the Handbook? Please describe the error.
\(\qquad\)
\(\qquad\) \(\longrightarrow\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\) \(\longrightarrow\)
\(\qquad\)
\(\qquad\)

Do you consider the Handbook complete, comprehensible and well structured? If possible, please provide suggestions for improvement.
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Do the Handbook include sufficient information on:
- The technical data
- The functioning of the unit
- Using the configuration program
- Using the unit itself
\(\qquad\)

\section*{Customer:}

Date:
Address: \(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Contact:
Tel.: Fax:

Processing (to be completed by ABB)
\begin{tabular}{ll} 
Received by: & Date: \\
Answered by: & Date: \\
Problem solved? \(\square\) Yes & \(\square\) No \\
Name: & Date: \\
Action taken to solve problem: &
\end{tabular}

Action taken to solve problem:
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Follow-up (e.g. for project development or documentation)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Subject Index}

\section*{A}

Acknowledge alarm 8-5, 8-15
Acknowledge message 8-5, 8-15
Active parameter set 5-3
Adapter
sensor terminal adapter -> Omicron 7-1
Alarm acknowledgement (function block) 5-24
Alarm LED 5-23
Analog output board 3-30
AND logic gate 5-68
with inverting input 5-67
with inverting output 5-67
Application
create 4-3
delete in REF542 8-4
receive from the REF542 4-11
send to REF542 4-10
Automatic autoreclosure
dead time 5-167
distance protection 5-158
Automatic shut-off
backlighting 3-43
LC display screen 3-43
Autoreclosure 5-209
activate and deactivate \(8-20\)
blocking time 5-167, 5-209
dead time 5-168, 5-209
fault time 5-168, 5-209
flow charts 5-211
general enable 5-4
Auxiliary voltage failure \(3-10\)
AWE. See autoreclosure

\section*{B}

Backplane 3-12
Backplane. Refer to backplane
Backup protection 5-90
Band-pass filter 11-30
Bar graph. See LC display screen...
Base current setting value 5-109, 5-122, 11-20
Binary input and output board
conventional relay board 3-25
transistor relay board 3-20
Binary inputs
conventional relay board 3-25
export status with PC 4-13
transistor relay board 3-20
Binary outputs
conventional relay board 3-25
\& EDC
export status with PC 4-13
power output to motor control unit conventional relay 3-27
power output to motor control unit transistor relay 3-22
transistor relay board 3-20
BL 5-29
Button 1-5
Buzzer 5-25

\section*{C}

Calculation time 11-32
Calibrating the measuring inputs 7-3
Calibration factor 5-6
Check
auxiliary voltage 6-6
binary inputs 6-6
cable current transformer 6-5
current transformer 6-5
tripping and signaling contacts 6-6
voltage transformer 6-5
wiring 6-5
Check drawing. See Function Chart/Check
Checkbox 1-5
Closed U-core transformer 3-33
Closing current blocking
blocked protective functions 5-91
configuration 5-95
function 5-91
Coil monitoring. See trip circuit monitoring
Combi sensor 3-34
Combination options of the components 3-4
Commissioning
with replacement EPROM 7-42
without replacing EPROMs 7-43
COMTRADE format 5-202
Conductor preference. See distance protection...
Configuration program
basic steps 4-2
configure analog inputs 5-6
configure interbay bus 5-5
copyright 4-20, 4-24
customer version 4-3
description of the menus 4-16
enable analog output board 5-5
enable process bus 5-5
installation 4-1
make basic settings 5-2
program start 4-2
set analog outputs 5-11
set calculated quantities 5-12
specify binary input/output boards 5-5
specify housing type 5-5
system requirements 4-1
uninstall 4-25
version number 4-20, 4-24
Configure metering system 5-12, 7-10
Configure power calculation 5-12
Connection
list of used 4-24
starting configuration dialog 4-8
Connection examples
standard circuit diagram 7-8
transducers and sensors 11-14
Connection mode. See function chart editor/connection mode
Constant 0 5-66
Constant 1 5-66
Continuous ground fault current directional function 5-116
Continuous ground-fault current
configuration 5-114
function 5-112
Continuous ground-fault current directional configuration 5-120
Continuous Measured Value Scan 4-16
Continuous neutral point voltage
configuration 5-141
function 5-139
Continuous overvoltage
configuration 5-130
function
Continuous phase fault current directional function 5-97
Continuous phase-fault current
configuration 5-107
function 5-102
Continuous phase-fault current directional configuration 5-100
Continuous undervoltage
configuration 5-137
function 5-132
Control panel 8-2
Core-balance current transformer 3-33
Counter 5-77
CPU board 1 3-14
CPU board 2 3-16
Current protective functions \(5-90 \backslash\) st- \(\backslash\) st \(5-122\)
application 5-90
test 7-11
Current sensor. See Rogowski coil
Current transformer 3-32
configuration of the analog inputs 5-7
determining the direction 7-4
record magnetizing characteristic 7-5
requirements (distance protection) 11-1 test transformation ratio 7-5

\section*{D}

D flip-flop 5-74
Danger-OFF switch 5-25
Decommissioning 10-2
Delay period of protective functions 5-87
Dependent IDMT tripping characteristic 11-20
Dependent maximum current time protection.
See dependent IDMT
Dependent overcurrent time protection base current setting value \(5-109,5-122,11-20\) function 5-109
Dependent overcurrent timer protection configuration 5-110
Dependent thermal overload test 7-12
Dependent thermal protection configuration 5-145 function 5-144
Determining the direction current transformer 7-4
Rogowski coil 7-5
voltage sensor 7-6
voltage transformer 7-5
Determining the impedance. See distance protection...
DFT. See discrete Fourier transformation
Dialog window 1-5
Digital memory object 5-79
Digitalization of the analog measured values 11-30
Dimensions 6-2
Direct output channel 5-88
Direct write-read command (function block)
configuration 5-208
function 5-208
Directional ground fault monitoring. See distance protection...
Directional power monitoring. See power monitoring
Directional protective functions metering system 7-10
Discrete Fourier transformation 5-162
Display language configuration 5-18
Display LED message texts 8-4, 8-15
Distance protection
activation 5-159
application 5-158
automatic autoreclosure 5-158
autoreclosure 5-165
autoreclosure blocking zone 5-167, 5-168, 5-169
autoreclosure flow chart 5-166
autoreclosure signal flow chart 5-167
conductor preference 5-162
determining the impedance 5-162
directional decision 5-164
directional ground fault monitoring 5-171
directional memory 5-164
emergency definite time 5-159, 5-171
fault tracking information 5-158, 5-171
for high-resistance grounded networks 5-159
for low-resistance grounded networks 5-159
for short-term low-resistance grounded networks 5-159
for small protection ranges 5-169
function 5-158
ground factor 5-163
ground-fault current starting 5-161
impedance-timer characteristics 5-164
overcurrent starting 5-160
overreach zone 5-166, 5-167, 5-169, 5-171
starting 5-158
switching on persistent faults 5-171
test 7-13
test impedance calculation 7-13
tripping logic 5-164
tripping surface 5-164
underlying signal comparison protection 5-158, 5-169
voltage-controlled overcurrent starting 5-160
Double actuation of switchgear 5-4
Download. See Application/Send to REF542
Draw Mode. See function chart editor/draw mode
Draw mode. See function chart editor/draw mode
Drawing menu 1-4
description of menu items \(4-21 \backslash\) st-\st \(4-24\)
DrawMode. See function chart editor/Design mode
Durability of specific components \(8-29\)

\section*{E}

Editor for the LC display screen. See function chart editor EEPROM
delete 8-4
Emergency definite time. See distance protection...
Energy counter 5-83
Energy impulse output 5-84
Energy management 5-82
Environmental conditions 6-3
Error message
in the configuration program 9-4
on the LC display screen 9-1
Event generator. See message generator
Event messages
of protective functions 11-6
of switching objects 11-4

Examples of sensor connections 11-14
Examples of transducer connections 11-14
Exclusive OR logic gate 5-70
with inverting output 5-71
EXOR logic gate. See exclusive OR logic gate
Export operational measured values
export with PC 4-14

\section*{F}

Fault monitoring 5-4
Fault recorder 5-202
configuration 5-203
export 4-11
function 5-202
recording precision 5-202
Fault tracking information. See distance protection...
Flip-Flop 5-72
Flip-flop
D 5-74
JK 5-73
monoflop non-retriggerable 5-76
monoflop retriggerable 5-75
RS 5-72
RS with timing input 5-73
T 5-75
Flow chart
autoreclosure, one attempt successful 5-211
autoreclosure, one attempt unsuccessful 5-211
autoreclosure, two attempts successful 5-212
autoreclosure, two attempts unsuccessful 5-212
pulse generator 5-78
slope delay (function block) 5-76
Frequency monitoring
configuration 5-197
function 5-197
testing 7-15
Frequency variations in the network 5-87
Function block
add 4-6
delete 4-9
displacement block 4-24
move 4-6
object number 5-20
open configuration dialog 5-1
restrictions 4-6
sequential number 5-20
starting configuration dialog 4-8
Function chart
add connections 4-7
check 4-9
check connections 4-8
delete connection 4-9
determine cycle time 4-7
determining cycle time 4-11
make connection 4-7
move connection 4-7
move connections 4-7
Function chart editor
check function chart 4-23
close 4-21
connection mode 4-6, 4-21
controls
delete all connections 4-21
delete all pages 4-21
delete page 4-21
Design mode 4-21
displacement block 4-24
display any page 4-22
display next page 4-22
display previous page 4-22
draw mode 4-6
enlarge/shrink drawing 4-22
insert page 4-21
list of connections used 4-24
list of protective functions used 4-23
list of switching objects used 4-23
refresh screen 4-22
reset markings 4-22
reset size 4-22
search object 4-22
Search wire 4-21
select mode 4-21
set wire/connection course 4-22
show/hide labels 4-22
start 4-5, 4-19
zoom 4-22
Function key assignment 4-20, 4-24

\section*{G}

Gateway to the control system (MVB) 3-39
General filter time 5-28
Generator file. See Omicron test set
Ground factor. See distance protection...
Ground fault - dependent overcurrent timer protection configuration 5-123
function 5-122
Ground fault AMZ.
See ground fault - dependent overcurrent timer protection
Ground fault dependent IDMT
Tripping characteristic 11-20
ground fault IDMT.
See ground fault dependent IDMT
Ground-fault current starting.
See distance protection/ground-fault current starting
Guarantee provisions 1-8

\section*{H}

Hardware filter time 5-3, 5-28
Hedgehog. See sensor terminal adapter
Housing
deep 3-3
short 3-3
special paint coating 3-3

I

I/O board. See binary input and output board
l> dir. See continuous phase-fault current directional
l>. See continuous phase-fault current
l>> dir. See surge phase fault current directional
l>>. See surge phase fault current
l>>>. See initial phase fault current
Impedance-time characteristic
distance protection 5-164
Impedance-time characteristic
for autoreclosure on an overhead cable 5-167
for autoreclosure on cable-overhead cable 5-169
for autoreclosure on overhead cable-cable 5-169
for underlying signal comparison protection 5-170
Independent thermal protection
configuration 5-186
function 5-186
test 7-14
tripping characteristics 11-26
Information field 1-5
Initial overvoltage
configuration 5-126
function 5-126
Initial phase fault current
configuration 5-102
function 5-102
Initial undervoltage
configuration 5-133
function 5-132
Input area 1-5
Input field 1-5
Installation 6-4
Installation location. See set-up area
Interbay bus
communications test 7-41
general information 3-36
MVB 3-39
MVB star-shaped bus structure 3-39
SPA bus 3-36
SPA bus in a ring bus structure 3-36
SPA bus in a star bus structure 3-37
Interbay bus address, FUPLA 5-29
Interbay bus. See interbay bus

Interface
configuration in the housing 3-12
Rx fiber-optic cable input MVB 3-40
Rx fiber-optics input SPA bus 3-37
Tx fiber optic cable output MVB 3-40
Tx fiber-optics output SPA bus 3-37
-X0 LON process bus 3-18, 3-41
-X1 auxiliary voltage supply 3-19
-X10 analog outputs 3-30
-X2 intermediate transformer 3-33
-X3 analog inputs 3-14, 3-16
\(-\mathrm{X} 4,-\mathrm{X} 5,-\mathrm{X} 8\) binary inputs conventional relay board 3-25
-X4, -X5, -X8 binary inputs transistor relay board 3-20
-X6, -X7, -X9 binary outputs
conventional relay board 3-25
-X6, -X7, -X9 binary outputs
transistor relay board 3-20
Interrupt channel. See direct output channel
Inverter 5-66
lo> dir. See continuous ground-fault current directional
lo>. See continuous ground-fault current
lo>>, dir. See surge ground fault current
lo>>. See surge ground-fault current

\section*{\(J\)}

JK flip-flop 5-73

\section*{L}

Language setting
configuration program 4-4
LC display screen 4-10
LC display screen
bar display 3-8
bar graph 8-16
change contrast 8-4
control elements 8-2
general information 3-42
operational measured values 8-5
resolution 8-2
retrieve operational measured values \(8-5,8-16\)
start editor 4-20
trailing pointer function 8-5, 8-16
LCU. See local command unit
Limit stop 5-28
Limit stop, switching object 5-29
List field 1-5
Local command unit 1-1, 8-2
alarm LED 3-43
configurable LEDs 3-43
control components 3-42
control elements 1-6
\&EDC
BA 452/00 E
interlocking status LED 3-43
keyswitch 3-44
operational status LED 3-43
operator view 1-1
principles of control 3-42
protective function status LED 3-43
RS232 interface 3-44
Local-remote switchover 5-24
LON
process bus and power supply board 3-18
Process bus system 3-41
Sensor 5-85
SPA gateway 3-37
Low load monitoring
configuration 5-194
function 5-194
testing 7-15

\section*{M}

Main menu 1-4
description of menu items \(4-16 \backslash\) st-\st \(4-20\)
Make PC-REF542 connection 4-5
Manual-on acquisition.
See distance protection/switching on persistent faults
Measured value recorder 3-32
Measured values ring menu 8-5, 8-16
Menu 1-4
Menu bar
drawing menu 1-4
main menu 1-4
Menu item 1-4
Message generator 5-207
configuration 5-207
function 5-207
Mimic diagram 3-42
Mode
function chart editor 4-6
REF542 3-11
Module for thrust 5-63
Monitoring on blocking rotor
configuration 5-152
function 5-152
test 7-12
Monoflop
non-retriggerable 5-76
retriggerable 5-75
Motor protective function 5-143\st-\st 5-155
application 5-143
test 7-13
Motor starting monitoring
configuration 5-150
function 5-148

\section*{N}

Negative phase monitoring
configuration 5-190
function 5-189
Negative phase protection
test 7-15
Network neutral point grounding 11-35
isolated neutral point 11-38
resistance-grounded neutral point 11-37
solid neutral grounding 11-36
Neutral grounding. See network neutral point grounding
Number of starts
configuration 5-155
function 5-155
Number of startups
test 7-13
Number of switching cycles, conventional power relay 3-28

\section*{O}

Object number 5-20
Omicron test set
converter to sensor terminal adapter 7-1
generator file 7-2
Open reset page 8-23
Operating hours counter 5-206
configuration 5-206
function 5-206
Operating mode 8-3
all operating modes, functions 8-3
local input, functions 8-17
local operation, functions 8-4
remote operation, functions 8-15
Operating mode local input
activate and deactivate autoreclosure 8-20
change parameter set 8-19
change parameters 8-21
open reset page \(8-23\)
open test mode 8-23
start service page 8-19
view parameter sets 8-20
Operating mode local operation
acknowledge alarm 8-5
acknowledge message 8-5
display LED message texts 8-4
retrieve operational measured values 8-5
select switching device 8-7
start tripping page 8-7
Operating mode remote operation
acknowledge alarm 8-15
Acknowledge message 8-15
display LED message texts 8-15
retrieve operational measured values 8-16
start tripping page 8-16
Operating modes. See operating mode
Operating personnel 2-3
Operational measured values
limitations on analog output 3-30
listing. Refer to REF542...
Option field 1-5
OR logic gate 5-68
with inverting output 5-69
Overcurrent starting.
See distance protection/overcurrent starting
Overreach zone. See distance protection/overreach zone

\section*{\(P\)}

Paralleling monitoring
configuration 5-199
function 5-199
testing 7-15
Parameter set
change 8-19
view 8-20
Patch test
see determining the direction/current transformers
see determining the direction/voltage transformers
Power circuit-breaker
autoreclosure-capable 5-165
Power monitoring
function 5-192
test 7-15
Power supply and LON process bus board 3-18
Print
connection list 4-17
Eventlist 4-17
function chart 4-17
Parameters 4-17
Processor error 3-10
Project
create new 4-16
definition 4-3
open 4-17
save 4-17, 4-21
save as 4-17
Protective function 5-90 \st- st 5-199
combination options 5-88
configuration of the analog measuring inputs 5-88
delay period 5-87
direct output channel 5-88
event messages 11-6
frequency range 5-87
general restrictions 5-87
list of used 4-23

\section*{Pulse generator 5-78}

\section*{Q}

Quasi-echo circuit.
See distance protection/underlying signal comparison protection

\section*{R}

Rated network value 3-8, 5-7, 5-9, 5-10
primary 5-7
secondary 5-7
setting 5-7
Read version numbers with the PC 4-18
REF542
calculation time 11-32
calibrating the analog inputs \(7-3\)
communications functions \(3-10\)
components 3-12
configuration 3-11
configuration of the components in the housing 3-12
control functions 3-7
converter Omicron sensor terminal adapter 7-1
data storage 3-10
decommissioning 10-2
description of functions 3-5
durability of specific components \(8-29\)
dynamic range 11-1
field of application 1-2
installation 6-4
installation position 6-3
interlocking (bay-level, station-level) 3-8
internal device communication 3-2
maintenance program 8-28
measurement functions 3-8
mechanical design 3-3
monitoring functions 1-2, 3-9
operating modes 3-11
primary function 3-1
primary functions 1-2
protective functions 1-2, 3-6
regular testing 8-28
reset 8-4
standard circuit diagram 7-8
storage 10-1
switch-on process 7-41
Registry card 1-6
Relay period 5-87
Ring buffer (tripping page) 8-7, 8-16
rms value 3-1
rms value calculation 11-31
rms value. Refer to rms value
Rogowski coil
configuration of the analog inputs 5-8
\& EDC
BA 452/00 E
determining the direction 7-5
test transformation ratio 7-6
RS flip-flop 5-72
with timing input 5-73
Rucksack. Refer to signal converter

\section*{S}

Safety notes, appearance 2-1
SCU, Switchbay Control Unit. Refer to REF542
selection list 1-5
Sensor terminal adapter 3-35
Serial interface
configuration 5-2
Set network frequency 5-12
Setting characteristics.
See also distance protection/impedance-timercharacteristics
Setting table 5-90, 5-126, 5-132
overcurrent time protection 5-102
Set-up area 6-3
Shipping damage 6-1
Shipping protection 6-1
Short disconnection.
See autoreclosure
Signal comparison protection.
See distance protection/underlying signal comparison protec-
tion
Signal converter 3-33
closed U core transducer 3-33
core-balance current transformer 3-33
Signaling LED 5-21
Single-line diagram. See mimic diagram
Slope delay falling 5-76
Slope delay rising 5-76
SPA bus list 11-51
Starting service page 8-19
Startup. See switch-on process
Status line 3-42
Status message
in the configuration program 9-4
on the LC display screen 9-1
Status of the binary inputs \(4-13\)
Status of the binary outputs \(4-13\)
Submenu 1-4
Surge ground-fault current
configuration 5-112
function 5-112
Surge ground-fault current directional
configuration 5-117
function 5-116
Surge neutral point voltage
configuration 5-139

Surge overvoltage
configuration 5-128
function
Surge phase fault current
configuration 5-105
function 5-102
Surge phase fault current directional
configuration 5-98
function 5-97
Surge undervoltage
configuration 5-135
function 5-132
Surge-neutral point voltage
function 5-139
Switching cycle counter
configuration 5-29
Switching device
actuate 8-7
select 8-7
Switching object
0-1 5-31
0-2 5-32
0-3 5-34
1-0 5-36
1-1 5-38
1-2 5-40
2-1 5-43
2-2 5-45
2-2 as power circuit-breaker 5-48
2-2 H bridge 5-56
2-2 with no power output 5-48
4-3 motor 5-49
4-4 H bridge \(5-59\)
6-5 magnet motor 5-52
blocking input, BL 5-29
comment input field 5-27
connection comment 5-27
connection number 5-27
event messages 11-4
events 5-30
impulse length 5-28
interbay bus address 5-29
interlocking input, IL 5-29
limit stop 5-26, 5-29
list of used 4-23
number of impulses 5-29
number of the physical
input 5-27
physical input 5-27
physical output 5-28
principal function 5-26
pulse output 5-28
sequential number 5-27
time monitor output, Time> 5-29

Switching on persistent faults.
See distance protection...
Switch-on process 7-41
Synchrocheck. See paralleling monitoring

\section*{T}

T flip-flop 5-75
Technical data 3-45
analog output board 3-30
binary input/output board
with conventional relay 3-27
binary input/output board
with transistor relay 3-22
CPU board 1 3-15
CPU board 2 3-17
general overview 3-45
MVB communications board 3-40
power supply and LON process bus board 3-18
SPA bus communications board 3-38
Test
communications 7-41
current protective functions 7-11
distance protection 7-13
frequency monitoring 7-15
independent thermal protection 7-14
interlock conditions 7-4
low load monitoring 7-15
measured value recording 7-6
monitoring on blocking rotor 7-12
motor protection function 7-13
motor starting monitoring 7-12
negative phase protection 7-15
number of startups 7-13
paralleling monitoring 7-15
power monitoring 7-15
protective functions 7-8
sensors 7-4
test record 7-16
transformers 7-4
voltage protective functions 7-11, 7-12, 7-14
Test mode
general enable 5-4
open 8-23
Test records for protection tests 7-16
Test voltage protective functions 7-11, 7-12
Thermal replica 5-144
Threshold object 5-80
Torus transformer.
See signal converter/core-balance current transformer
Trailing pointer function.
See LC display screen/trailing pointer function
Trip circuit monitoring
activation 5-4
conventional relay board 3-26
function block 5-64
transistor relay board 3-21
Tripping characteristic
dependent IDMT 11-20
dependent thermal protection 11-27, 11-28, 11-29
ground fault dependent maximum current time protection 11-20
independent thermal protection 11-26
Tripping page
messages 8-8
start 8-7, 8-16

\section*{U}
\(\mathrm{U} \ll\). See surge undervoltage>
\(U>\). See continuous overvoltage
U>>. See surge overvoltage
U>>>. See initial overvoltage
U،. See continuous undervoltage
U《<<. See initial undervoltage
U-core transformer, closed 3-33
Undervoltage limit 5-132
Unpacking 6-1
Uo>. See continuous neutral point voltage
Uo>>. See surge neutral point voltage
Upload. See application/receive from REF542

\section*{V}

Vector diagram
directional ground-fault protection (GFP) (grounded net-
work) 5-117
directional ground-fault protection (GFP) (isolated net-
work) 5-117
directional phase fault current protective functions \(\quad 5-97\)
paralleling monitoring,
synchronization condition 5-199
Voltage protective functions \(5-125 \backslash\) st-\st \(5-141\)
application 5-125
Voltage sensor 3-34
configuration of the analog inputs 5-9
determining the direction 7-6
Voltage transformer 3-33
configuration of the analog inputs 5-8
determining the direction 7-5
test transformation ratio 7-5
Voltage-controlled overcurrent starting.
See distance protection...

\section*{W}

WireMode. See function chart editor/connection mode
Wires. See also connection 4-24
Wiring check 6-5

\section*{12 New REF542 Version V2C04}

Version V2C04 of the software replaced the previous Version V2C02 in August 1998. The interim Version V2C03 was intended solely for internal ABB test purposes. With this new version the REF542 bay control and protection unit (SCU) has the following components:

Configuration Program V2C04
Microcontroller: V2C04 or V2C04B
DSP: V2C04
SPA bus: V3.01
MVB bus: V2.0
LON interbay bus: V9.01
In the configuration program you can read the current versions of the REF542 microcontrollers (MC) and the configuration program.
\({ }^{4}\) ) Chapter " Version" on page 4-18
Version V2C04 has improvements in the system response of certain functions compared to the prior Version V2C02. Some new functions have also been implemented. The current operating instructions for Version V2C02 are valid in their entirety.

The following description of the new or improved functions is a supplement to the abo-ve-mentioned operating instructions.

Note Version V2C04 is backwards compatible to the earlier Versions V2C02, V2C01 and V2C00. Applications made with this earlier version can be used.

\subsection*{12.1 Changes and supplements}

Note The Handbook für Version V2C02 (only in german available) is further valid. It is corrected and supplemented with this chapter.

In the following subsections you find changes and supplements. After a reference to the concerned chapter you find the description of the new or changed function.

\subsection*{12.1.1 Print setup}
\({ }^{\text {n }}\) Supplement to: Chapter "4.5.2.1 Main Menu/File" on page 4-16
In this version the configuration program has a function for setting up a printer. When the configuration program is installed, the default printer is activated initially. If required, another printer can be directly selected and defined as the default printer.

\subsection*{12.1.2 Add connection/Number of connections}

\section*{\({ }^{4}\) ) Changes to: Chapter "4.5.1.7 Add or move connection" on page 4-7}

\section*{Connecting function blocks}
- Position the mouse cursor over a connection point on a function block. The mouse cursor will change to the shape of a soldering iron.
- To make a connection hold the right mouse button down and drag the mouse to another connection point. The mouse curser looks again like a soldering iron.
- Release the right mouse button.

The number of connections is increased from 512 to 560 . However, the numbers 11 to 512 are used for designation of the connection.
\({ }^{\text {r }}\) Changes to: Chapter "4.5.2.8 Drawing menu/Edit" on page 4-21
The menu item Mode is not longer available.
\(\left.{ }^{4}\right)\) Changes to: Chapter "4.5.2.6 Main menu/Help" on page 4-20 and Chapter
"4.5.2.13 Drawing menu/Help" on page 4-24
The Function Keys F3 and F4 are not longer in use. You can now switch directly between connection mode and drawing mode.

\subsection*{12.1.3 Blocking the protective funktions}
\(\left.{ }^{〔}\right)\) Supplement to: Chapter "5.4.7 General Information on the protective functions" on page 5-87

In this version, when a protective function is blocked (connection pin BI or BS), the messages, such as start, are also fully blocked, except for the trip. Messages are no longer generated for the station control system.

However, if the block is lifted during a continuing power system fault, the active messages will be released immediately. If the appropriate condition is met, for example start and expiry of the delay period, the trip may be initiated, if applicable. In this case - if available in the station control system - timestamping or time marking will be correctly set to the beginning of the fault.

\subsection*{12.1.4 Shorter trip time: Overcurrent instantaneous, l>>>}
\(\left.{ }^{4}\right)\) Changes to: Chapter "5.4.8.4 Overcurrent instantaneous" on page 5-102
The trip time of this function is shorter with Version V2C04. The shortest trip time is now ( \(0 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\) ) and not longer ( \(20 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\) ). The actual setting range is shown below:
Setting range: [ \(0 \mathrm{~ms}+\mathrm{t}_{\text {relay }}\) ] ... 300000 ms (increment: 10)
The relaytime is 15 ms for solid-state relays and 30 ms for conventional relays.

\subsection*{12.1.5 New Protection function: Earthfault directional sensitive (lo>dir., sensitive)}
\({ }^{4}\) Supplement to: Chapter "5.4.8 Current protective functions" on page 5-90


Figure 288: Function block Earthfault directional sensitive (lo>dir., sensitive)

\section*{Function}

In Version V2C04B the function of earthfault directional sensitive has a new implementation. This function is primarily for ground fault detection in medium-voltage networks with ground fault compensation or with isolated neutral point, particularly if the network has strong harmonic or is subject to significant disturbance variables at a frequency of \(162 / 3 \mathrm{~Hz}\) from the railway power system.

The difference from the prior functions is how the measured quantities are processed and the configuration of the transducers or sensors. Initially, the base harmonic is determined from the measured quantities in the neutral system, i.e. from the neutral point ground voltage and the ground current, with the DFT algorithm (DFT = digital Fourier transformation). Then a directional determination is made. Because medium-voltage
networks with ground fault compensation are generally only found in European countries, this function is accordingly provided for networks with a 50 Hz rated frequency.

The neutral point ground voltage is calculated directly from the sum of the 3 conduc-tor-ground voltages. As a result, the connection to zero-voltage transformers or open delta winding in the voltage transformer set is not required. The ground current must be obtained by a cable current transformer, whose rated current should be as low as possible. The measured quantities from the cable current transformer must always be to the 7th input.

In networks with ground fault compensation, the effective power proportion of the neutral system (cos \(j\) circuit) is generally calculated and evaluated for directional decision. In contrast, the reactive power proportion ( \(\sin \mathrm{j}\) circuit) in networks with isolated neutral point of the neutral system must be used.
ĚChapter "11.8 Network neutral point earthing" on page 11-35
If the ground current response time and the setting value of the neutral ground voltage are exceeded, the protective function is started. The setting of the neutral ground voltage is based on the neutral voltage, which is derived from the sum of the 3 conductorground voltages. If the starting and a decision in the forwards direction is present, the protective function generates a "trip" signal after expiry of the time delay, which can be adjusted. If the decision is in the backwards direction, a "BO" signal (= Blocking Output) is generated. In this case, the function does not wait for the time delay to expire!

The message ground fault in backwards direction is sent to the BO output immediately. In this case, the function does not wait for the time delay to expire. The BO signal may be used for signal comparison protection if required.

With the real power measurement \((\cos \varphi)\) the response characteristic for the forward direction is set by a straight line drawn parallel to the horizontal axis. The following diagram shows the directional definition. The distance to the horizontal axis is specified by the setting value of the ground current in the opposite phase to the neutral ground voltage.


Figure 289: Vector diagram of the earthfault directional sensitive for networks with ground fault compensation.
With the reactive power measurement ( \(\sin \varphi\) circuit) the response characteristic for the forward direction should be set by a straight line drawn parallel to the vertical axis. The following diagram shows the directional definition. The distance to the vertical axis is specified by the setting value of the lagging ground current (inductive) at \(90^{\circ}\) to the neutral ground voltage.


Figure 290: Vector diagram of the earthfault directional sensitive for networks with isolated neutral point.

To ensure the required sensitivity and discrimination for the ground fault detection, in its implementation in the REF542 bay control and protection unit (SCU) the response characteristic is formed with additional adjustability. The following diagram shows the shape of the response characteristic.


Figure 291: Response characteristic of the earthfault directional sensitive for networks with ground fault compensation ( \(\cos \varphi\) circuit).

The parameter dinitially offers the option of variable settings for the angle between the current and the voltage-proportional measured quantities in the range of \(-180^{\circ}\) to \(180^{\circ}\). The provides the option of compensating for a possible phase error in the representation of measured quantities from the network. For example, if it can be assumed that the phase errors in representation can be disregarded, in networks with ground fault compensation ( \(\cos \varphi\) circuit) the angle d will have to be set to equal \(180^{\circ}\). In contrast to that, in networks with isolated neutral point (sin j circuit) an angle of \(90^{\circ}\) (inductive) will have to be set. If the phase error is not to be disregarded, the setting will have to be corrected.

The other parameter a is used to improve the discrimination of the directional decision. This opening angle can suppress a possible faulty response of the directional decision. This means that only directional ground-fault protection functions, which are in the immediate vicinity of the ground fault location, should respond.

The response time \(I_{E}\) gives the parallel displacement of the response characteristic from the axis. In the above diagram the response characteristic for networks with ground fault compensation ( \(\cos \varphi\) circuit) is shown with d equal to \(180^{\circ}\). The displacement from the horizontal axis is set by the response time \(\mathrm{I}_{\mathrm{E}}\). The response characteristic for forwards or backwards direction is formed to be balanced. When making settings for networks with isolated neutral point ( \(\sin \mathrm{j}\) circuit), the response characteristic must be displaced parallel to the vertical axis.

Note There is a failure in the definition for the angle \(\delta\) in networks with ground fault compensation ( \(\cos \varphi\) circuit). You must adjust the angle \(\delta=0^{\circ}\) instead of \(\delta=180^{\circ}\). For networks with isolated neutral point ( \(\sin \varphi\) circuit) the angle \(\delta=90^{\circ}\) is correct.


Figure 292: Function block Earthfault directional sensitive (lo>dir., sensitive)

\section*{Connections}

BI input: A logical 1 signal at this input suppresses the protective function trip signal. The funcion is still dispayed on the tripping page.

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

BO output: If the protective function detects a starting in the opposite direction to the set tripping direction, a logical 1 signal will be sent to this output. In this case, the function does not wait for the time delay to expire.

Trip output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip threshold for the set period.

Configuration


Figure 293: Configuration dialog function block earthfault directional sensitive
Information field interbay bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field current Io (once per parameter set): Input of the multiplier for \(I_{N}\) to specify the response time for the ground current \(\mathrm{I}_{\mathrm{E}}\) of the protective function.
Setting range: \(0.050 \ldots 2.000\) (increment: 0.001 )
Default: 1.000
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value (response time) remains exceeded and the tripping direction conforms to the parameter setting.
Setting range: 100 ms ... 10000 ms (increment: 1)
Default: 1015
Input field angle alpha (once per parameter set): Angular setting for increasing the opening angle of the response characteristic to retain clear directional decisions.
Setting range: \(0.0 \ldots 20.0^{\circ}\) (increment: 0.1 )
Default: \(20^{\circ}\)
Input field angle delta (once per parameter set): Angular setting for definition of the network neutral point handling.
Setting range: -180.0 ... \(180.0^{\circ}\) (increment: 0.1)
Default: \(0^{\circ}\)

Input field voltage Uo (once per parameter set): Input of the multiplier for \(U_{N}\) to specify the response time for the ground current \(\mathrm{I}_{\mathrm{E}}\) of the protective function. This refers to the reference quantity of the neutral voltage!
Setting range: \(0.05 \ldots 0.70\) (increment: 0.01 )
Default: 0.5
Input field output channel: Input of the number of the binary output for the direct output signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of direct tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Option field used sensors: Selects the analog measuring inputs to which the transducers/sensors are connected and to whose values the protective function should react.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\(\left.{ }^{4}\right)\) Chapter "5.3.2 Global Settings" on page 5-2
Table 60: Event list of Earthfault directional sensitive (lo>dir., sensitive)
Earthfault directional sensitive (lo>dir., sensitive)
\begin{tabular}{l|l|l|l|l}
88 & E 0 & Start started & E 1 & Start back \\
\hline 88 & E 6 & Trip started & E 7 & Trip back \\
\hline 88 & E 12 & Trip block started & E 13 & Trip block back \\
\hline 88 & E 18 & Protection block started & E 19 & Protection block back \\
\hline
\end{tabular}

\subsection*{12.1.6 Revised protection function: Synchrocheck}
\(\left.{ }^{( }\right)\)Changes to: Chapter "5.4.12.6 Synchrocheck" on page 5-199
To enable this function to be combined with other protective functions without problems, for example with the distance protection, it has been revised in this version. Input 7 of the active sensors is provided for measuring the external phase-to-neutral voltage \(\mathrm{U}_{2 \mathrm{~L} 12}\) of the 2nd network.

The function and the settings are described in detail once again below.


Figure 294: Function block Synchrocheck

\section*{Function}

The paralleling monitoring checks the voltage quantities of two networks and only generates a closing command if the difference of the voltage amplitudes, the phase difference and the frequency vary within the set allowable limits for a specific period.

For this purpose the paralleling monitoring initially uses two conductor-ground voltages from the 1st network, i.e. the voltage \(U_{1 L 1 E}\) from the phase \(L 1\) and voltage \(U_{1 \text { L2E }}\) from the phase L2. Then the external phase-to-neutral voltage \(U_{1 L 12}\) is calculated from the above. Therefore, to implement the paralleling monitoring, the external phase-to-neutral voltage \(U_{2 L 12}\) from the \(2 n d\) network between the phases \(L 1\) and \(L 2\) is required.

To implement the paralleling monitoring function a differential voltage \(\Delta U\) is initially determined from the two external phase-to-neutral voltages as an auxiliary quantity. This auxiliary quantity is used to check the synchronicity of the two networks with respect to their phase angle and amplitude, in that the differential voltage in amplitude and phase must remain within the set time limits.

If the values of the differential voltage and the phase difference are within the set limit, first the protective function is started (St). If the valuesremain within these limits for at least the set time, both networks are equalized in their frequencies to that extent. The signal (SYN) for parallel switching by both networks is formed. Two parameter sets may be configured for the paralleling monitoring.

\section*{Setting}

The setting of the paralleling monitoring function is shown by examples below. If two networks must be switched in parallel, the voltage amplitudes in both networks must first be nearly equal and should approximate the value of the rated voltage. So long as the frequencies in the networks are different, the two voltages will naturally not be synchronous. A phase displacement occurs between the two voltages that need to be equalized. As a result a differential voltage dependent on the time occurs. This differential voltage can be used to determine whether the two networks can be parallel switched. The voltage ratios are shown in an example in the following diagram.


Figure 295: Vector diagram of the voltage quantities with unequal frequencies.
As shown in the diagram, the phase difference that needs to be set depends on the setting of the differential voltage as follows:
\(\Delta \delta=\arctan \binom{\Delta U}{U}\)
\(\Delta \delta: \quad\) Setting the phase difference
\(\Delta \mathrm{U}\) : Setting the differential voltage as start value
U: Rated voltage of a network as reference quantity
After transposing the above equation the required voltage difference can be calculated:
\[
\Delta U=U \cdot \tan \Delta \delta
\]

A time window as follows can be used:to check the frequency variation
\(t=\frac{2 \cdot T_{n} \cdot \Delta \delta}{360^{\circ}} \cdot \frac{f_{n}}{\Delta f}\)
t: Time window to check frequency
\(T_{n}\) : Period duration at rated frequency
\(\mathrm{f}_{\mathrm{n}}\) : Rated frequency
\(\Delta f\) : Frequency difference
So long as the frequency difference remains within an allowable limit, the set time can run out. This enables the signal "SYN" to be formed for parallel switching of both networks.

\section*{Connections}


Figure 296: Function block Synchrocheck

BI input: A logical 1 at this input will suppress the protective function trip signal. The function on the tripping side will still be displayed.

Start output: A logical 1 signal can be tapped here so long as the protective function is started.

Syn output: Becomes logical 1 as soon as one of the three monitored voltages exceeds the trip treshhold for the set period. The switching operation for coupling the separate systems can be released with this signal.

\section*{Application}

A paralleling monitoring is required for coupling two networks. The paralleling monitoring can also be used before the reswitching after a three-line autoreclosure.
\({ }^{4}\) "Table 40: Use of the protective functions depending on the configuration of the analog measuring inputs" on page 5-89

\section*{Configuration}


Figure 297: Configuration dialog function block synchrocheck
Information field interbay bus address: Set for every protective function and used to address the function block for interbay bus commands.

Input field start value (once per parameter set/setting): Input of the multiplier for \(U_{n}\) to specify the response time of the protective function. The amplitude of the allowable differential voltage is set here.
Setting range: \(0.02 \ldots 0.40\) (increment: 0.01 )
Default: 0.05
Input field time (once per parameter set/setting): Delay period in ms after which the protective function trips if the start value and the phase difference remains exceeded. Setting range: \(0.50 \ldots 1000.00\) s (increment: 0.01)
Default: 100
Input field (phasendiff.) phase difference (once per parameter set/setting): Input of the maximum phase difference between the networks that are to be coupled or the maximum phase difference of the differential voltage.
Setting range: \(5 \ldots 50^{\circ}\) (increment: 1)
Default: \(10^{\circ}\)
Input field output channel: Indicates the number of the binary output affected by the direct trip signal. For safety and documentation the output must also be made via a switching object in the function chart. Input of the value 0 suppresses the option of faster tripping. The number of the selected binary output is also shown in the FUPLA. It is underlined in white in the relevant function block.
Setting range: \(0 \ldots\) [number of binary outputs] (increment: 1)
Default: 0
Information field pins: List of connections on the function block with adjacent connection number. The connection numbers 1 (on one input) and 2 (on one output) appear if the function block still has no connections made.

Option field active sensors: Selects the analog measuring inputs to which the transducers/sensors to whose values the protective function reacts are connected.

Button OK: All settings are saved in the configuration program. The dialog window is closed.

Button Cancel: Settings are not saved in the configuration program. The dialog window is closed.

Button events: A configuration dialog is opened. Mark (activate) the events that should be sent to the station control system over the interbay bus. The button can only be selected when the events function has been activated in the REF542 basic settings.
\({ }^{〔}\) Chapter "5.3.2 Global Settings" on page 5-2
(2) Chapter "11.3 Event list of protective functions" on page 11-6

\subsection*{12.1.7 Changed recording: Fault recorder}
\(\stackrel{\wedge}{\wedge}\) Supplement to: Chapter "5.4.13 Faultrecorder" on page 5-202
Recording changes in the start- and trip-signals in the fault recorder is no longer set by the FUPLA cycle time with the introduction of this version. These signals are now recorded at a default sampling rate of approximately 800 Hz . This enables changes in the start- and trip-signals to be detected with a precision of about 1.2 ms . A maximum time error of 2 ms can therefore be ensured. This required the corresponding signals to be directly linked to the inputs of the fault recorder.

The sampling rate of the other signals depends, as before, on the FUPLA cycle time.
It should be noted that in this robust fault recorder function the digital filter times set in the configuration software no longer need to be taken into account.

The analog signals of the instrument transformers or measuring sensors are recorded as before at a sampling rate of 1200 Hz .

Note The load on the DSP has also increased in this version. Once it has been activated, the fault recorder takes up 35\% of the available DSP calculation capacity.

\subsection*{12.1.8 Changed measured value display}
\({ }^{\text {n }} \boldsymbol{y}\) Changes to: Chapter "8.1.4.3 Retrieving measured and calculated values" on page 8-5

Because of unavoidable electromagnetic influences at the installation site of the REF542 bay control and protection unit (SCU), in some cases it may occur that a very small current value is displayed in the phases in spite of the deactivated power circuitbreaker. Therefore, with the introduction of Version V2C04 the measured value display is equipped with a neutral suppression. The value zero is shown on the LC display if the measured values are less than \(1 \%\) of the rated value.

The measured value response time has also been implemented. This is to ensure that measured values are only sent to the station control system after a time delay dependent on the size of the change. The equation for the time delay is as follows:
\(t=\frac{6}{\Delta A}\left[\frac{\% \cdot s}{\%}\right]\)
Where
t : The resulting time delay
\(\Delta \mathrm{A}: \quad\) On the change based on the current measured value
If the load current of 200 A changes to 206 A in the network, for example after switchover actions have been conducted, according to the above definition \(\Delta \mathrm{A}=3 \%\). According to the above equation this change will only be sent to the control system 2 s later if the current remains constant at 206 A.

The frequency display has been expanded to \(\pm 5 \mathrm{~Hz}\). At 50 Hz rated frequency the display range is 45 Hz to 55 Hz . This requires the corresponding measured quantities, voltage or current, to be present in sufficient quantity to enable the frequency to be determined with the required precision. If the frequency cannot be determined, no display is visible.
²) Chapter "11.7.4 Calculation of the frequency" on page 11-33

ABB Calor Emag Mittelspannung GmbH
ABB Sécheron SA

Oberhausener Str. 33
D-40472 Ratingen
Phone +49 (0)2102 121230
Fax +49 (0)2102 121916
e-mail: calor.info@de.abb.com
Internet: www.abb-calor-emag.de```


[^0]:    ,About...
    Opens an information window with copyright and version information of the configuration program.

