Silicon N-channel IGBT

FEATURES

- * High thermal fatigue durability. (delta Tc=70°C, N>30,000cycles)
- * Low noise due to ultra soft fast recovery diode.
- * High speed, low loss IGBT module.
- * Low driving power due to low input capacitance MOS gate.
- * High reliability, high durability module.
- * Isolated head sink (terminal to base).

ABSOLUTE MAXIMUM RATINGS (Tc=25°C)

	,			MBNUAGGEGG
Item		Symbol	Unit	MBN1200E25C
Collector Emitter Voltage		V_{CES}	V	2,500
Gate Emitter Voltage		V_{GES}	V	±20
Collector Current	DC	Ic	Α	1,200
Collector Current	1ms	I _{Cp}	A	2,400
Forward Current	DC	I _F	Α	1,200
Forward Current	1ms	I _{FM}	A	2,400
Junction Temperature		T _i	°C	-40 ~ +125
Storage Temperature		T _{stg}	°C	-40 ~ +125
Isolation Voltage		V _{ISO}	V_{RMS}	4,000(AC 1 minute)
Screw Torque	Terminals (M4/M8)	-	- N·m	2/10 (1)
	Mounting (M6)	-		6 (2)

Notes: (1) Recommended Value 1.8±0.2/9±1N·m

(2) Recommended Value 5.5±0.5N·m

ELECTRICAL CHARACTERISTICS (Tc=25°C)

Item		Symbol	Unit	Min.	Тур.	Max.	Test Conditions
Collector Emitter Cut-Off Current		Laza	mA	-	-	12	V _{CE} =2,500V, V _{GE} =0V, Tj=25°C
Collector Emitter Gut-On Gurrent		I _{CES}	ША	-	20	60	V _{CE} =2,500V, V _{GE} =0V, Tj=125°C
Gate Emitter Leakage Current		I _{GES}	nA	-500	-	+500	$V_{GE}=\pm 20V$, $V_{CE}=0V$, $Tj=25$ °C
Collector Emitter Saturation Voltage		V _{CE(sat)}	V	-	3.0	3.5	I _C =1,200A, V _{GE} =15V, Tj=125°C
Gate Emitter Threshold Voltage		$V_{GE(TO)}$	V	4.0	5.0	6.0	V _{CE} =15V, I _C =120mA, Tj=25°C
Input Capacitance		C _{ies}	nF	-	175	-	$V_{CE}=10V$, $V_{GE}=0V$, $f=100kHz$, $Tj=25$ °C
Internal Gate Resistance		Rge	Ω	-	2.2	-	V _{CE} =10V, V _{GE} =0V, f=100kHz, Tj=25°C
Switching Times	Rise Time	t _r	μs	-	3.2	4.4	V _{CC} =1,000V, Ic=1,200A
	Turn On Time	ton		-	4.2	5.2	L=100nH
	Fall Time	t _f		-	1.9	3.4	$R_{G}(ON/OFF)=6.8/1.5\Omega \qquad (3)$
	Turn Off Time	t _{off}		-	3.4	5.6	V _{GE} =±15V, Tj=125°C
Peak Forward Voltage Drop		V_{FM}	V	-	2.0	2.5	IF=1,200A, V _{GE} =0V, Tj=125°C
Reverse Recovery Time		t _{rr}	μs	-	0.9	1.4	Vcc=1,000V, IF=1,200A, L=100nH Tj=125°C
Turn On Loss		E _{on(10%)}	J/P	-	1.8	2.3	V _{CC} =1,000V, Ic=1,200A, L=100nH
Turn Off Loss		E _{off(10%)}	J/P	-	1.2		$R_{G}(ON/OFF) = 6.8/1.5\Omega \qquad (3)$
Reverse Recovery Loss		E _{rr(10%)}	J/P	-	0.35	0.85	V _{GE} =±15V, Tj=125°C
Stray inductance module		Lsce	nΗ	-	12	-	
Thermal Impedance	IGBT	Rth(j-c)	K/W	-	-	0.0085	Junction to case
- Ineimai impedance	FWD	Rth(j-c)		-	-	0.017	
Contact Thermal Impedance		Rth(c-f)	K/W	-	0.006	-	Case to fin

Notes :(3) R_G value is the test condition's value for evaluation of the switching times, not recommended value. Please, determine the suitable R_G value after the measurement of switching waveforms (overshoot voltage, etc.) with appliance mounted.

Counter arm IGBT V_{GE}=-15V

- * Please contact our representatives at order.
- * For improvement, specifications are subject to change without notice.
- * For actual application, please confirm this spec sheet is the newest revision.

IGBT MODULE Spec.No.IGBT-SP-05023 R2 P2

MBN1200E25C

DEFINITION OF TEST CIRCUIT

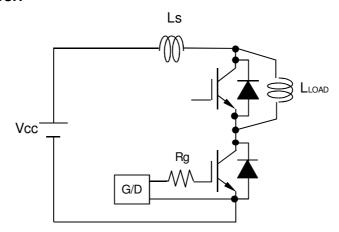


Fig.1 Switching test circuit

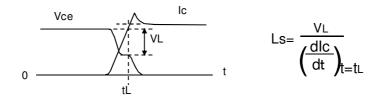
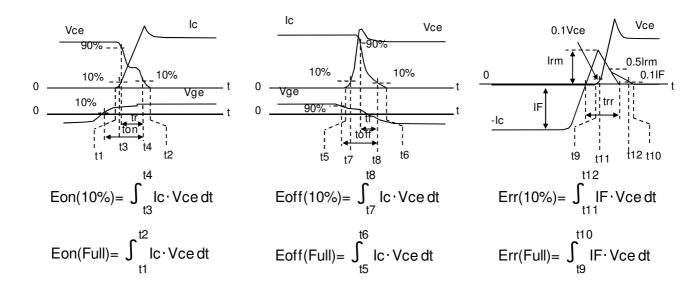
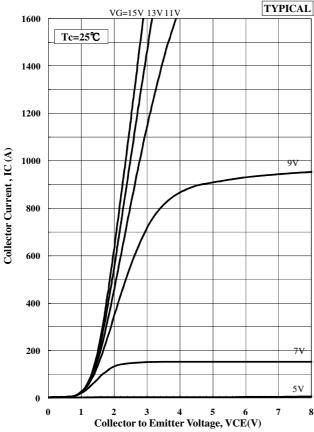
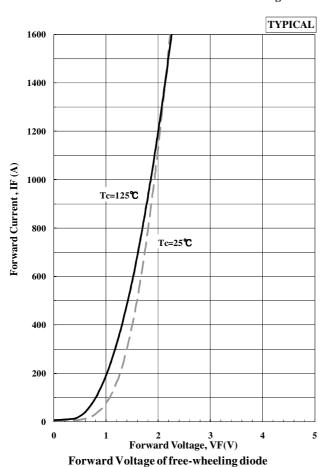
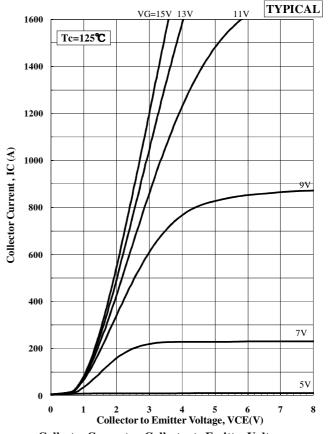


Fig.2 Definition of Ls

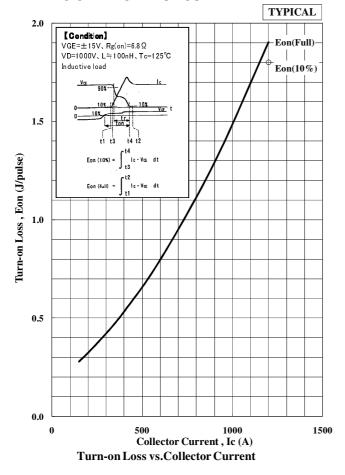



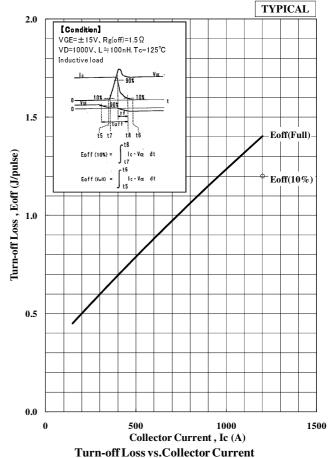

Fig.3 Definition of switching loss

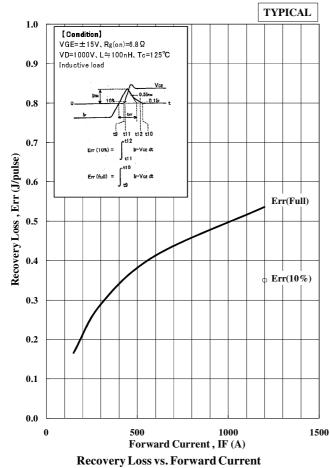

CHARACTERISTICS CURVE

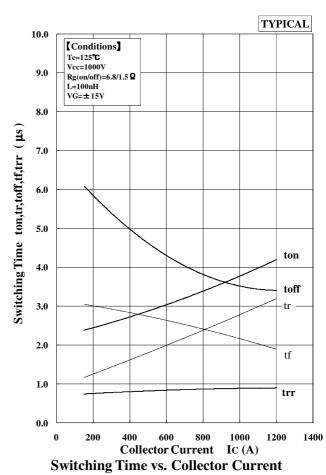
STATIC CHARACTERISTICS

Collector Current vs. Collector to Emitter Voltage

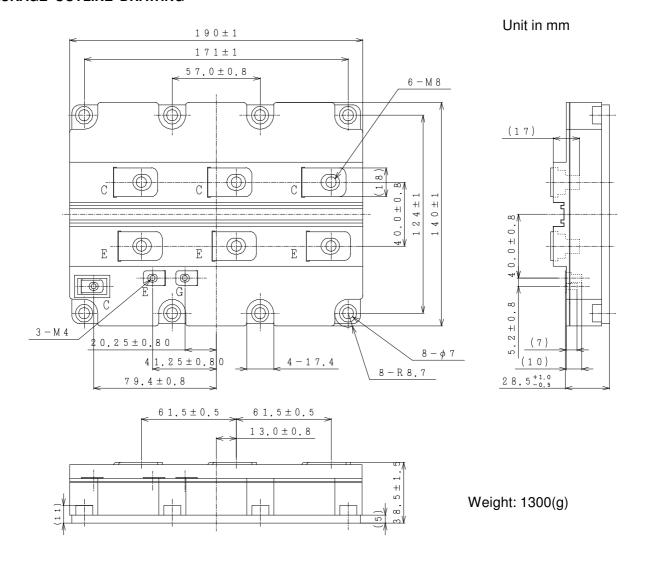

 $Collector\ Current\ vs. Collector\ to\ Emitter\ Voltage$

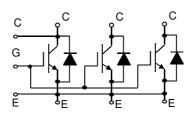


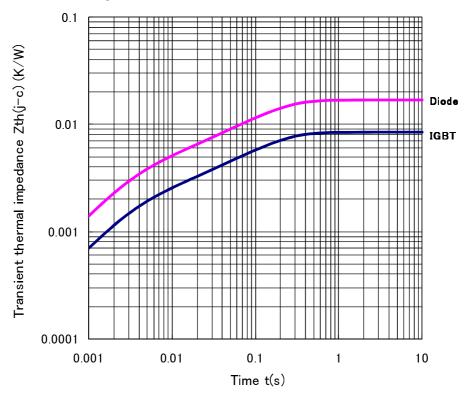

IGBT MODULE Spec.No.IGBT-SP-05023 R2 P4


MBN1200E25C

DYNAMIC CHARACTERISTICS






PACKAGE OUTLINE DRAWING

Circuit diagram

TRANSIENT THERMAL IMPEDANCE

Transient Thermal Impedance Curve (Maximum Value)

Material Declaration

Please note that following materials are contained in the product In order to keep characteristics and reliability level.

Material	Contained part
Lead (Pb) and its compounds	Solder

HITACHI POWER SEMICONDUCTORS

Notices

- 1. The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact Hitachi sales department for the latest version of this data sheets.
- 2. Please be sure to read "Precautions for Safe Use and Notices" in the individual brochure before use.
- 3. In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, life-support-related medical equipment, fuel control equipment and various kinds of safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement. Or consult Hitachi's sales department staff.
- 4. In no event shall Hitachi be liable for any damages that may result from an accident or any other cause during operation of the user's units according to this data sheets. Hitachi assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in this data sheets
- 5. In no event shall Hitachi be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 6. No license is granted by this data sheets under any patents or other rights of any third party or Hitachi Power Semiconductor Device, Ltd.
- 7. This data sheets may not be reproduced or duplicated, in any form, in whole or in part, without the expressed written permission of Hitachi Power Semiconductor Device, Ltd.
- 8. The products (technologies) described in this data sheets are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety not are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.
- For inquiries relating to the products, please contact nearest overseas representatives that is located "Inquiry" portion on the top page of a home page.

Hitachi power semiconductor home page address http://www.hitachi-power-semiconductor-device.co.jp/en/

