
eupec

IGBT Power Module

- Power module
- 3-phase full-bridge
- Including fast free-wheel diodes
- Package with insulated metal base plate
- E3226: long terminals, limited current per terminal

Туре	VCE	I _C	Package	Ordering Cod	Ordering Code		
BSM 50 GD120DN2E3226	1200V	50A	ECONOPACK 2	C67070-A251	4-A67		
Maximum Ratings			·				
Parameter			Symbol	Values	Unit		
Collector-emitter voltage			V _{CE}	1200	V		
Collector-gate voltage	777		V _{CGR}				
$R_{\rm GE}$ = 20 k Ω				1200			
Gate-emitter voltage			V_{GE}	± 20			
DC collector current			l _C		Α		
$T_{\mathbf{C}} = 25 {}^{\circ}\mathbf{C}$				50			
$T_{\mathbf{C}} = 80 ^{\circ}\mathbf{C}$	_			45			
Pulsed collector current, t_p :	= 1 ms		I _{Cpuls}				
<i>T</i> _C = 25 °C				100			
$T_{\rm C} = 80$ °C				90			
Power dissipation per IGBT			P _{tot}		W		
<i>T</i> _C = 25 °C				350			
Chip temperature			$T_{\mathbf{j}}$	+ 150	°C		
torage temperature		$T_{ m stg}$	-40+125				
Thermal resistance, chip case			R_{thJC}	≤ 0.35	k/w		
Diode thermal resistance, ch		mana di si siado ance distrito	RthJCD	≤ 0.7			
Insulation test voltage, $t = 1$			V _{is}	2500	Vac		
Creepage distance		-	16	mm			
Clearance	······································		-	11			
DIN humidity category, DIN	DIN humidity category, DIN 40 040		-	F	-		
IEC climatic category, DIN I	EC 68-1	, , , , , , , , , , , , , , , , , , , 	-	55 / 150 / 56			

Parameter	Symbol		Values		Unit	
		min.	typ.	max.		
Static Characteristics						
Gate threshold voltage	V _{GE(th)}				V	
$V_{\text{GE}} = V_{\text{CE}}$, $I_{\text{C}} = 2 \text{ mA}$		4.5	5.5	6.5		
Collector-emitter saturation voltage	V _{CE(sat)}					
$V_{\text{GE}} = 15 \text{ V}, I_{\text{C}} = 50 \text{ A}, T_{\text{j}} = 25 ^{\circ}\text{C}$		_	2.5	3		
$V_{\text{GE}} = 15 \text{ V}, I_{\text{C}} = 50 \text{ A}, T_{\text{j}} = 125 ^{\circ}\text{C}$		253	3.1	3.7		
Zero gate voltage collector current	/ _{CES}				mA	
$V_{\text{CE}} = 1200 \text{ V}, V_{\text{GE}} = 0 \text{ V}, T_{\text{j}} = 25 \text{ °C}$		-	0.8	1		
$V_{\text{CE}} = 1200 \text{ V}, V_{\text{GE}} = 0 \text{ V}, T_{\text{i}} = 125 \text{ °C}$		-	4	•		
Gate-emitter leakage current	/ _{GES}		1000		nA	
$V_{GE} = 20 \text{ V}, \ V_{CE} = 0 \text{ V}$		_	-	200		
AC Characteristics						
Transconductance	g _{fs}				s	
$V_{\rm CE} = 20 \text{ V}, I_{\rm C} = 50 \text{ A}$		23	-	_		
Input capacitance	Ciss				pF	
$V_{\text{CE}} = 25 \text{ V}, \ V_{\text{GE}} = 0 \text{ V}, \ f = 1 \text{ MHz}$		-	3300	-		
Output capacitance	Coss					
$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		-	500	-		
Reverse transfer capacitance	C _{rss}					
$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$		_	220	~		

Electrical Characteristics,	at T	= 25 °C,	, unless d	otherwise	specified
-----------------------------	------	----------	------------	-----------	-----------

Parameter	Symbol	Values			Unit
		min.	typ.	max.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Switching Characteristics, Inductive	Load at 7 _j =	125 °C			
Turn-on delay time	t∕d(on)				ns
$V_{\rm CC} = 600 \text{ V}, \ V_{\rm GE} = 15 \text{ V}, \ I_{\rm C} = 50 \text{ A}$					
$R_{\text{Gon}} = 22 \Omega$		===	44	100	
Rise time	t_{Γ}				
$V_{\rm CC} = 600 \text{ V}, \ V_{\rm GE} = 15 \text{ V}, \ I_{\rm C} = 50 \text{ A}$					
$R_{\text{Gon}} = 22 \Omega$		-	56	100	
Turn-off delay time	t _{d(off)}				
$V_{\rm CC}$ = 600 V, $V_{\rm GE}$ = -15 V, $I_{\rm C}$ = 50 A					
$R_{\text{Goff}} = 22 \Omega$		-	380	500	
Fall time	tę				
$V_{\rm CC} = 600 \text{ V}, \ V_{\rm GE} = -15 \text{ V}, \ I_{\rm C} = 50 \text{ A}$					
$R_{\text{Goff}} = 22 \Omega$			70	100	
form a late and this sec					
Free-Wheel Diode Diode forward voltage	V		<u> </u>		lv
$I_{\rm F} = 50 \text{ A}, \ V_{\rm GE} = 0 \text{ V}, \ T_{\rm i} = 25 \text{ °C}$	V_{F}		2.3	2.8	١٧
*****				2.0	
$I_{\text{F}} = 50 \text{ A}, V_{\text{GE}} = 0 \text{ V}, T_{\text{j}} = 125 ^{\circ}\text{C}$ Reverse recovery time		ļ 	1.8		
•	t _{rr}				μs
$I_{\rm F} = 50 \text{ A}, \ V_{\rm R} = -600 \text{ V}, \ V_{\rm GE} = 0 \text{ V}$					

 Q_{rr}

0.2

2.8

8

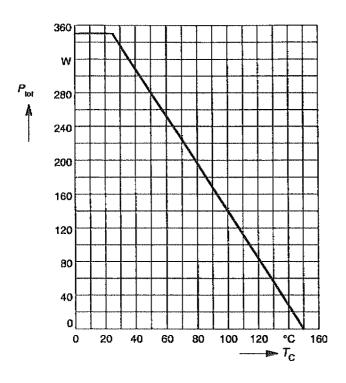
 $d_{\rm F}/dt = -800 \text{ A/}\mu\text{s}, T_{\rm j} = 125 \,^{\circ}\text{C}$

 $I_{\rm F}$ = 50 A, $V_{\rm R}$ = -600 V, $V_{\rm GE}$ = 0 V

Reverse recovery charge

 $d_{\rm F}/dt$ = -800 A/ μ s

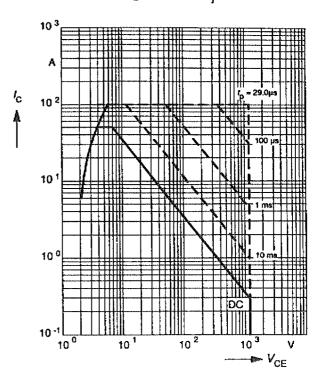
 $T_j = 25$ °C


 $T_{\rm i}$ = 125 °C

μС

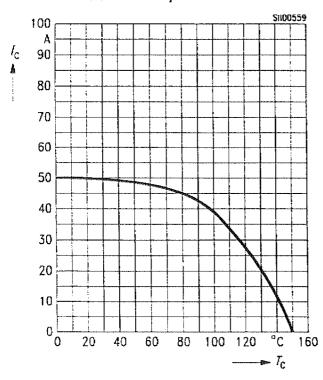
Power dissipation

 $P_{\text{tot}} = f(T_{\text{C}})$


parameter: T_j ≤ 150 °C

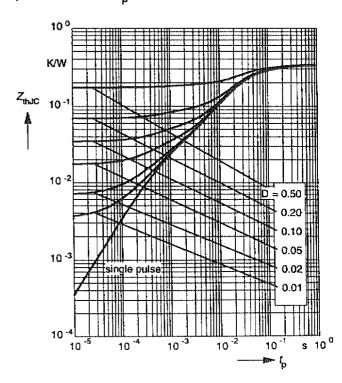
Safe operating area

 $I_{\rm C} = f(V_{\rm CE})$


parameter: D = 0, $T_{\rm C} = 25 {\rm ^{\circ}C}$, $T_{\rm j} \le 150 {\rm ^{\circ}C}$

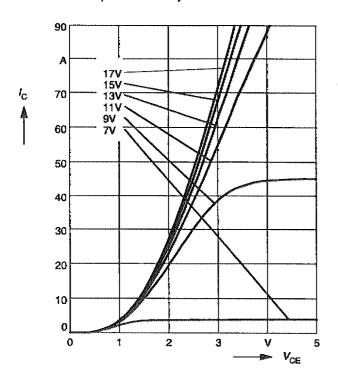
Collector current

 $I_{\rm C} = f(T_{\rm C})$


parameter: $V_{\text{GE}} \ge 15 \text{ V}$, $T_{\text{i}} \le 150 \text{ °C}$

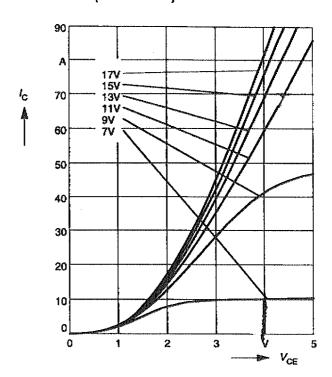
Transient thermal impedance IGBT

 $Z_{\text{th JC}} = f(t_{\text{p}})$


parameter: $D = t_p / T$

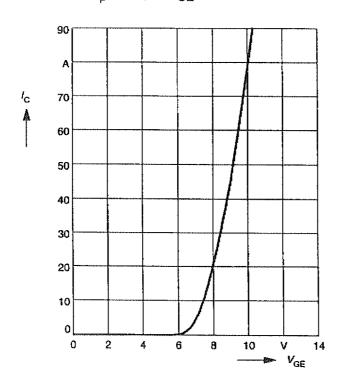
Typ. output characteristics

 $I_C = f(V_{CE})$


parameter: $t_p = 80 \mu s$, $T_j = 25 °C$

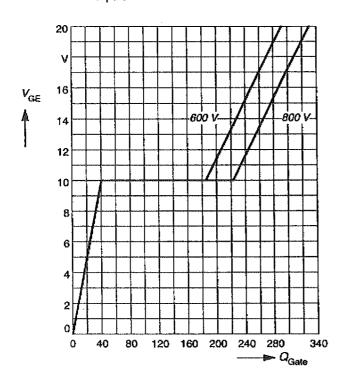
Typ. output characteristics

 $I_C = f(V_{CE})$


parameter: $t_p = 80 \mu s$, $T_i = 125 °C$

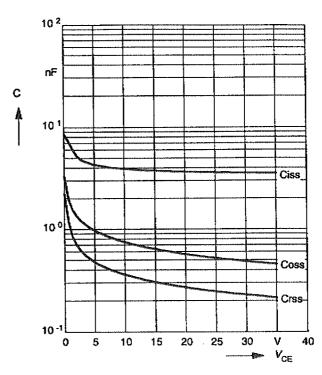
Typ. transfer characteristics

 $I_C = f(V_{GE})$

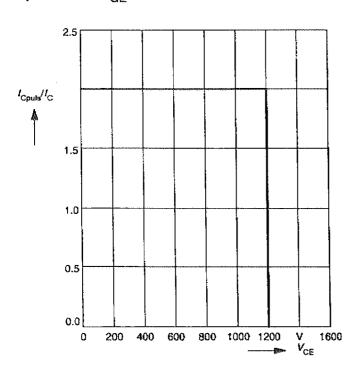

parameter: $t_p = 80 \mu s$, $V_{CE} = 20 V$

Typ. gate charge

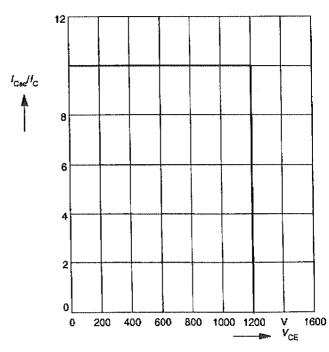
 $V_{GE} = f(Q_{Gate})$


parameter: $I_{C puls} = 50 A$

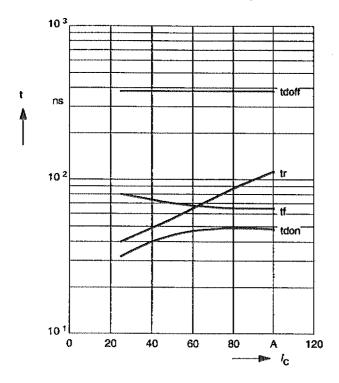
Typ. capacitances


 $C = f(V_{CE})$

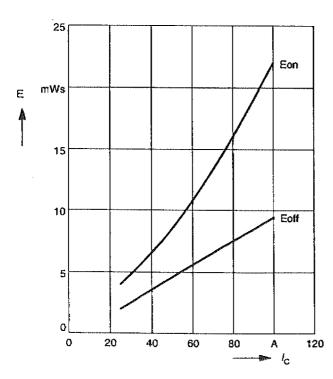
parameter: $V_{GE} = 0 \text{ V, f} = 1 \text{ MHz}$


Reverse biased safe operating area

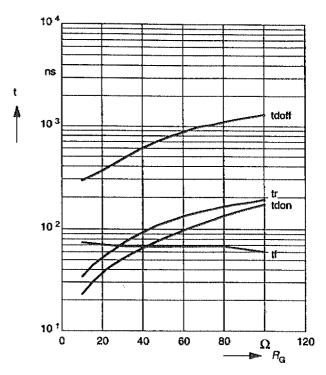
 $I_{Cpuls} = f(V_{CE})$, $T_j = 150$ °C parameter: $V_{GE} = 15$ V


Short circuit safe operating area

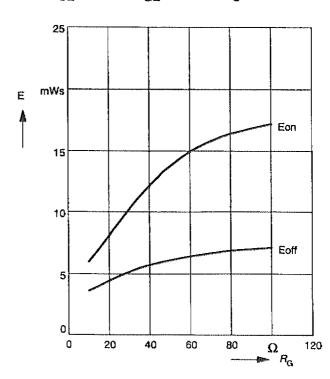
 $I_{Csc} = f(V_{CE})$, T $_{\rm j} = 150 ^{\rm o}{\rm C}$ parameter: $V_{\rm GE} = \pm~15$ V, $t_{\rm SC} \le 10~\mu{\rm s}$, L < 50 nH


Typ. switching time

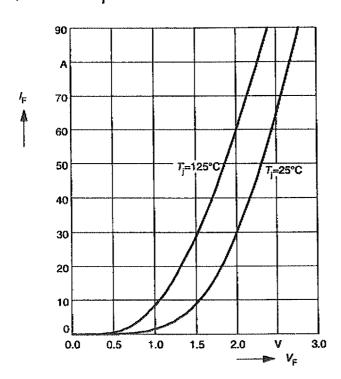
I=f (I_C) , inductive load , T_j = 125°C par.: $V_{\rm CE}$ = 600 V, $V_{\rm GE}$ = \pm 15 V, $R_{\rm G}$ = 22 Ω


Typ. switching losses

 $E = f(I_C)$, inductive load , $T_j = 125^{\circ}C$ par.: $V_{CE} = 600$ V, $V_{GE} = \pm 15$ V, $R_G = 22$ Ω

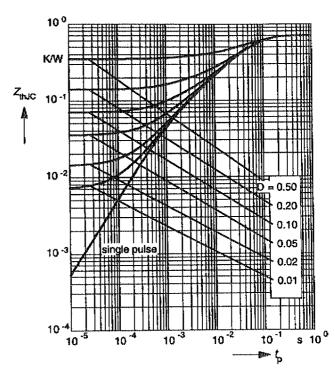

Typ. switching time

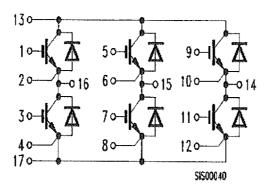
t=f (R_G) , inductive load , $T_j=125^{\circ}{\rm C}$ par.: $V_{\rm CE}=600$ V, $V_{\rm GE}=\pm15$ V, $I_{\rm C}=50$ A


Typ. switching losses

 $E = f(R_G)$, inductive load, $T_j = 125^{\circ}C$ par.: $V_{CE} = 600V$, $V_{GE} = \pm 15$ V, $I_C = 50$ A

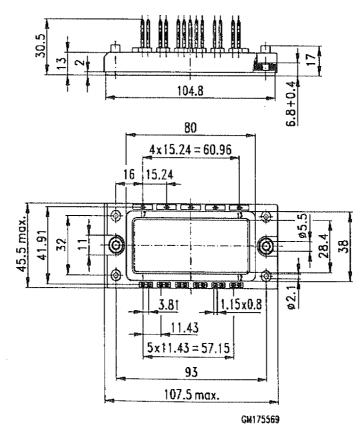
Forward characteristics of fast recovery reverse diode $I_F = f(V_F)$


parameter: T_i


Transient thermal impedance Diode

$$Z_{\text{th JC}} = f(t_{\text{p}})$$

 $Z_{\text{th JC}} = f(t_{\text{p}})$ parameter: $D = t_{\text{p}} / T$


Circuit Diagram

Package Outlines

Dimensions in mm

Weight: 180 g

Terms & Conditions of Usage

Attention

The present product data is exclusively subscribed to technically experienced staff. This Data Sheet is describing the specification of the products for which a warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its specifications. Changes to the Data Sheet are reserved.

You and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application. Should you require product information in excess of the data given in the Data Sheet, please contact your local Sales Office via "www.eupec.com / sales & contact".

Warning

Due to technical requirements the products may contain dangerous substances. For information on the types in question please contact your local Sales Office via "www.eupec.com / sales & contact".