FANUC I/O Unit-MODEL A

CONNECTION AND MAINTENANCE MANUAL

B-61813E/04

- No part of this manual may be reproduced in any form.
- All specifications and designs are subject to change without notice.

In this manual we have tried as much as possible to describe all the various matters. However, we cannot describe all the matters which must not be done, or which cannot be done, because there are so many possibilities.

Therefore, matters which are not especially described as possible in this manual should be regarded as "impossible".

This manual contains the program names or device names of other companies, some of which are registered trademarks of respective owners. However, these names are not followed by [®] or TM in the main body.

DEFINITION OF WARNING, CAUTION, AND NOTE

This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

Applied when there is a danger of the user being injured or when there is a damage of both the user being injured and the equipment being damaged if the approved procedure is not observed.

Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE

The Note is used to indicate supplementary information other than Warning and Caution.

- Read this manual carefully, and store it in a safe place.

PREFACE

Applicable models

This manual describe the following products:

Name of products	Abbreviation
FANUC I/O Unit-MODEL A	I/O Unit-A

Applicable CNCs

Name of products	Abbreviation
FANUC Power Mate	Power Mate
FANUC Series 0 (MODEL C)	Series 0-C
FANUC Series 15	Series 15
FANUC Series 16	Series 16
FANUC Series 18	Series 18
FANUC Series 20	Series 20
FANUC Series 21	Series 21
FANUC SYSTEM F-MODEL D Mate	F-D Mate
FANUC Power Mate <i>i</i>	Power Mate <i>i</i>
FANUC Series 0 <i>i</i>	Series 0 <i>i</i>
FANUC Series 15 <i>i</i>	Series 15 <i>i</i>
FANUC Series 16 <i>i</i>	Series 16 <i>i</i>
FANUC Series 18i	Series 18 <i>i</i>
FANUC Series 20 <i>i</i>	Series 20 <i>i</i>
FANUC Series 21 <i>i</i>	Series 21 <i>i</i>
FANUC Series 30 <i>i</i>	Series 30 <i>i</i>
FANUC Series 31 <i>i</i>	Series 31 <i>i</i>
FANUC Series 32 <i>i</i>	Series 32 <i>i</i>

Other related models

Name of products	Abbreviation
FANUC I/O Unit-MODEL B	I/O Unit-B

Abbreviations of manufacturer names used herein

This manual uses the following abbreviations for manufacturers of products such as connectors.

Manufacturer name	Abbreviation
Daito Communication Apparatus Co., Ltd.	Daito
Fujitsu Limited	Fujitsu
HIROSE ELECTRIC CO., LTD.	HIROSE ELECTRIC
HONDA TSUSHIN KOGYO CO., LTD.	HONDA TSUSHIN
Molex Incorporated	Molex
Nihon Weidmüller Co., Ltd.	Weidmüller
SORIAU JAPAN	SORIAU JAPAN
Tyco Electronics AMP K.K.	Tyco Electronics

TABLE OF CONTENTS

DEF	FINITIC	N OF	WARNING, CAUTION, AND NOTE	s-1
PRE	EFACE			p-1
I. C	ONNE		N	•
1	FANU		_ink	3
	1.1		GURATION	
	1.2	ALLOC	ATION OF I/O POINTS	5
2	I/O Ur	nit CON	IFIGURATION	7
3	INSTA		ION	8
	3.1	ENVIR	ONMENT FOR INSTALLATION	9
		3.1.1	Environmental Conditions outside the Cabinet	9
	3.2	DESIG	NING CONDITION FOR A CABINET	10
	3.3	OUTEF	R DIMENSION OF I/O Unit	11
	3.4	MOUN	TING AND DISMOUNTING MODULES	15
4	CONN	IECTIC	DN	16
	4.1	GENE	RAL CONNECTION DIAGRAM	17
	4.2	CONN	ECTING INPUT POWER SOURCE	18
	4.3	GROU	NDING	19
	4.4	REQUI	RED CURRENT	20
	4.5	INTER	FACE MODULE (AIF01A, AIF01A2, AIF01B)	21
	4.6	INTER	FACE MODULE (AIF02C) CONNECTION	24
		4.6.1	Overview	24
		4.6.2	Connection	25
		4.6.3	Setting with the DIP Switch	27
	4.7	CONN	ECTING WITH I/O MODULES	28
5	DIGIT	AL INF	PUT/OUTPUT MODULES	30
	5.1	LIST O	F MODULES	31
	5.2	CORRI	ESPONDENCE BETWEEN I/O SIGNALS AND ADDRESSES I	ΝA
		MODU	LE	34
		5.2.1	Module with 16/32 Digital Inputs (DI)	34
		5.2.2	Module with 5/8/12/16/32 Digital Outputs (DO)	
		5.2.3	AIO40A Module (Hybrid Module with 24 Input and 16 Output Points)	
	5.3	SPECI	FICATION FOR EACH MODULE	36

	5.4		ILS OF I/O Unit CONNECTORS (HONDA TSUSHIN/HIROSE	
		ELEC	TRIC) AND TERMINAL BLOCK (WEIDMÜLLER)	74
		5.4.1	Modules Using the MR-50RMA Connector Manufactured by Honda Tsus	hin75
		5.4.2	Modules Using the HIF3BB-50PA-2.54DS Connector Manufactured by	
			Hirose Electric	77
		5.4.3	Modules Using the HIF4-40P-3.18DS Connector Manufactured by	
			Hirose Electric	79
		5.4.4	Modules Using the Terminal Block BL3.5/24/90F Manufactured by	
			Weidmüller	80
6	ANAL		IPUT MODULE	81
	6.1		ANALOG INPUT MODULE (AAD04A)	
		6.1.1	Specifications	
		6.1.2	Correspondence between Input Signals and Addresses in a Module	
		6.1.3	Connecting with Analog Input Module	
	6.2	16-BIT	ANALOG INPUT MODULE (AAD04B)	
		6.2.1	Specifications	
		6.2.2	Correspondence between Input Signals and Addresses in a Module	
		6.2.3	Connecting with Analog Input Module	
7	ANAL	.0G 0	UTPUT MODULE	90
7	ANAL 7.1			
7			UTPUT MODULE ANALOG OUTPUT MODULE (ADA02A) Specification	91
7		12-BIT	ANALOG OUTPUT MODULE (ADA02A)	91 91
7		12-BIT 7.1.1	ANALOG OUTPUT MODULE (ADA02A) Specification Correspondence between Output Signals and Addresses in a Module	91 91 92
7		12-BIT 7.1.1 7.1.2 7.1.3	ANALOG OUTPUT MODULE (ADA02A)	91 91 92 93
7	7.1	12-BIT 7.1.1 7.1.2 7.1.3	ANALOG OUTPUT MODULE (ADA02A) Specification Correspondence between Output Signals and Addresses in a Module Connection to Analog Output Module	91
7	7.1	12-BIT 7.1.1 7.1.2 7.1.3 14-BIT	ANALOG OUTPUT MODULE (ADA02A) Specification Correspondence between Output Signals and Addresses in a Module Connection to Analog Output Module ANALOG OUTPUT MODULE (ADA02B)	91
7	7.1	12-BIT 7.1.1 7.1.2 7.1.3 14-BIT 7.2.1	ANALOG OUTPUT MODULE (ADA02A) Specification Correspondence between Output Signals and Addresses in a Module Connection to Analog Output Module ANALOG OUTPUT MODULE (ADA02B) Specification.	91
8	7.1 7.2	12-BIT 7.1.1 7.1.2 7.1.3 14-BIT 7.2.1 7.2.2 7.2.3	ANALOG OUTPUT MODULE (ADA02A) Specification Correspondence between Output Signals and Addresses in a Module Connection to Analog Output Module ANALOG OUTPUT MODULE (ADA02B) Specification Correspondence between Output Signals and Addresses in the Module Connection between the Analog Output Module and Load	91
-	7.1 7.2	12-BIT 7.1.1 7.1.2 7.1.3 14-BIT 7.2.1 7.2.2 7.2.3 -SPEE	ANALOG OUTPUT MODULE (ADA02A) Specification Correspondence between Output Signals and Addresses in a Module Connection to Analog Output Module ANALOG OUTPUT MODULE (ADA02B) Specification Correspondence between Output Signals and Addresses in the Module	91 92 93 93 94 94 95 96 97
-	7.1 7.2 HIGH	12-BIT 7.1.1 7.1.2 7.1.3 14-BIT 7.2.1 7.2.2 7.2.3 -SPEE OUTL	ANALOG OUTPUT MODULE (ADA02A) Specification Correspondence between Output Signals and Addresses in a Module Connection to Analog Output Module ANALOG OUTPUT MODULE (ADA02B) Specification Correspondence between Output Signals and Addresses in the Module Connection between the Analog Output Module and Load	91 92 93 93 94 94 95 96 97 98
-	7.1 7.2 HIGH 8.1	12-BIT 7.1.1 7.1.2 7.1.3 14-BIT 7.2.1 7.2.2 7.2.3 -SPEE OUTL	ANALOG OUTPUT MODULE (ADA02A) Specification Correspondence between Output Signals and Addresses in a Module Connection to Analog Output Module ANALOG OUTPUT MODULE (ADA02B) Specification Correspondence between Output Signals and Addresses in the Module Connection between the Analog Output Module and Load D COUNTER MODULE INE OF HIGH-SPEED COUNTER MODULE	91 92 93 93 94 94 95 96 97 98 98
-	7.1 7.2 HIGH 8.1	12-BIT 7.1.1 7.1.2 7.1.3 14-BIT 7.2.1 7.2.2 7.2.3 -SPEE OUTL SPEC	ANALOG OUTPUT MODULE (ADA02A) Specification Correspondence between Output Signals and Addresses in a Module Connection to Analog Output Module ANALOG OUTPUT MODULE (ADA02B) Specification Correspondence between Output Signals and Addresses in the Module Connection between the Analog Output Module and Load D COUNTER MODULE INE OF HIGH-SPEED COUNTER MODULE IFICATIONS OF HIGH-SPEED COUNTER MODULE	91 91 92 93 93 94 94 95 96 96 97 98 90 91
-	7.1 7.2 HIGH 8.1	12-BIT 7.1.1 7.1.2 7.1.3 14-BIT 7.2.1 7.2.2 7.2.3 -SPEE OUTL SPEC 8.2.1	ANALOG OUTPUT MODULE (ADA02A) Specification Correspondence between Output Signals and Addresses in a Module Connection to Analog Output Module ANALOG OUTPUT MODULE (ADA02B) Specification Correspondence between Output Signals and Addresses in the Module Connection between the Analog Output Module and Load D COUNTER MODULE INE OF HIGH-SPEED COUNTER MODULE IFICATIONS OF HIGH-SPEED COUNTER MODULE Pulse Counter	
-	7.1 7.2 HIGH 8.1	12-BIT 7.1.1 7.1.2 7.1.3 14-BIT 7.2.1 7.2.2 7.2.3 -SPEE OUTLI SPEC 8.2.1 8.2.2	ANALOG OUTPUT MODULE (ADA02A) Specification Correspondence between Output Signals and Addresses in a Module Connection to Analog Output Module ANALOG OUTPUT MODULE (ADA02B) Specification Correspondence between Output Signals and Addresses in the Module Connection between the Analog Output Module and Load D COUNTER MODULE INE OF HIGH-SPEED COUNTER MODULE IFICATIONS OF HIGH-SPEED COUNTER MODULE Pulse Counter Comparison Function	91 92 93 94 94 95 96 96 97 98 98 90 91 91
-	7.1 7.2 HIGH 8.1	12-BIT 7.1.1 7.1.2 7.1.3 14-BIT 7.2.1 7.2.2 7.2.3 -SPEE OUTL SPEC 8.2.1 8.2.2 8.2.3	ANALOG OUTPUT MODULE (ADA02A)	91 92 93 93 94 94 95 96 97 97 98 98 100 100 102 102 105

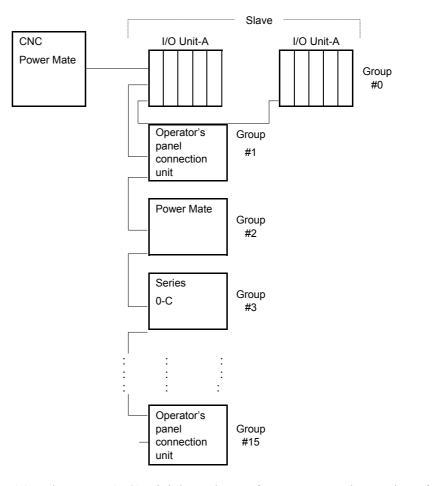
9

	8.2.7	LED indicators	107
8.3	PMC	INTERFACE	109
	8.3.1	Mode A	
	8.3.2	Mode B	111
	8.3.3	Details of PMC Interface Signals	114
8.4	ΤΟΤΑ	L CONNECTION OF HIGH-SPEED COUNTER MODULE	117
	8.4.1	Connection Diagram	117
	8.4.2	Connector Signal List	117
		8.4.2.1 C49 signal (for mode A)	
		8.4.2.2 C49 signal (for mode B)	
8.5	CON	NECTION WITH PULSE GENERATOR	119
	8.5.1	Use of Phase A and B Pulses	119
	8.5.2	Use of Positive/Negative Pulses	120
8.6	CON	NECTION WITH MACHINE (POWER MAGNETICS CABINET)	121
	8.6.1	Use in Mode A	121
	8.6.2	Use in Mode B	122
8.7	I/O SI	GNALS CONVENTIONS	123
	8.7.1	Solid State Relay Output Signals (OUT0 to OUT7)	123
	8.7.2	DC Input Signals (ME and CSP)	124
	8.7.3	+5-V Output from JA9 Connector	124
8.8	SUPF	PLEMENT	125
	8.8.1	Configuration of Mode A	125
	8.8.2	Counter Presetting and Counting	126
	8.8.3	Setting Data	129
	8.8.4	Reading Data	130
8.9	EXAM	IPLE OF STARTING UP ACT01A	131
	8.9.1	Mode A Startup Flowchart	131
	8.9.2	Example of Mode A Ladder	132
	8.9.3	Mode B Startup Flowchart	136
	8.9.4	Example of Mode B Ladder	137
TEM	PERAT	URE INPUT MODULE	144
9.1	OVEF	RVIEW	145
9.2		PERATURE INPUT MODULE SPECIFICATION	
9.3		INTERFACE	
	9.3.1	PMC I/O Area	
	9.3.2	Measurement Mode	
	9.3.3	Details of Output Signals (PMC \rightarrow Temperature Module)	

		9.3.4	Details of Input Signals (Temperature Module \rightarrow PMC)	
	9.4	COMF	PLETE CONNECTION OF TEMPERATURE INPUT MODULE.	
		9.4.1	Temperature Input Module Connection Diagram	
		9.4.2	Connector Signal Lists	
		9.4.3	Terminal Board Unit Connection Diagram	
	9.5		G CHARTS	
	9.6		UREMENT EXAMPLES	
	9.7	TERM	INAL BOARD UNIT DIMENSIONS	165
10	ΟΡΤΙΟ	CAL I/O	O Link ADAPTER	166
	10.1	EXTE	RNAL DIMENSION OF OPTICAL I/O Link	167
	10.2	WEIGI	HT OF OPTICAL I/O Link	167
	10.3	CONN	ECTION OF OPTICAL I/O Link	168
	10.4	POWE	R SOURCE OF OPTICAL I/O Link ADAPTER	169
	10.5	INSTA	LLATION CONDITIONS OF OPTICAL I/O Link ADAPTER	169
	10.6	CAUT	IONS FOR USING OPTICAL I/O Link ADAPTERS	170
		10.6.1	Configuring I/O Links Using Optical I/O Link Adapters	
		10.6.2	When Using Series 16 <i>i</i> /18 <i>i</i> /21 <i>i</i> -MODEL B as Master	171
		10.6.3	When Using Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -MODEL B as Master	
	10.7	OPTIC	AL FIBER CABLE	174
		10.7.1	External View of Optical Fiber Cable	174
		10.7.2	Notice of Optical Fiber Cable Handling	
		10.7.3	Optical Fiber Cable Clamping Method	
		10.7.4	Relay Using an Optical Fiber Junction Adapter	
		10.7.5	Maximum Transmission Distance by Optical Fiber Junction Cable	
11	I/O Li	nk DU	MMY UNIT	180
	11.1		VIEW	
	11.2	EXTE	RNAL DIMENSIONS	181
	11.3		NDICATORS	182
	11.4		НТ	
	11.5	POWE	R REQUIREMENTS	182
	11.6		LLATION CONDITIONS	
	11.7	CONN	ECTION DIAGRAMS	183
		11.7.1	When not Connecting FANUC I/O Link Dummy Units in Series	
		11.7.2	Connecting FANUC I/O Link Dummy Units in Series	
		11.7.3	Grounding	
		11.7.4	K3X Cable	

12	TWO-	CHANNEL I/O Link CONNECTOR ADAPTER	186
	12.1	OVERVIEW	187
	12.2	CONNECTION FOR USE OF TWO FANUC I/O Link CHANNELS	187
	12.3	CONNECTING THE CNC WITH TWO-CHANNEL I/O Link CONNECTOR	R
		ADAPTER	188
	12.4	CABLING	189
	12.5	CONNECTING TWO-CHANNEL I/O Link CONNECTOR ADAPTER TO	
		I/O Units FOR THE FANUC I/O Link	
	12.6	CABLE LENGTH	
	12.7	INSTALLING TWO-CHANNEL I/O Link CONNECTOR ADAPTER	190
	12.8	OUTSIDE DIMENSIONS OF TWO-CHANNEL I/O Link CONNECTOR	
	12.9	ADAPTER MOUNTING TWO-CHANNEL I/O Link CONNECTOR ADAPTER	
			-
13		E-CHANNEL I/O Link CONNECTOR ADAPTER	
	13.1		
	13.2	CONNECTION FOR USE OF FOUR FANUC I/O Link CHANNELS	194
	13.3	CONNECTING THE CNC WITH THREE-CHANNEL I/O Link	405
	13.4	CONNECTOR ADAPTER	
	13.4 13.5	ALLOCATING THREE-CHANNEL I/O Link CONNECTOR ADAPTER	195
	13.5	SIGNALS	106
	13.6	CONNECTING THREE-CHANNEL I/O Link CONNECTOR ADAPTER	130
	10.0	SIGNAL TO EACH CHANNEL	197
	13.7	CONNECTING THREE-CHANNEL I/O Link CONNECTOR ADAPTER	
		TO TWO-CHANNEL I/O Link CONNECTOR ADAPTER	199
	13.8	CONNECTING THREE-CHANNEL I/O Link CONNECTOR ADAPTER	
		TO I/O Units FOR THE FANUC I/O Link	200
	13.9	CABLE LENGTH	200
	13.10	INSTALLING THREE-CHANNEL I/O Link CONNECTOR ADAPTER	200
	13.11	OUTSIDE DIMENSIONS OF THREE-CHANNEL I/O Link CONNECTOR	
		ADAPTER	
	13.12	MOUNTING THREE-CHANNEL I/O Link CONNECTOR ADAPTER	202
14	SAFE	TY FOR USING AC	203
	14.1	ENVIRONMENT FOR INSTALLATION	204
		14.1.1 Installation Category (Overvoltage Category)	204
		14.1.2 Pollution Degree	204

II. MAINTENANCE


1	OVERVIEW			207	
	1.1	SYST	EM CONFIGURATION	208	
	1.2	I/O Ur	nit-A CONFIGURATION	209	
	1.3	BLOC	K DIAGRAM	210	
	1.4	I/O Ur	nit-MODEL A CONFORMING TO UL/C-UL	211	
	1.5	LIST OF UNITS			
		1.5.1	Units Conforming to UL/C-UL Standard: Ordering Information		
			A03B-0819-Jxxx	212	
		1.5.2	Other Units (not Conforming to UL/C-UL)	214	
		1.5.3	Early Units (Units not Conforming to UL/C-UL: Ordering Information		
			A03B-0807-Jxxx)	214	
2	INDI		Ν	216	
	2.1	INTEF	RFACE MODULE (AIF01A, AIF01A2) LED INDICATORS	217	
	2.2	INTERFACE MODULE (AIF01B) LED INDICATORS			
	2.3	INTEF	RFACE MODULE (AIF02C) LED INDICATORS	221	
		2.3.1	PWR Indicator	221	
		2.3.2	LNK Indicators	221	
		2.3.3	ER Indicators	221	
		2.3.4	LED Indicators	221	
		2.3.5	M/S Indicator	222	
		2.3.6	No. Indicators	223	
	2.4	LED II	NDICATORS ON THE INPUT/OUTPUT MODULES (HAVING 16		
		or fe	EWER INPUT/OUTPUT POINTS)	223	
3	FUS	ES		224	
4	REM	REMOVING PC BOARDS			
	4.1		TO REMOVE TERMINAL BOARD-TYPE I/O MODULE PC		
		BOAR	DS	226	
	4.2	HOW	TO REMOVE INTERFACE AND CONNECTOR-TYPE I/O		
		MODU	JLE PC BOARDS	228	

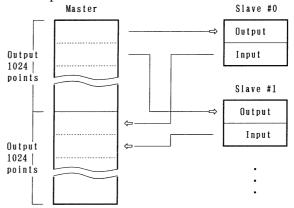
I. CONNECTION

FANUC I/O Link

I/O Link is a serial interface with a purpose to transfer I/O signals (bit data) between CNC, cell controller, the I/O Unit-MODEL A, the Power Mate and so on at high-speed.

1.1 CONFIGURATION

(1) The FANUC I/O Link is made up of one master and a number of slaves.


Master: Series0-C, Series15/16/18/20/21, Series15i/16i/18i/20i/21i/30i/31i/32i/0i, Power Mate-D/H, Power Mate *i*-D/H, F-D Mate Slave: I/O Unit-A, I/O Unit-B, Operator's panel connection unit, Connector panel I/O module, Power Mate, Series0-C, Servo unit β series (I/O Link option), and so on (2) Up to 16 groups of slaves can be connected with a single I/O Link. Number of slaves per one group is as follows. I/O Unit-B..... Up to 30 units (Basic unit, basic and extension units). Operator's panel I/O module 1 unit (1 basic module and extension modules (up to three) Operator's panel connection unit, connector panel I/O module, Power Mate, Series0-C, Servo unit β series (I/O Link option)1 unit (3) Any slave can be connected with any group. However, different

types of slaves cannot be connected with a single group.

1.2 ALLOCATION OF I/O POINTS

I/O Link has 1024 input points per 1 channel and 1024 output points per 1 channel as viewed from the master.

I/O data is periodically transferred between the master and slaves by allotting these I/O points to each slave.

Each slave can occupy as many I/O points as determined for it. For the I/O Link, the total number of I/O points occupied by all slaves per channel must meet:

Number of input points ≤ 1024

Number of output points ≤ 1024

Number of actual I/O points may differ from that of the occupied ones. How to determine the number of I/O points to be allotted to each slave and restrictions for allocation are shown in the followings.

(For the allocation method for I/O points, refer to the PMC PROGRAMMING MANUAL.)

 (1) Sum the numbers of the I/O points for all slaves connected with a single I/O Link. The sum must satisfy the following restriction : Number of input points ≤ 1024 (per one I/O Link)

Number of output points ≤ 1024 (per one I/O Link)

(2) Number of the occupied I/O points per one group must satisfy the following restriction :

Number of input points ≤ 256 (per one group)

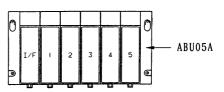
Number of output points ≤ 256 (per one group)

(3) Determine the number of I/O points for the I/O Unit-A using the following.

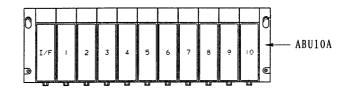
[Output points]		
Sum of the actual	Occupied output	
points in a group		points
0 to 32	\Rightarrow	32 points
40 to 64	\Rightarrow	64 points
72 to 128	\Rightarrow	128 points
136 to 256	\Rightarrow	256 points

NOTE

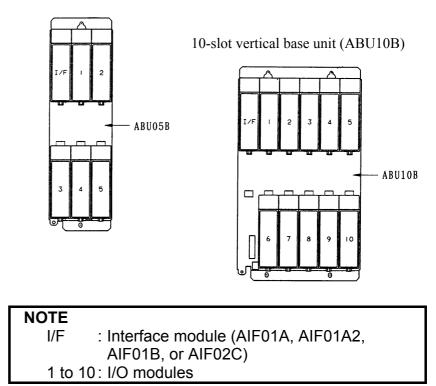
Count AOA05E as 8 points AOA12F as 16 points.


[Input points] Sum of the actual output Occupied output points in a group points 0 to 32 32 points \Rightarrow 40 to 64 64 points \Rightarrow 72 to 128 \Rightarrow 128 points 256 points 136 to 256 \Rightarrow

However, as result of the calculation above, when the number of input points is not larger than that of the output points in a single group, the number of input points is assumed to be equal to that of the output points.


Example 1 :	When the following modules are used in the group		
_	No. 0.		
	AOD32C 3 AID32A 5		
	AOA12F 2 AIA16G 3		
	[Output points]		
	$32 \times 3 + 16 \times 2 = 128 \Longrightarrow \underline{128 \text{ points}}$		
	[Input points]		
	$32 \times 5 + 16 \times 3 = 208 \Rightarrow 256 \text{ points}$		
Example 2:	When the following modules are used in the group		
_	No.2		
	AOD16C 7 AID16C 4		
	AOA05E 9 AIA16G 3		
	[Output points]		
	$16 \times 7 + 8 \times 9 = 184 \Longrightarrow 256 \text{ points}$		
	[Input points]		
	$16 \times 4 + 16 \times 3 = 112 \Longrightarrow \underline{128 \text{ points}}$		
	In this case, as the number of input points is not		
	larger than that of the output points, the number of		
	input points is assumed to be equal to that of the		
	output points, in other words, 256 points.		

2 I/O Unit CONFIGURATION


5-slot horizontal base unit (ABU05A)

10-slot horizontal base unit (ABU10A)

5-slot vertical base unit (ABU05B)

3 INSTALLATION

3.1 ENVIRONMENT FOR INSTALLATION

3.1.1 Environmental Conditions outside the Cabinet

The peripheral units and the control unit have been designed on the assumption that they are housed in closed cabinets. In this manual "cabinet" refers to the following:

- Cabinet manufactured by the machine tool builder for housing the control unit or peripheral units;
- Operation pendant, manufactured by the machine tool builder, for housing the LCD/MDI unit or operator's panel.
- Equivalent to the above.

The environmental conditions when installing these cabinets shall conform to the following table. Section 3.2 describes the installation and design conditions of a cabinet satisfying these conditions.

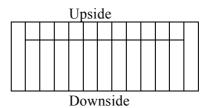
Ambient	Operating	0°C to 45°C	
temperature	Storage, Transport	-20°C to 60°C	
of the cabinet	Temperature change	0.3°C/minute or less	
	Normal	75%RH or less, no condensation	
Humidity	Short period	95%RH or less, no condensation	
	(less than 1 month)	95%RT OF less; no condensation	
Vibration	Operating	0.5G or less	
VIDIATION	Non-operating	1.0G or less	
Meters above	Operating	Up to 1000 m ^(Note)	
sea level	Non-operating	Up to 12000 m	
		Normal machine shop environment	
		(The environment must be considered if the	
Environment		cabinets are in a location where the density	
		of dust, coolant, organic solvent, and/or	
		corrosive gas is relatively high.)	

NOTE

If the CNC is installed 1000 m or higher above sea level, the allowable upper ambient temperature of the CNC in the cabinet is changed as follows.

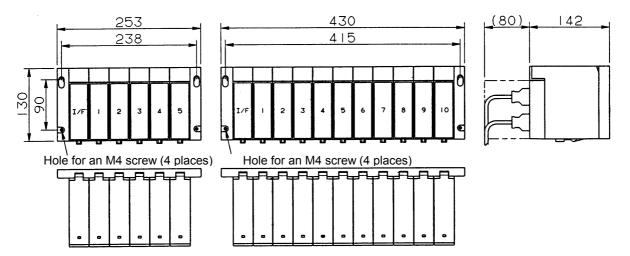
Assume that the allowable upper ambient temperature of the CNC in the cabinet installed 1000 m or higher above sea level decreases by 1.0°C for every 100 m rise in altitude.

Example)

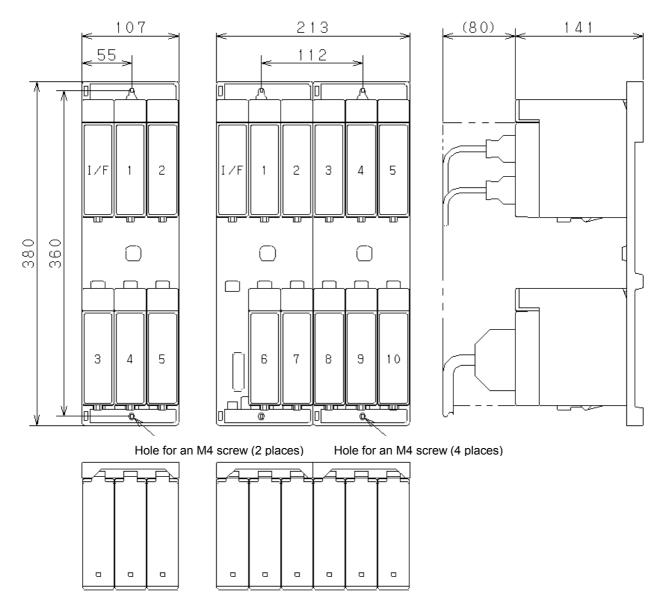

The upper allowable ambient temperature of the CNC in the cabinet installed 1750 m above sea level is: 55° C - $1750/100 \times 1.0^{\circ}$ C = 47.5° C

Therefore, the allowable ambient temperature range is from 0° C to 47.5° C.

3.2 DESIGNING CONDITION FOR A CABINET


When designing a cabinet to contain the I/O Unit-A, take the same care as taken for the cabinet containing the CNC control unit and other units. For details, refer to the CNC CONNECTION MANUAL. In addition, when mounting the I/O Unit, conform to the followings in view of maintenance, environmental durability, noise resistance and the like.

(1) In order to ventilate inside the module well, mount the I/O Unit in the direction shown in the figure below.



- (2) Separate each I/O Unit at least 100 mm vertically from the other units so as to ensure effective ventilation and make it easy to attach/detach wires and modules.
- (3) Do not put equipments which generate a large amount of heat under the I/O Unit.
- (4) Low-level signals are transferred through the signal cables K1X and K2X. (For these cables, see the general connection diagram.) Lay out these cables apart from the wires for AC power source and the I/O wires of the I/O module by 100 mm or more.
- (5) Make sure that there is no protruding portion such as a screw on the mounting surface of the I/O Unit.
- (6) Heat values of I/O Unit are listed in Table 3.3

3.3 OUTER DIMENSION OF I/O Unit

Horizontal base units (ABU05A and ABU10A)

Vertical base units (ABU05B and ABU10B)

* The ABU05B and ABU10B units that were shipped early on are housed in a metal case.

The distances between mounting holes for the metal case and their size are the same as for the plastic case used for the current units. However, the width of the metal case differs from that of the plastic case as listed below.

	ABU0	ABU05B		ABU10B	
	Plastic case	Metal case	Plastic case	Metal case	
Width	107mm	110mm	213mm	217mm	

*1 *2

*3

*4

*5

l abi	Table 3.3 Heat value and weight of each module			
Module name	Basic heat value (W)	Heat value per one I/O point (W)	Weight (g)	
ABU10A	-	-	600	
ABU10B	-	-	740	
ABU05A	-	-	350	
ABU05B	-	-	380	
AIF01A	1.2	-	300	
AIF01A2	1.2	-	300	
AIF01B	1.2	-	270	
AIF02C	1.2	-	300	
AID32A1	1.2	0.23	250	
AID32B1	1.2	0.23	250	
AID32H1	1.2	0.23	250	
AID16C	0.1	0.21	300	
AID16K	0.1	0.21	300	
AID16D	0.1	0.21	300	
AID16L	0.1	0.21	300	
AID32E1	0.1	0.23	220	
AID32E2	0.1	0.23	220	
AID32F1	0.1	0.23	220	
AID32F2	0.1	0.23	220	
AIA16G	0.1	0.21	300	
AOD32A1	0.3	-	220	
AOD08C	0.1	0.04+0.4×IL ²	380	
AOD08D	0.1	0.04+0.6×IL ²	380	
AOD08DP	0.1	0.04+0.1×IL ²	310	
AOD16C	0.1	0.04+1.4×IL ²	300	
AOD16D	0.1	0.04+1.4×IL ²	320	
AOD16D2	0.1	0.04+0.1×IL ²	320	
AOD16D3	0.1	0.04+0.1×IL ²	320	
AOD16DP	0.1	0.04+1.8×IL ²	310	
AOD32C1	0.1	0.01+0.8×IL ²	220	
AOD32C2	0.1	0.01+0.8×IL ²	220	
AOD32D1	0.1	0.01+0.8×IL ²	200	
AOD32D2	0.1	0.01+0.8×IL ²	200	
AOA05E	0.1	0.13+1.5×IL	370	
AOA08E	0.1	0.13+1.5×IL	370	
AOA12F	0.1	0.11+1.5×IL	320	
AOR08G	0.1	0.3+0.1×IL ²	300	
AOR16G	0.1	0.3+0.1×IL ²	350	
AOR16H2	0.1	0.3+0.1×IL ²	250	

Table 3.3 Heat value and weight of each module

0.2

3.1

3.1

3.1

3.1

4.1

4.0

4.0

-

-

0.23

0.01+1.3×IL

-

-

-

-

-

_

-

-

-

350

350

370

350

350

220

260

260

100

120

Input

Output

AIO40A

AAD04A

AAD04B

ADA02A

ADA02B

ACT01A

ATI04A

ATI04B

ATB01A

ATB01B

3.INSTALLATION

Module name	Basic heat value (W)	Heat value per one I/O point (W)	Weight (g)
Optical I/O Link adapter	-	-	100
I/O Link dummy unit	-	-	120

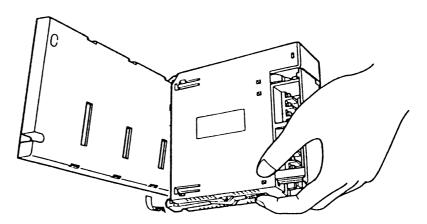
- Total 'Heat value per 1 I/O point' for simultaneous ON points plus 'Basic heat value' is the heat value of the module.
- IL : Load current of output

•

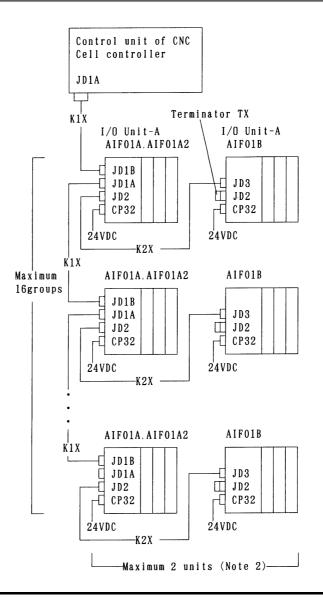
*1 to *7 : "AxD32x" produced to the old specification is equivalent to "AxD32x1" (with additional "1" at the end) produced to the current specification. (Example: Old specification AID32E \rightarrow AID32E1)

3.4 MOUNTING AND DISMOUNTING MODULES

Interface modules and various types of I/O modules can be mounted to and dismounted from the base unit easily as shown below.


Mounting

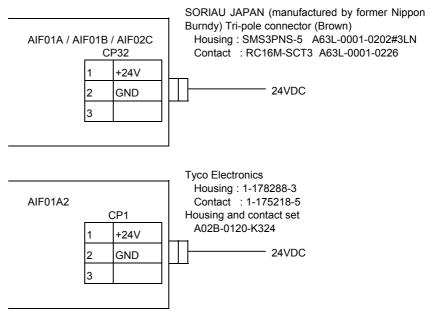
Hang the hook at the top of the module on the groove in the upper side of the base unit, and make the connector of the module engage with that of the base unit. Push the module in the lower groove of the base unit till the stopper in the lower side of the module stops.


Dismounting

Release the stopper by pushing the lever at the bottom of the module, and then push the module upwards.

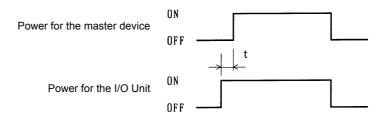
CONNECTION

4.1 GENERAL CONNECTION DIAGRAM


NOTE

- 1 Number of I/O Units and connecting method are restricted depending on the allocation of the I/O points. Refer to the section 1.2,"Allocation of I/O points."
- 2 If the master unit is the F-D Mate, one group can consist of up to four I/O Units.
- 3 Cable K1X can be an optical fiber cable by using the optical I/O link adapter. See chapter 10.
- 4 Terminator TX is required for connector JD2 of the AIF01B that is the last unit to be connected in the group. If no AIF01B is in use, no terminator has to be attached to the JD2 connector of the AIF01A or AIF01A2.

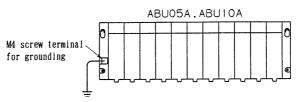
4.2 CONNECTING INPUT POWER SOURCE


Connect the following power source with the connector CP32 or CP1 of the interface module (AIF01A, AIF01A2, AIF01B, or AIF02C).

- Voltage: 24VDC $\pm 10\%$
- Current: Determine from Table 4.4

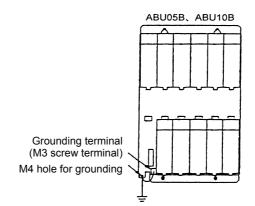
NOTE

Turn ON the power for the I/O Unit just when or before the power for the CNC or the cell controller is turned ON. When the CNC or cell controller power is turned OFF, make sure to turn the power to the I/O Unit OFF as well. If the power is not turned on and off according to the above procedure, an error occurs in the CNC or the controller, or the I/O Unit is not normally connected to the power.



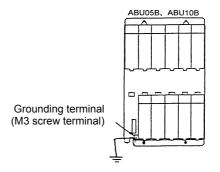
 $t \ge 500$ ms (Turn ON of the power for I/O Unit can be late 500 ms or less.)

4.3 GROUNDING


Connect the grounding terminal of the base unit (ABU05A, ABU05B, ABU10A, or ABU10B) to ground.

(1) Horizontal type base unit

Use a wire of 2 mm^2 or more for grounding.


- (2) Vertical type base unit
 - (a) For metal case (early shipment)

NOTE

Connect the grounding terminal to the grounding hole portion.

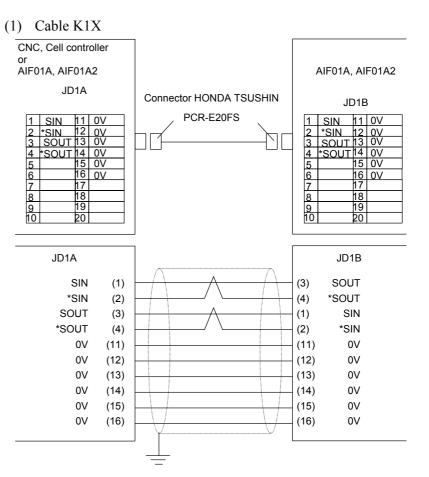
(b) For plastic case

(2) When the cable K1X (See overall connection figure in section 4.1) runs between different cabinets, make sure to connect the cabinets with a wire more than 5.5 mm².

4.4 REQUIRED CURRENT

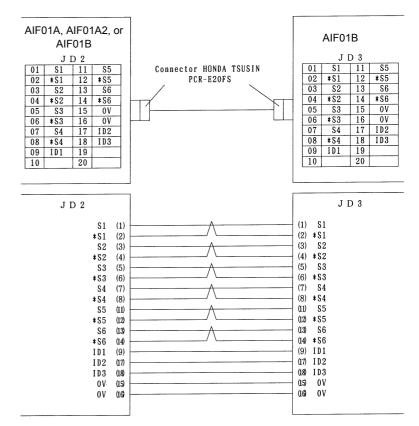
Table 4.4 Required current of each module				
Module name		Required current (mA) of+24V		
		Α	В	
AIF01A		50		
AIF01A2		50		
AIF01B		50		
	IF02C	50		
	D32A1	20+0.5×n	30+7.5×n	
AI	D32B1	20+0.5×n	30+7.5×n	
	D32H1	20+0.5×n	30+7.5×n	
	D16C	5		
	ID16K	5		
	D16D	5		
	ID16L	5		
	D32E1	5		
	D32E2	5		
	D32F1	5		
	D32F2	5		
	A16G	5+1.5×n		
	D32A1	14		
	DD08C	5+2×n		
	DD08D	5+2×n		
	D08DP	5+2×n		
	DD16C	5+2×n		
	DD16D	5+2×n		
	D16D2	5+2×n		
	D16D3	5+2×n		
	D16DP	5+2×n		
	D32C1	5+0.5×n		
	D32C2	5+0.5×n		
	D32D1	5+0.5×n		
	D32D2	5+0.5×n		
	DA05E	5+5.5×n		
	DA08E	5+5.5×n		
	DA12F	5+4.5×n	10	
AOR08G		5	10×n	
AOR16G AOR16H2		5	10×n 10×n	
AU		5 20+0.5×n	30+7.5×n	
AIO40A	Input Output	20+0.5×n 5+0.5×n	JU⊤7.J×II	
A		5+0.5×n	130	
AAD04A AAD04B		5	130	
AD04B ADA02A		6	130	
ADA02A ADA02B		6	130	
ACT01A		170+0.3×α	100	
ACTOTA ATI04A		62.5	100	
	TI04A TI04B	62.5	100	
		02.0		

Table 4.4 Required current of each module

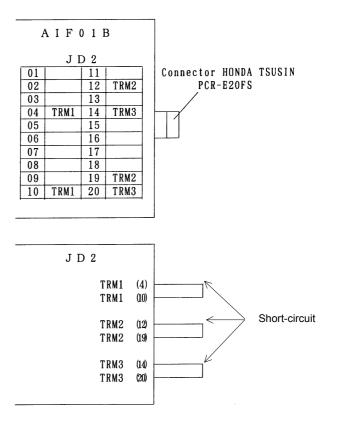

n: Number of the input and output points (for each module) which turn ON simultaneously

 α : +5-V current (mA) output to the outside

- Add the sums of the columns A and B for the modules to be used. The sum is the required current.(Unit: mA)
- For each base unit, keep the sum of column A and the sum of column B to within 500 mA and 1,500 mA, respectively.


4.5 INTERFACE MODULE (AIF01A, AIF01A2, AIF01B)

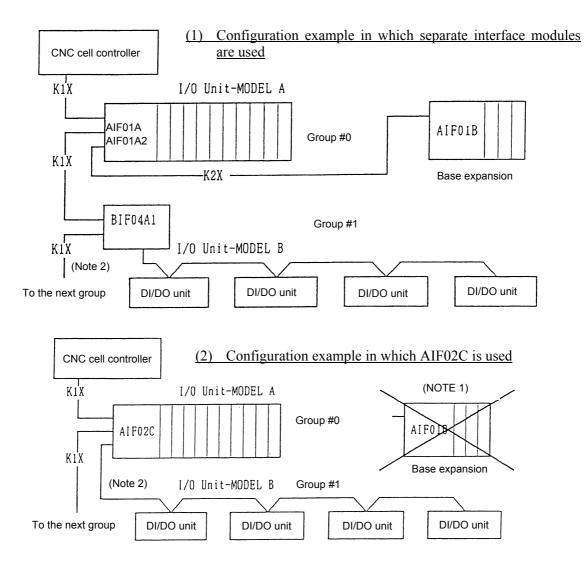
Details of the cables K1X, K2X and the terminator shown in the general connection diagram are as follows.


- (a) Make sure to use twisted pair wires for signal SIN and *SIN, and signals SOUT and *SOUT.
 - (i) Recommended cable material: A66L-0001-0284#10P (twisted pair/shielded)
 - (ii) Shielding wires should be connected with the grounding plate of the cabinet at the JD1A side using a cable clamp. (Refer to the CONNECTION MANUAL for the CNC and the cell controller.)
 - (iii) Maximum cable length: 10 m (15 m if used to connect I/O devices within the same cabinet)
 - (iv) Make sure not to connect to the connector spare pins.
 - (v) In the following cases, make sure to use an optical I/O link adapter and an optical fiber cable.(See Chapter 10)
 - When the cable is more than 10 meters long.
 - When the cable runs between different cabinets and there is no appropriate ground wire between the cabinets.
 - When there is concern that the cable is influenced by strong noise.

- (vi) When an optical I/O link adapter is used: Cable to be used between the interface module (AIF01A) and the optical I/O link adapter is dissimilar to this cable. (See Chapter 10.)
- (2) Cable K2X

- Connect the signals with a same name.
- Make sure to use twisted pair wires for the following signals: S1 and * S1, S2 and *S2, S3 and *S3
 - S4 and * S4, S5 and *S5, S6 and *S6 on not connect the pips No 10, No 19 and No 20 at
- Do not connect the pins No.10, No.19 and No.20 as they are used internally.
- Recommended cable material: A66L-0001-0284#10P (twisted pair/shielded)
- Maximum cable length: 2m

(3) Terminator TX Ordering information : A03B-0807-K806



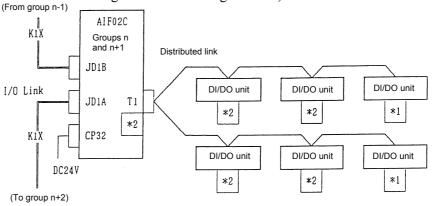
- If no AIF01B is in use, the TX terminator does not have to be attached to the JD2 connector of the AIF01A or AIF01A2.
- If at least one AIF01B is in use, attach the terminator to the JD2 connector of the last AIF01B in the same group.
- Short-circuit the TRM1s, the TRM2s and the TRM3s one another respectively in a manner that a TRM1 is with another TRM1 and so on.

4.6 INTERFACE MODULE (AIF02C) CONNECTION

4.6.1 Overview

One interface module (AIF02C) can control communication with both I/O Unit-A and Unit-B, when it is connected to the FANUC I/O Link. The following examples show a configuration in which two conventional separate interface modules, I/O Unit-A and I/O Unit-B, are used and a configuration in which the AIF02C is used.

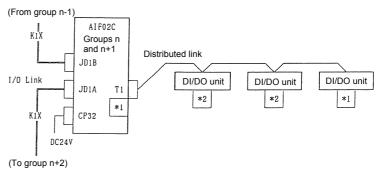
In this way, using the AIF02C eliminates the necessity for the interface unit (BIF04A1) for I/O Unit-B, which has conventionally been used separately; this configuration is suitable for a small I/O Unit-B system. Note the following points.


NOTE

- 1 The AIF02C cannot be used for base expansion.
- 2 The BIF04A1 can branch to a maximum of eight communication lines.

The AIF02C can branch only to a maximum of two distributed link cables.

4.6.2 Connection


- (1) Connection diagram
 - [a] Configuration with two distributed link cables (note the setting of the terminating resistor.)

NOTE

*1 Set the terminating resistor DIP switch to ON.*2 Set the terminating resistor DIP switch to OFF.

[b] Connection with one distributed link cable (note the setting of the terminating resistor.)

NOTE

- *1 Set the terminating resistor DIP switch to ON.
- *2 Set the terminating resistor DIP switch to OFF.

(2) Connection with the I/O Link

The AIF02C occupies two groups on the I/O Link.

When groups #n and #n+1 are used, for example, the smaller-numbered group, #n, is assigned to the I/O Unit-A, and the larger-numbered group, #n+1, is assigned to the I/O Unit-B.

[a] Connection of the I/O link cable
 Connect the I/O link cable from the previous group to JD1B.
 Connect JD1A to the I/O link cable leading to the next group.
 Use the K1X I/O link signal cable, the same I/O link signal cable type as that for the AIF01A.

[b] Number of occupied I/O points on the I/O link The nominal number of occupied I/O points may differ from the actual number of I/O points.

For the details of the number of I/O points occupied by the I/O Unit-B, refer to Section 4.3.1, "Number of points occupied on the interface unit I/O link," of the FANUC I/O Unit-B MODEL Connection Manual (B-62163E).

- (3) Connection with the distributed link (I/O Unit-B)
 - [a] Number of distributed communication lines

"T1" can connect to two communication lines (twisted-pair wires).

So, it is possible to branch to up to two lines.

To branch to more lines, you should use the I/O Unit-B interface unit (BIF04A1), which enables branching to up to eight communication lines.

[b] Terminal board "T1," used for connection with the distributed link cable

The distributed link cable is connected to "T1."

AIF02C		T1	
	1	S+	
	2	S-	
	3	FG	

- <1> Use twisted-pair wires as the distributed link cable.
- <2> The distributed link cable is polarity-sensitive. Match the signal polarity of the AIF02C with that of the basic unit.
- <3> The terminal board has M3 screws with a terminal cover.

Refer to Section 4.4, "Connecting a Distributed Link," and Section 4.6.2.2, "Connecting the communications cable," of the FANUC I/O Unit-MODEL B Connection Manual (B-62163E) for details.

4.6.3 Setting with the DIP Switch

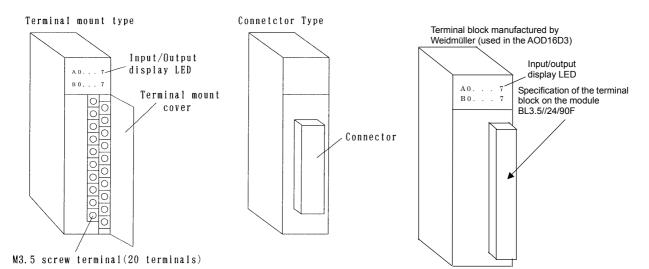
In the AIF02C, distributed link settings can be made with the DIP switch on the back of the module.

The settings and corresponding signals are shown below.

1		ר
2		Unused
3		J
4	EDSP	
5	Q	
6	Н	
7	URDY	
8	R	

- (1) EDSP (error display method selection) Normally, set EDSP to the ON position.
- (2) Q and H (communication speed setting) Normally, set both Q and H to the OFF positions.
- (3) URDY (setting of the power on/off information for the unit) Normally, set URDY to the OFF position.
- (4) R (terminating resistor setting)

The ON position means that a terminating resistor must be installed. The OFF position means that no terminating resistor need be installed.


When only one communication cable is connected to the AIF02C, terminate it and the basic unit at the end of the communication cable with a resistor.

When two communication cables are connected to the AIF02C, terminate the basic unit connected to the end of each communication cable with a resistor. Do not connect a terminating resistor to the AIF02C. (Refer to Section 4.6.2, "Connection.")

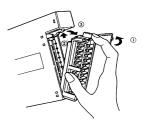
Refer to Section 5.1.1, "DIP switch setting," of the FANUC I/O Unit-MODEL B CONNECTION MANUAL (B-62163E).

4.7 CONNECTING WITH I/O MODULES

From the point of view of an external connecting method, there are two types of I/O modules such as one with a terminal block and one with a connector.

The following three different connectors can be used on the connector-type module.

Specification of the connector on the module	Module name
	AID32A1
	AID32B1
	AID32H1
Manufactured by HONDA TOUGHIN	AID32E1
Manufactured by HONDA TSUSHIN MR-50RMA	AID32F1
MIR-SURIMA	AOD32A1
	AOD32C1
	AOD32D1
	AIO40A
	AID32E2
Manufactured by LUDOOF FLEOTDIO	AID32F2
Manufactured by HIROSE ELECTRIC	AOD32C2
HIF3BB-50PA-2.54DS	AOD32D2
	AOR16H2
Manufactured by HIROSE ELECTRIC HIF4-40P-3.18DS	AOD16D2


- (1) Connect with each module following the connection diagrams of Sections 4.2 and 5.3.
- (2) The terminal block is a removable type.

[Dismounting the terminal block]

- <1> Open the cover of the terminal block.
- <2> Push up the latch at the top of the terminal block.
- <3> Drag out the tab at the top of the terminal block and pull it out. The terminal block will be removed from the module.

[Mounting the terminal block]

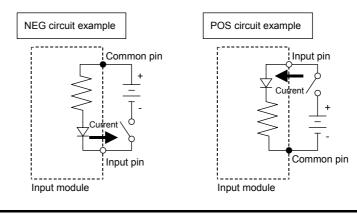
<1> Insert the protruding portion at the bottom of the terminal block in the groove of the module side.

- <2> Push the terminal block using the engaging point of the protruding portion and the groove as an axis and mount it in the module firmly.
- <3> Open the cover of the terminal block and check to make sure the latch at the top of the terminal block is firmly set.
- (3) Cautionary points when wiring terminal block type
 - Wiring material : AWG22 to $18 (0.3 \text{ to } 0.75 \text{ mm}^2)$
 - A wire as this as possible is recommended.
 - Crimp style terminal : M3.5

Crimp style terminal with no insulation sleeve and a short distance "A", as illustrated in the drawing below, is recommended.

DAIDO SOLDERLESS TERMINAL 1.25-S3.5 NICHIFU 1.25-3.5S etc.

- Mark tube : Use a short mark tube as possible and cover crimped part with the mark tube.
- Recommended tightening torque : 1 to 1.4 N·m
- (4) Wiring to the terminal block manufactured by Weidmüller
 - Wire with a cross section of 0.08 to 1.5 mm² (VDE)/AWG28 to AWG14 (UL/CSA)
 - Recommended tightening torque: 0.8 N·m
 - Size conformable when a ferrule (rod terminal) is used: 0.5 to 1.5 mm²


Peeling length: 6 mm

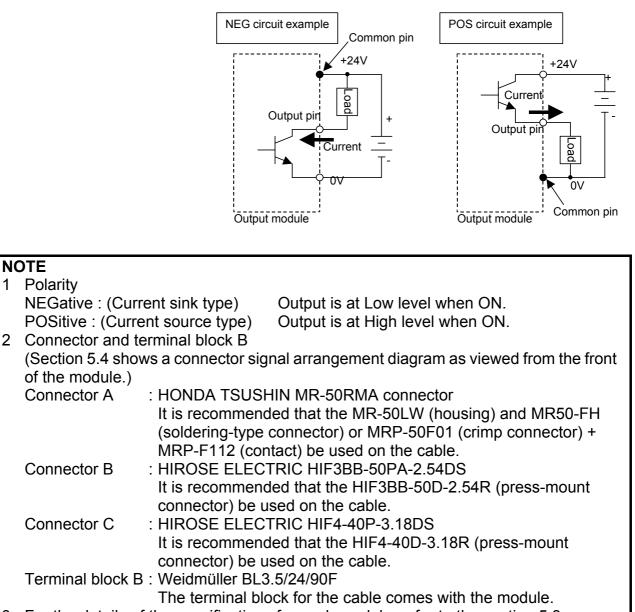
5 DIGITAL INPUT/OUTPUT MODULES

5.1 LIST OF MODULES

(1) Digital input modules

Input type	Module name	Rated voltage	Rated current	Polarity *1	Response time	Points	External connection *2	LED display
Non-	AID32A1	24VDC	7.5mA	Both	Maximum 20msec	32	Connector A	Not provided
insulation	AID32B1	24VDC	7.5mA	Both	Maximum 2msec	32	Connector A	Not provided
type DC input	AID32H1	24VDC	7.5mA	Both	Maximum 2msec Maximum 20msec	8 24	Connector A	Not provided
	AID16C	24VDC	7.5mA	NEG Maximum 20msec		16	Terminal block	Provided
	AID16K	24VDC	7.5mA	NEG	Maximum 2msec	16	Terminal block	Provided
Inculation	AID16D	24VDC	7.5mA	POS	Maximum 20msec	16	Terminal block	Provided
Insulation	AID16L	24VDC	7.5mA	POS	Maximum 2msec	16	Terminal block	Provided
type DC	AID32E1	24VDC	7.5mA	Both	Maximum 20msec	32	Connector A	Not provided
input	AID32E2	24VDC	7.5mA	Both	Maximum 20msec	32	Connector B	Not provided
	AID32F1	24VDC	7.5mA	Both	Maximum 2msec	32	Connector A	Not provided
	AID32F2	24VDC	7.5mA	Both	Maximum 2msec	32	Connector B	Not provided
AC input	AIA16G	100 to 120VAC	10.5mA (120VAC)	-	ON: Maximum 35msec OFF: Maximum 45msec	16	Terminal block	Provided

NOTE


1	Polarity
	NEGative : (Current source type, source type, or Nch)
	Regard to be ON when input is at Low level.
	POSitive : (Current sink type, sink type, or Pch)
	Regard to be ON when input is High level.
2	Connectors (Section 5.4 shows a connector signal arrangement diagram as viewed
	from the front of the module.)
	Connector A : HONDA TSUSHIN MR-50RMA connector
	It is recommended that the MR-50LW (housing) and MR50-FH
	(soldering-type connector) or MRP-50F01 (crimp connector) +
	MRP-F112 (contact) be used on the cable.
	Connector B : HIROSE ELECTRIC HIF3BB-50PA-2.54DS
	It is recommended that the HIF3BB-50D-2.54R (press-mount
	connector) be used on the cable.
3	For the details of the specifications for each module, refer to the section 5.3.

Output type	Module name	Rated voltage	Maximum current	Polarity *1	Points	Points/ common	External connection *2	LED display	Output protection
Non-insulation type DC output	AOD32A1	5 to 24VDC	0.3A	NEG	32	8	Connector A	Not provided	Not provided
	AOD08C		2A	NEG	8	8	Terminal block	Provided	Fuse
	AOD08D		2A	POS	8	8	Terminal block	Provided	Fuse
	AOD08DP		2A	POS	8	8	Terminal block	Provided	Output protection device
	AOD16C		0.5A	NEG	16	8	Terminal block	Provided	Not provided
	AOD16D		0.5A	POS	16	8	Terminal block	Provided	Not provided
	AOD16D2		2A	POS	16	4	Connector C	Provided	Not provided
Insulation type	AOD16D3	12 to 4VDC	2A	POS	16	4	Terminal block B	Provided	Fuse
DC output	AOD16DP	12 10 40 00	0.3A	POS	16	8	Terminal block	Provided	Output protection device
	AOD32C1		0.3A	NEG	32	8	Connector A	Not provided	Not provided
	AOD32C2		0.3A	NEG	32	8	Connector B	Not provided	Not provided
	AOD32D1		0.3A	POS	32	8	Connector A	Not provided	Not provided
	AOD32D2		0.3A	POS	32	8	Connector B	Not provided	Not provided
	AOA05 E	100 to	2A	-	5	1	Terminal block	Provided	Fuse
AC output	AOA08E	240VAC	1A	-	8	4	Terminal block	Provided	Fuse
	AOA12F	100 to 120VAC	0.5A	-	12	6	Terminal block	Provided	Fuse
	AOR08G	Maximum	4A	-	8	1	Terminal block	Provided	Not provided
RELAY output	AOR16G	250VAC / 30VDC	2A	-	16	4	Terminal block	Provided	Not provided
	AOR16H2	30VDC	2A	-	16	4	Connector B	Provided	Not provided

(2) Digital output modules

(3) Digital input/output hybrid module

Input/output type	Module name	Rated voltage	Specification	Polarity *1	Points	Points/ common	External connection *2	LED display	Output protection
Non-insulation type DC input		24VDC	Current rating: 7.5 mA Response time: 20 ms (maximum)	Both	24	24	Connector A (shared by input	Not provided	Not provided
Non-insulation type DC output		24VDC	Maximum current: 0.2 A/point and 2A for common		16	16	and output signals)	provided	

- 3 For the details of the specifications for each module, refer to the section 5.3.
- 4 The maximum current of the DC output module includes the permissible rush current.

5.2 CORRESPONDENCE BETWEEN I/O SIGNALS AND ADDRESSES IN A MODULE

The term "address in a module" refers to an address allocated within each DI/DO module and relative to the start address (Xm, Yn) of the module.

5.2.1 Module with 16/32 Digital Inputs (DI)

				_ Inpu	t bits 🗕				
Address in the module	 7	6	5	4	3	2	1	 0	
Xm	A7	A6	A5	A4	A3	A2	A1	A0	DI module of
Xm+1	B7	B6	B5	B4	B3	B2	B1	B0	16 points
Xm+2	C7	C6	C5	C4	C3	C2	C1	C0	DI module of
Xm+3	D7	D6	D5	D4	D3	D2	D1	D0	32 points

When a contact connected to an input of an input module is closed, the corresponding input signal becomes "1".

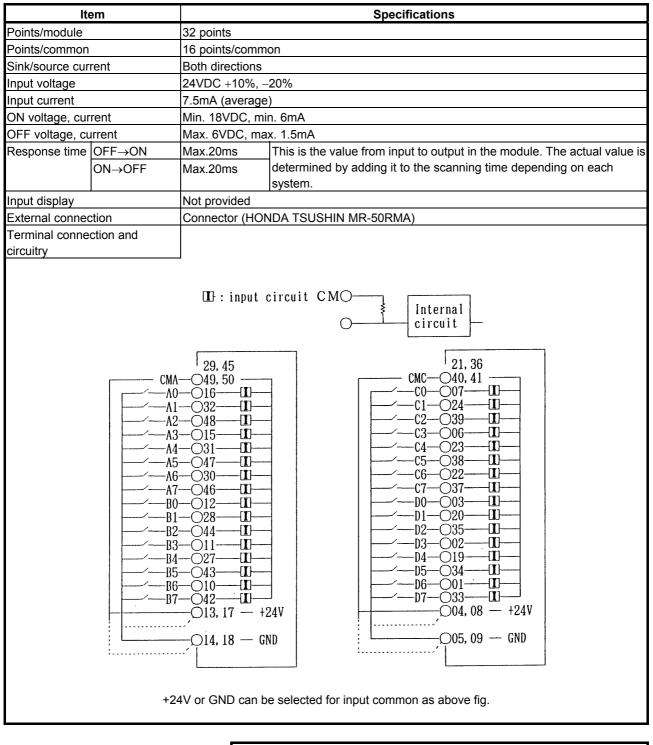
5.2.2 Module with 5/8/12/16/32 Digital Outputs (DO)

				- Outpu	ıt bits _				
Address in the module	 7	6	5	4	3	2	1	 0	DO module of 5
Yn	A7	A6	A5	A4	A3	A2	A1	A0	DO module of 12
Yn+1	B7	B6	B5	B4	B3	B2	B1	В0	and 16 points
Yn+2	C7	C6	C5	C4	C3	C2	C1	C0	DO module of
Yn+3	D7	D6	D5	D4	D3	D2	D1	D0	32 points

When the output signal from an output module is "1", the corresponding output contact (or transistor) is closed.

5.2.3 AIO40A Module (Hybrid Module with 24 Input and 16 Output Points)

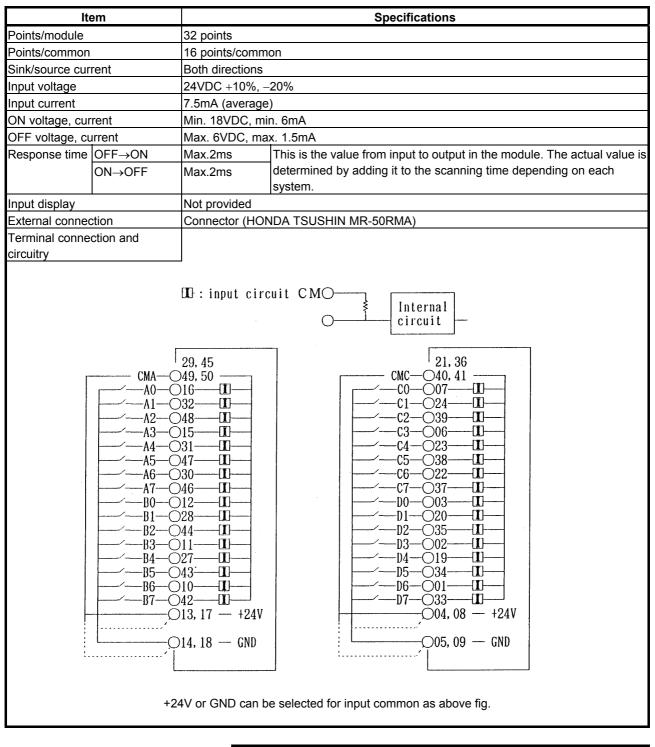
The allotment of this module requires 4 input and 2 output bytes. Input byte 4 (Xm + 3) is invalid.


Input section	[_ Input	bits _			
Address in the	7	6	5	4	3	2	1	0
module Xm	A7	A6	A5	A4	A3	A2	A1	A0
Xm+1	B7	B6	B5	B4	B3	B2	B1	B0
Xm+2	C7	C6	C5	C4	C3	C2	C1	C0
Xm+3	_	_	_	_	-	-	_	—
Output section				_ Outpu	it bits _			
Address in the	7	6	5	4	3	2	1	0
module Yn	D7	D6	D5	D4	D3	D2	D1	D0
Yn+1	E7	E6	E5	E4	E3	E2	E1	E0

5.3 SPECIFICATION FOR EACH MODULE

Specifications for the module are shown in the following pages.

(1)	Input module	AID32A1
(2)	Input module	AID32B1
(3)	Input module	AID32H1
(4)	Input module	AID16C
(5)	Input module	AID16K
(6)	Input module	AID16D
(7)	Input module	AID16L
(8)	Input module	AID32E1
(9)	Input module	AID32E2
(10)	Input module	AID32F1
(11)	Input module	AID32F2
(12)	Input module	AIA16G
(13)	Output module	AOD32A1
(14)	Output module	AOD08C
(15)	Output module	AOD08D
(16)	Output module	AOD08DP
(17)	Output module	AOD16C
(18)	Output module	AOD16D
(19)	Output module	AOD16D2
(20)	Output module	AOD16D3
(21)	Output module	AOD16DP
(22)	Output module	AOD32C1
(23)	Output module	AOD32C2
(24)	Output module	AOD32D1
(25)	Output module	AOD32D2
(26)	Output module	AOA05E
(27)	Output module	AOA08E
(28)	Output module	AOA12F
(29)	Output module	AOR08G
(30)	Output module	AOR16G
(31)	Output module	AOR16H2
(32)	Input/output module	AIO40A


(1) Input module AID32A1 (Non-insulation type)

NOTE

Make sure to connect all common (CMA, CMC) pins.
 This module outputs +24 V on pins 13, 17, 04, and 08.

(2) Input module AID32B1 (Non-insulation type)

NOTE

Make sure to connect all common (CMA, CMC) pins.
 This module outputs +24 V on pins 13, 17, 04, and 08.

CONNECTION5.DIGITAL INPUT/OUTPUT MODULES

(3) Input module AID32H1

Item Specifications							
Points/module	32 points						
Points/common	16 points/common						
Sink/source current	Both directions						
Input voltage	24VDC +10%, -20%						
Input current	7.5mA (average)						
ON voltage, current	Min. 18VDC, min. 6mA						
OFF voltage, current	Max. 6VDC, max. 1.5m/	A					
Response time OFF→ON	Max.2ms (A0 to A7)	This is the value from input to output in the module. The actual					
	Max.20ms (B0 to D7)	value is determined by adding it to the scanning time depending					
ON→OFF	Max.2ms (A0 to A7)	on each system.					
	Max.20ms (B0 to D7)						
Input display	Not provided						
External connection	Connector (HONDA TS	USHIN MR-50RMA)					
Terminal connection and							
circuitry							
+24	$\begin{array}{c} 29, 45 \\ -0.049, 50 \\ -0.06 \\ -$	circuit 21, 36 $10^{$					

Make sure to connect all common (CMA, CMC) pins.
 This module outputs +24 V on pins 13, 17, 04, and 08.

(4) Input module AID16C

ltem		Specifications
Points/module		16 points
Points/common		16 points/common
Sink/source current		Source current type
Input voltage		24VDC +10%, -20%
Input current		7.5mA (average)
ON voltage, curi	rent	Min. 15VDC, min. 4mA
OFF voltage, cu	rrent	Max. 5VDC, max. 1.5mA
Response time	OFF→ON	Max.20ms This is the value from input to output in the module. The actual value is
	ON→OFF	Max.20ms determined by adding it to the scanning time depending on each system.
Input display		LED display
External connec	tion	Terminal block connector (20 terminals, M3.5 screw terminal)
Terminal connect	ction and	
circuitry		
		$H = \begin{pmatrix} A_1 - 3 & A_2 & A_3 & B_1 & A_4 & B_1 & A_4 & B_1 & A_5 & B_1 & A_6 & B_1 & A_7 & B_0 & B_1 & B_1 & B_1 & B_1 & B_1 & B_1 & B_2 & B_2 & B_3 & B_3 & B_4 & B_4 & B_1 & B_4 & B_4 & B_1 & B_6 & $

(5) Input module AID16K

Specifications
16 points
16 points/common
Source current type
24VDC +10%, -20%
7.5mA (average)
Min. 15VDC, min. 4mA
Max. 5VDC, max. 1.5mA
Max.2ms This is the value from input to output in the module. The actual value is
Max.2ms determined by adding it to the scanning time depending on each system.
LED display
Terminal block connector (20 terminals, M3.5 screw terminal)
$ \begin{array}{c} $
+ 1 - A6 - B - D - D - D - A7 - 9 - D - D - B0 - 0 - D - D - B1 - 0 - D - D - B2 - 0 - D - B2 - 0 - D - B2 - 0 - D - B3 - 0 - D - D - B3 - 0 - D - D - B3 - 0 - D - D - D - B3 - 0 - D - D - D - D - D - D - D - D - D
ID: input circuit LED ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

NOTE

(6) Input module AID16D

Item		Specifications
Points/module		16 points
Points/common		16 points/common
Sink/source current		Sink current type
Input voltage		24VDC +10%, -20%
Input current		7.5mA (average)
ON voltage, cur	rent	Min. 15VDC, min. 4mA
OFF voltage, cu	urrent	Max. 5VDC, max. 1.5mA
Response time	OFF→ON	Max.20ms This is the value from input to output in the module. The actual value is
	ON→OFF	Max.20ms determined by adding it to the scanning time depending on each system.
Input display		LED display
External connect	ction	Terminal block connector (20 terminals, M3.5 screw terminal)
Terminal conne	ction and	
circuitry		
		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$
		NOTE

(7) Input module AID16L

Item Points/module Points/common Sink/source current nput voltage	Specifications 16 points 16 points/common Sink current type Sink current type
Points/common Sink/source current nput voltage	16 points/common Sink current type
Sink/source current	Sink current type
nput voltage	
	24VDC +10%, -20%
nput current	7.5mA (average)
DN voltage, current	Min. 15VDC, min. 4mA
DFF voltage, current	Max. 5VDC, max. 1.5mA
Response time OFF→ON	Max.2ms This is the value from input to output in the module. The actual value is
ON→OFF	Max.2ms determined by adding it to the scanning time depending on each system.
nput display	LED display
External connection	Terminal block connector (20 terminals, M3.5 screw terminal)
erminal connection and	
ircuitry	

NOTE

(8) Input module AID32E1

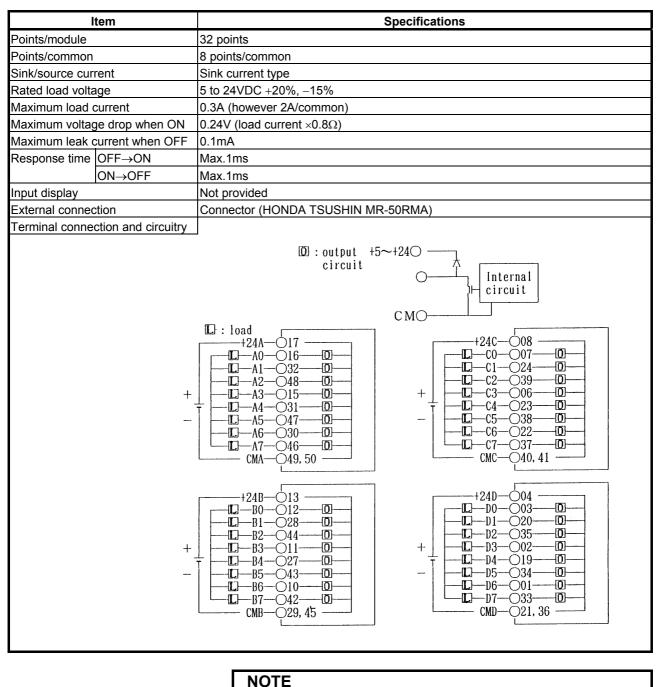
Item	Specifications
Points/module	32 points
Points/common	8 points/common
Sink/source current	Both directions
Input voltage	24VDC +10%, -20%
Input current	7.5mA (average)
ON voltage, current	Min. 15VDC, min. 4.5mA
OFF voltage, current	Max. 6VDC, max. 2mA
Response time OFF→ON	Max.20ms This is the value from input to output in the module. The actual value is
ON→OFF	Max.20ms determined by adding it to the scanning time depending on each system.
Input display	Not provided
External connection	Connector (HONDA TSUSHIN MR-50RMA)
Terminal connection and	
circuitry	
	$\begin{array}{c} \textbf{II}: \text{ input circuit CMO} \\ \hline \textbf{II}: \hline$

(9) Input module AID32E2

Item	Specifications
Points/module	32 points
Points/common	8 points/common
Sink/source current	Both directions
Input voltage	24VDC +10%, -20%
Input current	7.5mA (average)
ON voltage, current	Min. 15VDC, min. 4.5mA
OFF voltage, current	Max. 6VDC, max. 2mA
Response time OFF→ON	Max.20ms This is the value from input to output in the module. The actual value is
ON→OFF	Max.20ms determined by adding it to the scanning time depending on each system.
Input display	Not provided
External connection	Connector (HIROSE ELECTRIC HIF3BB-50PA-2.54DS in accordance with MIL
	standard)
Terminal connection and	
circuitry	
	$\begin{array}{c} \textbf{ID}: \text{ input circuit } \textbf{CM} \\ \hline \\ $
	$ \begin{array}{c} CMB - OA18, B18 \\ \hline B0 - OB17 - TD \\ \hline B1 - OA17 - TD \\ \hline B2 - OB16 - TD \\ \hline B3 - OA16 - TD \\ \hline B4 - OB15 - TD \\ \hline B5 - OA15 - TD \\ \hline B6 - OB14 - TD \\ \hline B7 - OA14 - TD \\ \hline B7 -$

(10) Input module AID32F1

ltem	Specifications			
Points/module	32 points			
Points/common	8 points/common			
Sink/source current	Both directions			
Input voltage	24VDC +10%, -20%			
Input current	7.5mA (average)			
ON voltage, current	Min. 15VDC, min. 4.5mA			
OFF voltage, current	Max. 6VDC, max. 2mA			
Response time OFF→ON	Max.2ms This is the value from input to output in the module. The actual value is			
ON→OFF	Max.2ms determined by adding it to the scanning time depending on each system.			
Input display	Not provided			
External connection	Connector (HONDA TSUSHIN MR-50RMA)			
Terminal connection and				
circuitry				
	$\begin{array}{c} \textbf{II}: \text{ input circuit CMO} \\ \hline \\ $			
	$\begin{array}{c} CMB - 029, 45 \\ -B0 - 012 - 11 \\ -B1 - 028 - 11 \\ -B2 - 044 - 11 \\ -B3 - 011 - 11 \\ -B4 - 027 - 11 \\ -B5 - 043 - 11 \\ -B6 - 010 - 11 \\ -B7 - 042 - 11 \\ $			


(11) Input module AID32F2

ltem	Specifications
Points/module	32 points
Points/common	8 points/common
Sink/source current	Both directions
Input voltage	24VDC +10%, -20%
Input current	7.5mA (average)
ON voltage, current	Min. 15VDC, min. 4.5mA
OFF voltage, current	Max. 6VDC, max. 2mA
Response time OFF→ON	Max.2ms This is the value from input to output in the module. The actual value is
ON→OFF	Max.2ms determined by adding it to the scanning time depending on each system.
Input display	Not provided
External connection	Connector (HIROSE ELECTRIC HIF3BB-50PA-2.54DS in accordance with MIL
	standard)
Terminal connection and	
circuitry	
	$ \begin{array}{c} \\ \hline \\ $

(12) Input module AIA16G

Item	Specifications
Points/module	16 points
Points/common	16 points/common
Sink/source current	100 to 115VAC ±15%
Input voltage	132Vrms, 50/60 Hz
Input current	10.55mArms (120VAC, 50Hz)
ON voltage, current	Min. 74Vrms, min. 6mArms
OFF voltage, current	Max. 20Vrms, max. 2.2mArms
Response time OFF→ON	Max.35ms This is the value from input to output in the module. The actual value is
ON→OFF	Max.45ms determined by adding it to the scanning time depending on each system.
Input display	LED display
External connection	Terminal block connector (20 terminals, M3.5 screw terminal)
Common	16 points/common
Terminal connection and	
circuitry	
	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ $

(13) Output module AOD32A1 (Non-insulation type)

For the common (CMA, CMB, CMC, CMD), make sure to use both of them.

(14) Output module AOD08C

ltem	Specifications
Points/module	8 points
Points/common	8 points/common
Sink/source current	Sink current type
Rated load voltage	12 to 24VDC +20%, -15%
Maximum load current	2A (however 4A/fuse)
Maximum voltage drop when ON	0.8V (load current $\times 0.4\Omega$)
Maximum leak current when OFF	0.1mA
Response time OFF→ON	Max.2ms This is the value from input to output in the module. The actual value is
ON→OFF	Max.2ms determined by adding it to the scanning time depending on each system.
Input display	LED display
External connection	Terminal block connector (20 terminals, M3.5 screw terminal)
Fuse	5A, 1 piece for each output A0-A3 and A4-A7.
Terminal connection and circuitry	
(D) : Ou ci	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$

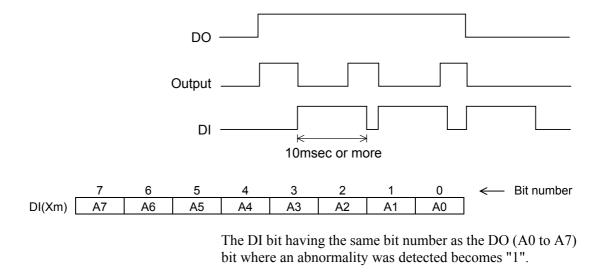
(15) Output module AOD08D

Item			Specifications
Points/module		8 points	
		8 points/con	nmon
Sink/source cur	rent	Source curre	ent type
Rated load volta	age	12 to 24VD0	C +20%, -15%
Maximum load	current	2A (howeve	r 4A/fuse)
Limit of load		Refer to loa	d derating curve (Fig. 5.3(a))
Maximum voltag	ge drop when ON	1.2V (load c	surrent $\times 0.6\Omega$)
Maximum leak o	current when OFF	0.1mA	
Response	OFF→ON	Max.2ms	This is the value from input to output in the module. The actual value is
Time	ON→OFF	Max.2ms	determined by adding it to the scanning time depending on each system.
Output display		LED display	
External connect	ction	Terminal blo	ock connector (20 terminals, M3.5 screw terminal)
Fuse		5A, 1 piece	for each output A0-A3 and A4-A7.
Terminal conne	ction and circuitry		
			$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$
⊡ : Outpu circu			

(16) Output module AOD08DP

ltem	Specifications
Points/module	8 points
Points/common	8 points/common
Sink/source current	Source current type
Rated load voltage	12 to 24VDC +20%, -15%
Maximum load current	2A (however 8A/common)
Output current limit	2.8A (Min.)
Maximum voltage drop when ON	0.18V (load current $\times 0.09\Omega$)
Maximum leak current when OFF	0.1mA
Response OFF→ON	Max.2ms This is the value from input to output in the module. The actual value is
Time ON→OFF	Max.2ms determined by adding it to the scanning time depending on each system.
Output display	LED display
External connection	Terminal block connector (20 terminals, M3.5 screw terminal)
Terminal connection and circuitry	
	$ \begin{array}{c} 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$

• AOD08DP output protection


The internal circuit of this output module can detect a load overcurrent and driver temperature. To be specific, if the load current increases abnormally, for example, because of a wiring ground fault, the internal limiter of the driver suppresses the output current. If this condition lasts long, the driver can get abnormally hot, thus causing the protection circuit to turn off the output. After the output is turned off and the driver temperature becomes lower, the protection function is automatically reset to turn on the output; this OFF/ON operations are repeated.

When the overheat protection circuit works to turn off the output, the LED "F" on the front of the module lights red.

If the protection circuit turns off the output, the output module can detect which DO has encountered the abnormality, using a DI. This function can be allocated to any DI address (1 byte). If an abnormality is detected, the DI bit corresponding to the DO of interest switches between "1" and "0". The DI bit stays "1" for at least 10 ms.

If the protection function worked, turn off the power for both the DO and system, and remove the cause of the overload.

The following timing chart shows how the output and DI behave when the output protection function works.

NOTE An overcurrent prolonged, for example, because of a wiring ground fault may lead to the break-down of a module. To avoid this failure, build a sequence program that can turn off the DO corresponding to the bit number of the DI bit which has been set to "1" because of a failure detected on the driver.

(17) Output module AOD16C

Item	Specifications
Points/module	16 points
Points/common	8 points/common
Sink/source current	Sink current type
Rated load voltage	12 to 24VDC +20%, -15%
Maximum load current	0.5A (however 2A/common)
Maximum voltage drop when ON	0.7V (load current ×1.4Ω)
Maximum leak current when OFF	0.1mA
Response time OFF→ON	Max.2ms This is the value from input to output in the module. The actual value is
ON→OFF	Max.2ms determined by adding it to the scanning time depending on each system.
Output display	LED display
External connection	Terminal block connector (20 terminals, M3.5 screw terminal)
Terminal connection and circuitry	
	$ \begin{array}{c} $

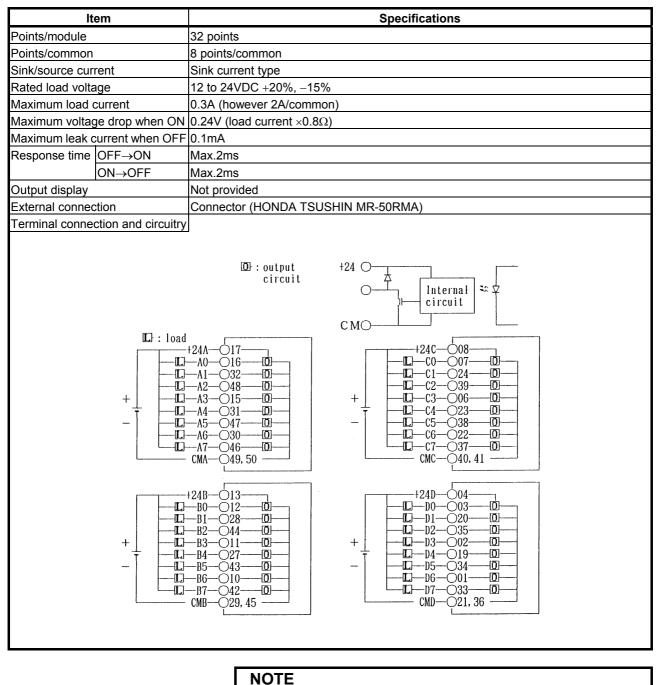
B-61813E/04

(18) Output module AOD16D

ltem	Specifications
Points/module	16 points
Points/common	8 points/common
Sink/source current	Source current type
Rated load voltage	12 to 24VDC +20%, -15%
Maximum load current	0.5A (however 2A/common)
Maximum voltage drop when ON	0.7V (load current ×1.4 Ω)
Maximum leak current when OFF	0.1mA
Response time OFF→ON	Max.2ms This is the value from input to output in the module. The actual value is
ON→OFF	Max.2ms determined by adding it to the scanning time depending on each system.
Output display	LED display
External connection	Terminal block connector (20 terminals, M3.5 screw terminal)
Terminal connection and circuitry	
D: : outp	$+ \qquad \qquad$

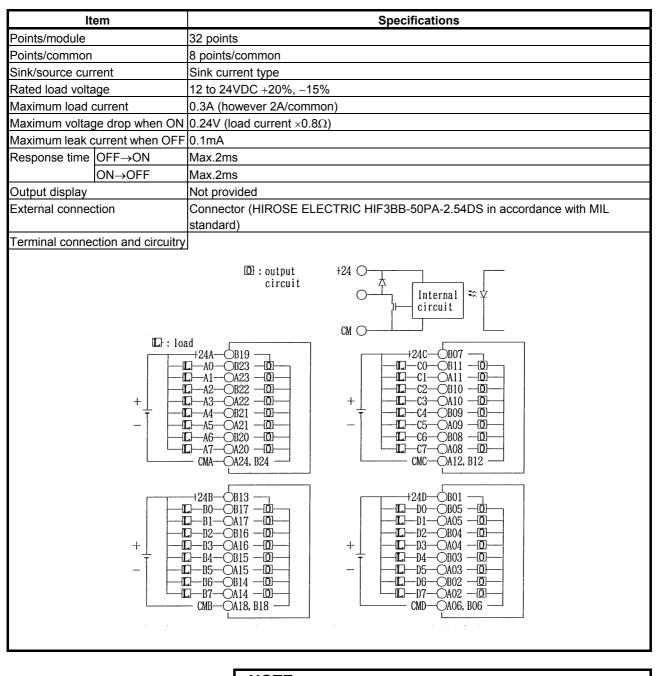
(19) Output module AOD16D2

Item	Specifications
Points/module	16 points
Points/common	4 points/common
Sink/source current	Source current type
Rated load voltage	12 to 24VDC +20%, -15%
Maximum load current	2A (4A/common)
Maximum voltage drop when ON	
Maximum leak current when OFF	
Response time OFF→ON	Max.2ms This is the value from input to output in the module. The actual value is
ON→OFF	Max.2ms determined by adding it to the scanning time depending on each system.
Output display	LED display
External connection	Connector (HIROSE ELECTRIC HIF4-40P-3.18DS)
Terminal connection and circuitry	γ
	$+ \qquad \qquad$
	$-\boxed{1}$
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	\square
	○D1,52 ○A10,B8,B9,B10
	$+ \qquad \qquad$
	OA11,B11,B12,B13
	+ D B D D D D D D D D D D
	- L $B1$ O II :Load
	- D B2 D A14 D D
	$\square \square $
	□OB14,B15 -
	OA16,B16,B17,B18
	+ B4 $-$ OA17 $-$ O $ -$ O $-$ O O $-$ O O $-$ O O $-$ O O O O O O O O O O O O O O O O O O O
	$-\overline{\mathbf{L}} \qquad B5 \longrightarrow OA18 \longrightarrow O$
	$\begin{array}{c c} - & & \\ \hline \\ \hline$
	O: Output circuit
	A5,B3,B4,B5 O
	Output terminal

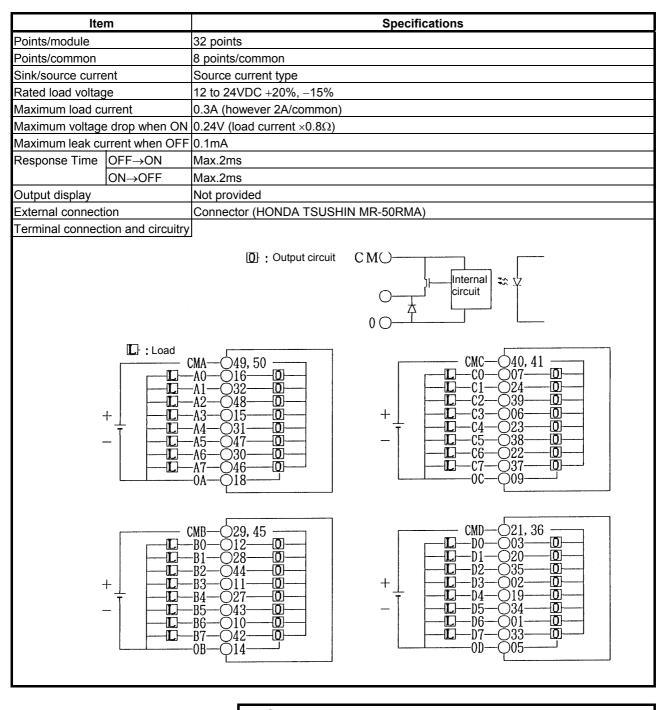

(20) Output module AOD16D3

Item	Specifications
Points/module	16 points
Points/common	4 points/common
Sink/source current	Source current type
Rated load voltage	12 to 24VDC +20%, -15%
Maximum load current	2A (4A/common)
Maximum voltage drop when ON	
Maximum leak current when OFF	
Response time OFF→ON	Max.2ms This is the value from input to output in the module. The actual value is
ON→OFF	Max.2ms determined by adding it to the scanning time depending on each system.
Output display	LED display
External connection	24-pin terminal block (BL3.5/24/90F) manufactured by Weidmüler
	Conformable wire (maximum): 1.5 mm ² (VDE)/AWG 14 (UL/CSA)
	Note: The terminal block for the cable comes with this module.
Fuse	One 5A fuse for each of output sets A0 to A3, A4 to A7, B0 to B3, and B4 to B7
	MP50 (A60L-0001-0046#5.0) manufactured by Daito.
	Ordering information for a 4-fuse set: A03B-0819-K104
Terminal connection and circuitry	
	+ L $A1 - 3 - 0$
	A35
	Fuse 5A
	$+ \begin{array}{c} - L \\ - R5 \\ - 9 \\ - $
	□A70
	Fuse 5A
	$+$ $B0$ $B1$ \overline{D} \overline{D} \overline{L} :Load
	□ <u>L</u> <u>B</u> 3 <u>0</u>
	Fuse 5A
	$+ \boxed{\mathbf{L}} \qquad B4 \qquad 0 \qquad $
	□ B7 B7 □
	O: Output circuit
	\heartsuit

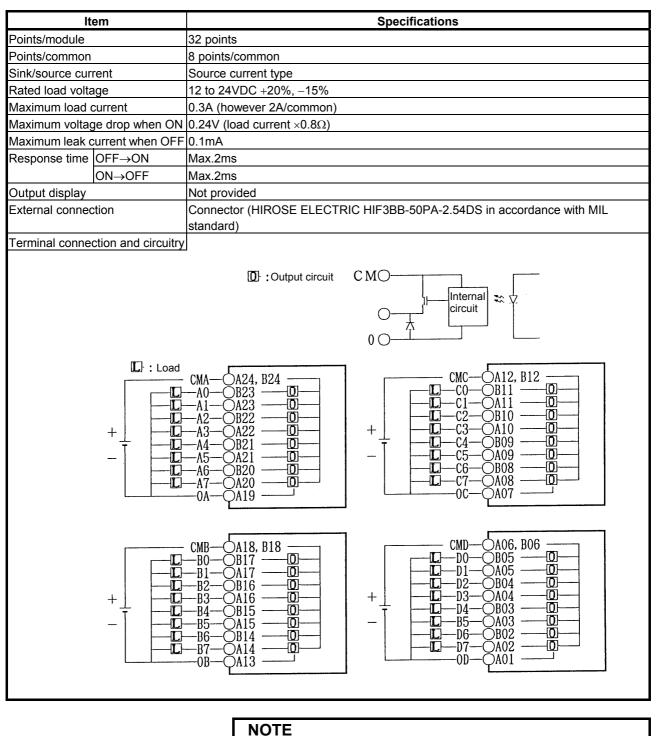
(21) Output module AOD16DP


Item	Specifications
Points/module	16 points
Points/common	8 points/common
Sink/source current	Source current type
Rated load voltage	12 to 24VDC +20%, -15%
Maximum load current	0.3A (2.4A/common)
	0.5A (2A/common)
	See the "Load reduction curve" shown in Fig. 5.3 (f).
Maximum voltage drop when ON	I 0.63V (load current ×1.25Ω)
Maximum leak current when OFF	⁻ 40μA
Response time OFF→ON	Max.2ms This is the value from input to output in the module. The actual value is
ON→OFF	Max.2ms determined by adding it to the scanning time depending on each system.
Output display	LED display
External connection	Connector (20 terminals, M3.5 screw terminal)
Terminal connection and circuitry	y
	$+ \underbrace{L}_{A1} \underbrace{A0}_{A1} \underbrace{0}_{A1} \underbrace{0}_{A1} \underbrace{0}_{A2} \underbrace{0}_{A1} \underbrace{0}_{A1} \underbrace{0}_{A2} \underbrace{0}_{A1} \underbrace{0}_{A1} \underbrace{0}_{A2} \underbrace{0}_{A3} \underbrace{0}_{A3} \underbrace{0}_{A4} \underbrace{0}_{A3} \underbrace{0}_{A4} \underbrace{0}_{A5} \underbrace{0}_{A6} \underbrace{0}_{A5} \underbrace{0}_{A6} \underbrace{0}_{A6} \underbrace{0}_{A6} \underbrace{0}_{A7} \underbrace{0}_{B1} \underbrace{0}_{A7} \underbrace$
	O: Output circuit
	Output terminal □ □ □ □ □ □ □ □ □ □ □ □
be specific, if the load curre of a cable ground fault or a some reason, the protection keep the output of the DO o	butput module can detect a load overcurrent. To ent increases abnormally, for example, because an internal DO driver is abnormally heated for on circuit for the DO driver (4-point unit) works to driver turned off until the cause is removed. tion function works, the LED "F" on the module

(22) Output module AOD32C1


For the common (CMA, CMB, CMC, CMD), make sure to use both of them.

(23) Output module AOD32C2


NOTE For the common (CMA, CMB, CMC, CMD), make sure to use both of them.

(24) Output module AOD32D1

NOTE For the common (CMA, CMB, CMC, CMD), make sure to use both of them.

(25) Output module AOD32D2

For the common (CMA, CMB, CMC, CMD), make sure to use both of them.

B-61813E/04

(26) Output module AOA05E

Iten	n	Specifications			
Points/module		5 points			
Points/common		1 points/common			
Rated load voltage	e	100 to 230VAC ±15%, 47 to 63Hz			
Maximum load cu	rrent	2A/point (however 5A/module)			
Maximum rush cu	rrent	25A (1 period)			
Limit of load		Refer to load derating curve (Fig. 5.3 (b))			
Maximum voltage	drop when ON	1.5Vrms			
		3.0mA (115VAC), 6.0mA (230VAC)			
Response time O	FF→ON	Max.1ms This is the value from input to output in the module. The actual value			
0	N→OFF	Half of the load is determined by adding it to the scanning time depending on each			
		frequency or less system.			
Output display		LED display			
External connection	on	Terminal block connector (20 terminals, M3.5 screw terminal)			
Fuse		3.2A, 1 piece for each output A0 to A4			
	۵	$ \begin{array}{c} & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & $			

(27) Output module AOA08E

Item	Specifications			
Points/module	8 points			
Points/common	4 points/common			
Rated load voltage	100 to 230VAC ±15%, 47 to 63Hz			
Maximum load current	1A/point (however 2A/common)			
Maximum in rush current	10A (1 period)			
Maximum voltage drop when ON	1.5Vrms			
Maximum leak current when OFF	3.0mA (115VAC), 6.0mA (230VAC)			
Response time OFF→ON	Max.1ms This is the value from input to output in the module. The actual value			
ON→OFF	Half of the load is determined by adding it to the scanning time depending on each			
	frequency or less system.			
Output display	LED display			
External connection	Terminal block connector (20 terminals, M3.5 screw terminal)			
Fuse	3.2A, 1 piece for each output A0 to A3 and A4 to A7			
Terminal connection and circuitry				
	$ \begin{array}{c} Load \\ $			

(28) Output module AOA12F

Item			Specifications		
Points/module		12 points			
Points/common		6 points/common			
Rated load volta	ige	100 to 115VAC ±15%, 47 to	63Hz		
Maximum load o	current	0.5A/point (however, 2A/com	mon)		
Maximum in rus	h current	5A (1 period)			
Limit of load		Refer to load derating curve	(Fig. 5.3 (c))		
Maximum voltag	e drop when ON	1.5Vrms			
Maximum leak c	urrent when OFF	1.5mA (115VAC)			
Response time	OFF→ON	Max.1ms This is the	e value from input to output in the module. The actual value		
	ON→OFF	Half of the load is determ	ined by adding it to the scanning time depending on each		
		requency or less system.			
Output display		_ED display			
External connect	tion	Terminal block connector (20	terminals, M3.5 screw terminal)		
Fuse		3.2A, 1 piece for each output	A0 to A5 and B0 to B5		
Terminal connect	ction and circuitry				
		$ \begin{array}{c} $			

(29) Output module AOR08G

lte	em	Specifications			
Points/module		8 points			
Points/common		1 points/common			
Maximum load		30VDC/250VAC, 4A (resistance load)			
Minimum load		5VDC, 10mA			
Limit of load		Refer to load derating curve (Fig. 5.3 (d))			
Maximum voltag	e drop when ON	1.5Vrms			
Maximum leak c	urrent when OFF	1.5mA (115VAC)			
Response time	OFF→ON	Max.15ms This is the value from input to output in the module. The actual value is			
	ON→OFF	Max.15ms determined by adding it to the scanning time depending on each system.			
Output display		LED display			
External connec	tion	Terminal block connector (20 terminals, M3.5 screw terminal)			
Relay life	Mechanical	Min. 20,000,000 times			
	Electrical	Min. 100,000 times (resistance load)			
Terminal connect	ction and circuitry				
		()			

(30) Output module AOR16G

	4 points/common			
30VDC/250	VAC, 2A (resistance load)			
5VDC, 10m	A			
4A/common				
Refer to loa	d derating curve (Fig. 5.3 (e))			
	This is the value from input to output in the module. The actual value is			
OFF Max.15ms	determined by adding it to the scanning time depending on each system.			
LED display	1			
Terminal blo	ock connector (20 terminals, M3.5 screw terminal)			
	0 times (resistance load)			
	$\begin{array}{c c} & & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline \hline \\ \hline & & & \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$			
(1	4A/common Refer to loa →ON Max.15ms OFF Max.15ms LED display Terminal blo anical Min. 20,000 ical Min. 100,00 and			

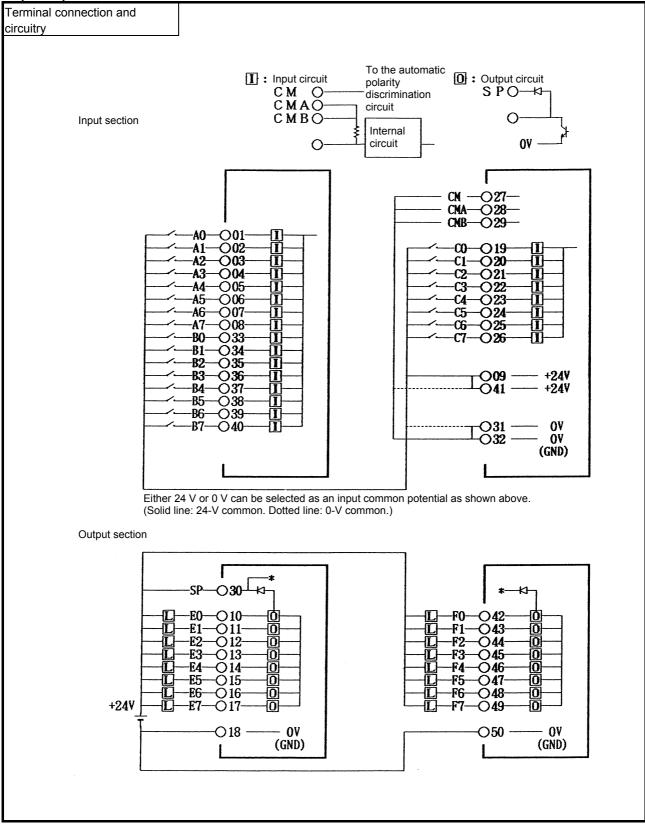
(31) Output module AOR16H2

ltem		Specifications			
Points/module		16 points			
Points/common		4 points/common			
Maximum load		30VDC, 2A (resistance load)			
Minimum load		5VDC, 10mA			
Maximum curre	nt	4A/common			
Limit of load		Refer to load derating curve (Fig. 5.3 (e))			
Response time	OFF→ON	Max.15ms This is the value from input to output in the module. The actual value is			
	ON→OFF	Max.15ms determined by adding it to the scanning time depending on each system.			
Output display		LED display			
External connect	ction	Connector (HIROSE ELECTRIC HIF3BB-50PA-2.54DS in accordance with MIL			
	1	standard)			
Relay life	Mechanical	Min. 20,000,000 times			
	Electrical	Min. 100,000 times (resistance load)			
Terminal conne	ction and				
circuitry					
		Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of the system Image: Construction of th			

(32) Input/output module AIO40A

- Input specifications

Item			Specifications			
Points/module		24 points	24 points			
Points/common		24 points/co	mmon			
Sink/source cur	rent	Both direction	ons			
Input voltage		24VDC +10	24VDC +10%, -20%			
Input current		7.5mA (aver	7.5mA (average)			
ON voltage, cur	rent	Min. 18VDC	Min. 18VDC, min. 6mA			
OFF voltage, cu	irrent	Max. 6VDC,	Max. 6VDC, max. 1.5mA			
Response time	OFF→ON	Max.20ms	This is the value from input to output in the module. The actual value is			
	ON→OFF	Max.20ms	determined by adding it to the scanning time depending on each system.			
Input display		Not provide	Not provided			
External connection		Connector (Connector (HONDA TSUSHIN MR-50RMA, shared by output signals)			


- Output specifications

ltem		Specifications				
Points/module		16 points	16 points			
Points/common		16 points/co	mmon			
Sink/source curr	rent	Sink current	type			
Rated load volta	ge	24VDC +20	%, -15%			
Maximum load o	current	0.2A (howev	ver 2A/common)			
Maximum in rus	h current	0.2A				
Limit of load		 If the output current per point is 0.1 A or lower, all of the 16 points E0 to E7 and F0 to 				
		F7 can be turned on at a time.				
		• If the output current per point is higher than 0.1 A but not higher than 0.2 A, do not				
		turn on more than 3 points at a time.				
Maximum voltag	e drop when ON	1.5V				
Maximum leak c	urrent when OFF	1.0mA (30V	DC)			
Response time	OFF→ON	Max.1ms This is the value from input to output in the module. The actual valu				
	ON→OFF	Max.1ms	determined by adding it to the scanning time depending on each system.			
Output display		Not provided				
External connect	tion	Connector (HONDA TSUSHIN MR-50RMA, shared by input signals)				

5.DIGITAL INPUT/OUTPUT MODULESCONNECTION

B-61813E/04

Input/output module

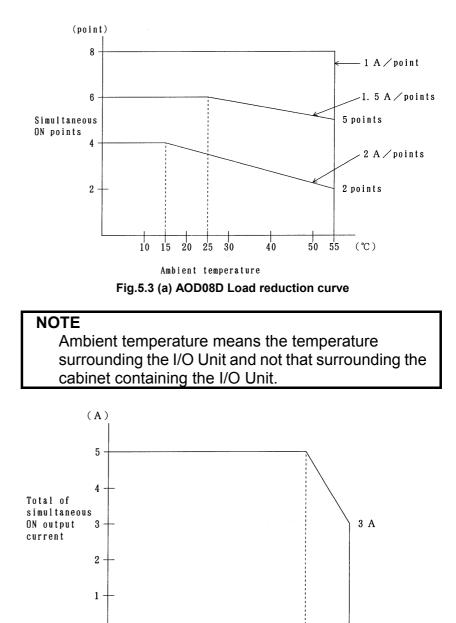
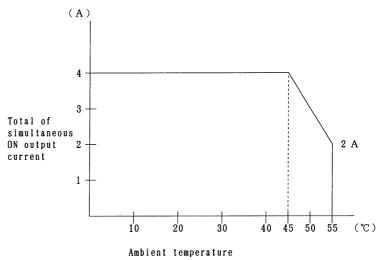
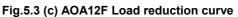


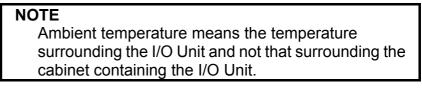
Fig.5.3 (b) AOA05E Load reduction curve

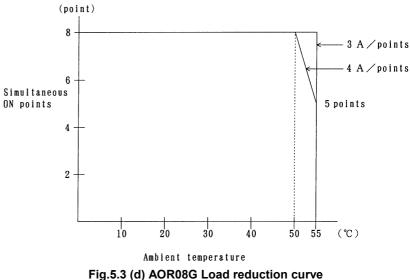
30

40 45 50


55


(°C)


10


20

Ambient temperature

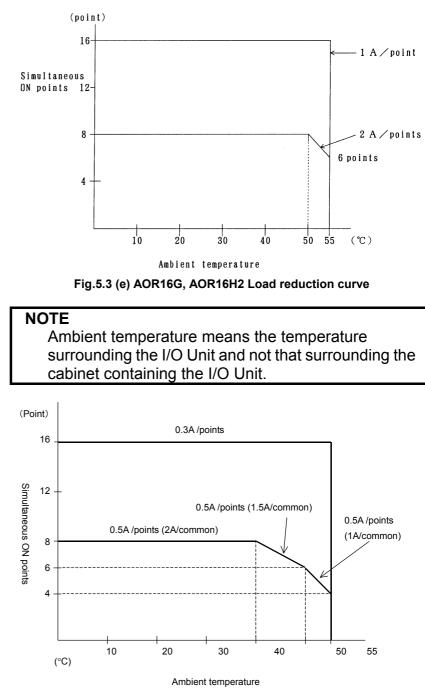


Fig.5.3 (f) AOD16DP Load reduction curve

5.4 DETAILS OF I/O Unit CONNECTORS (HONDA TSUSHIN/HIROSE ELECTRIC) AND TERMINAL BLOCK (WEIDMÜLLER)

Given below are the details (signal arrangement diagrams as viewed from the front of the module) of the connector pins and AOD16D3 terminal block for the I/O Units (32-point input module, 32-point output module, and 24-point input/16-point output hybrid module) explained in Section 5.3.

5.4.1 Modules Using the MR-50RMA Connector Manufactured by Honda Tsushin

		_			
33	D7			01	D6
34	D5			02	D3
35	D2	19	D4	03	D0
36	СМС	20	D1	04	+24V
37	C7	21	CMC	05	GND
38	C5	22	C6	06	C3
39	C3	23	C4	07	C0
		24	C1		-
40	СМС	25		08	+24V
41	СМС			09	GND
42	B7	26		10	B6
43	В5	27	B4	11	В3
44	B2	28	B1	12	В0
45	СМА	29	CMA	13	+24V
46	A7	30	A6	14	GND
		31	A4		-
47	A5	32	A1	15	A3
48	A2			16	A0
49	СМА			17	+24V
50	СМА			18	GND

• AID32A1/AID32B1/AID32H1 (32-point DC input module)

• AID32E1/AID32F1 (32-point DC input module)

		_			
33	D7			01	D6
34	D5			02	D3
35	D2	19	D4	03	D0
36	CMD	20	D1	04	
37	C7	21	CMD	05	
		22	C6		<u></u>
38	C5	23	C4	06	C3
39	C2	24	C1	07	C0
40	СМС		CI	08	
41	СМС	25		09	
42	B7	26		10	B6
		27	B4		
43	B5	28	B1	11	B3
44	B2	29		12	B0
45	СМВ		СМВ	13	
46	A7	30	A6	14	
		31	A4		
47	A5	32	A1	15	A3
48	A2		/	16	A0
49	СМА			17	
50	СМА			18	

5.DIGITAL INPUT/OUTPUT MODULESCONNECTION

		-			
33	D7			01	D6
34	D5			02	D3
35	D2	19	D4	03	D0
36	CMD	20	D1	04	+24V-D
37	C7	21	CMD	05	-1115
31	C/	22	C6	05	
38	C5			06	C3
39	C2	23	C4	07	C0
40	СМС	24	C1	08	+24V-C
41	CMC	25		09	
41		26		09	
42	B7		-	10	B6
43	B5	27	B4	11	В3
44	B2	28	B1	12	B0
		29	СМВ		-
45	СМВ	30	A6	13	+24V-B
46	A7		-	14	
47	A5	31	A4	15	A3
		32	A1		
48	A2			16	A0
49	СМА			17	+24V-A
50	СМА			18	

• AOD32A1/AOD32C1 (32-point DC output module)

• AOD32D1 (32-point DC output module)

		-			
33	D7			01	D6
34	D5			02	D3
35	D2	19	D4	03	D0
36	CMD	20	D1	04	
37	C7	21	CMD	05	0V-D
38	C5	22	C6	06	C3
		23	C4		
39	C2	24	C1	07	C0
40	СМС	25		08	
41	СМС	26		09	0V-C
42	B7	27	B4	10	B6
43	B5			11	B3
44	B2	28	B1	12	B0
45	СМВ	29	СМВ	13	
46	A7	30	A6	14	0V-B
47	A5	31	A4	15	A3
		32	A1		
48	A2			16	A0
49	СМА			17	
50	CMA			18	0V-A

33	B0			01	A0
34	B1			02	A1
35	B2	19	C0	03	A2
36	B3	20	C1	04	A3
37	B4	21	C2	05	A4
38	B5	22	C3	06	A5
		23	C4		
39	B6	24	C5	07	A6
40	B7	25	C6	08	A7
41	+24V	26	C7	09	+24V
42	F0	27	СМ	10	E0
43	F1			11	E1
44	F2	28	CMA	12	E2
45	F3	29	CMA	13	E3
46	F4	30	SP	14	E4
47	F5	31	0V	15	E5
48	F6	32	0V	16	E6
49	F7			10	E7
50	0V	J		18	0V

• AIO40A (24-point DC input/16-point DC output hybrid module)

5.4.2 Modules Using the HIF3BB-50PA-2.54DS Connector Manufactured by Hirose Electric

A01		B01	
A02	D7	B02	D6
A03	D5	B03	D4
A04	D3	B04	D2
A05	D1	B05	D0
A06	CMD	B06	CMD
A07		B07	
A08	C7	B08	C6
A09	C5	B09	C4
A10	C3	B10	C2
A11	C1	B11	C0
A12	СМС	B12	СМС
A13		B13	
A14	B7	B14	B6
A15	B5	B15	B4
A16	B3	B16	B2
A17	B1	B17	B0
A18	СМВ	B18	СМВ
A19		B19	
A20	A7	B20	A6
A21	A5	B21	A4
A22	A3	B22	A2
A23	A1	B23	A0
A24	СМА	B24	СМА
A25		B25	

• AID32E2/AID32F2 (32-point DC input module)

5.DIGITAL INPUT/OUTPUT MODULESCONNECTION

A01		B01	+24V-D
A02	D7	B02	D6
A03	D5	B03	D4
A04	D3	B04	D2
A05	D1	B05	D0
A06	CMD	B06	CMD
A07		B07	+24V-C
A08	C7	B08	C6
A09	C5	B09	C4
A10	C3	B10	C2
A11	C1	B11	C0
A12	CMC	B12	CMC
A13		B13	+24V-B
A14	B7	B14	B6
A15	B5	B15	B4
A16	B3	B16	B2
A17	B1	B17	B0
A18	СМВ	B18	СМВ
A19		B19	+24V-A
A20	A7	B20	A6
A21	A5	B21	A4
A22	A3	B22	A2
A23	A1	B23	A0
A24	СМА	B24	СМА
A25		B25	

• AOD32C2 (32-point DC output module)

• AOD32D2 (32-point DC output module)

A01	CMA	B01	СМА
A02	CMA	B02	СМА
A03	A0	B03	A0
A04	A1	B04	A1
A05	A2	B05	A2
A06	A3	B06	A3
A07	СМВ	B07	СМВ
A08	СМВ	B08	СМВ
A09	A4	B09	A4
A10	A5	B10	A5
A11	A6	B11	A6
A12	A7	B12	A7
A13	СМС	B13	CMC
A14	CMC	B14	CMC
A15	B0	B15	B0
A16	B1	B16	B1
A17	B2	B17	B2
A18	B3	B18	B3
A19	CMD	B19	CMD
A20	CMD	B20	CMD
A21	B4	B21	B4
A22	B5	B22	B5
A23	B6	B23	B6
A24	B7	B24	B7
A25		B25	

• AOR16H2 (16-point relay output module)

5.4.3 Modules Using the HIF4-40P-3.18DS Connector Manufactured by Hirose Electric

A01	A0	B01	0V-A
A02	A1	B02	0V-A
A03	A2	B03	CMA
A04	A3	B04	CMA
A05	CMA	B05	СМА
A06	A4	B06	0V-B
A07	A5	B07	0V-B
A08	A6	B08	СМВ
A09	A7	B09	CMB
A10	СМВ	B10	СМВ
A11	CMC	B11	CMC
A12	B0	B12	CMC
A13	B1	B13	CMC
A14	B2	B14	0V-C
A15	B3	B15	0V-C
A16	CMD	B16	CMD
A17	B4	B17	CMD
A18	B5	B18	CMD
A19	B6	B19	0V-D
A20	B7	B20	0V-D

• AOD16D2 (16-point DC output module)

5.4.4 Modules Using the Terminal Block BL3.5/24/90F Manufactured by Weidmüller

• AOD16D3 (16-point DC output module)

01	CMA
02	A0
03	A1
04	A2
05	A3
06	0V-A
07	СМВ
08	A4
09	A5
10	A6
11	A7
12	0V-B
13	CMC
14	B0
15	B1
16	B2
17	B3
18	0V-C
19	CMD
20	B4
21	B5
22	B6
23	B7
24	0V-D

6.1 12-BIT ANALOG INPUT MODULE (AAD04A)

6.1.1 Specifications

Item		Specific	cations			
Number of input channel	4 channel/module					
Analog input	 Voltage input 10VDC to+10VDC(input resistance 4.7MΩ) Current input 20mADC to+20mADC(input resistance 250Ω) Caution) Which method to use, voltage input or current input, can be selected by connecting the corresponding input to the terminal block. 					
Digital output	12	bit binary (complementar				
Input/output		- · · ·				
correspondence		Analog input	Digital output			
		+10V	+2000			
		+5V or + 20mA	+1000			
	0V or 0mA		0			
		-5V or -20mA	-1000			
		-10V	-2000			
Resolution	5m	V or 20µA				
Total precision	Vo	ltage input ±0.5%(For ful	l scale)			
	Cu	rrent input ±1%(For full s	scale)			
Conversionary time	Ma	x.2ms (Note)				
Maximum input voltage/current	±15V, ±30mA					
Isolation	Photocoupler isolated (between the input signal and the base)					
		wever, not isolated betwe	en input channels			
Output connecting	Removable terminal block (20 terminals, M3.5 screw terminal)					
Required input points	1	1				

NOTE

Conversion time means that only in a module. Actual response speed is determined by adding the scanning time depending on each system to this conversion time.

6.1.2 Correspondence between Input Signals and Addresses in a Module

In the analog input module AAD04A, the 4-channel analog input signals are cyclically A-D converted in order, and the converted digital data are written in the following addresses. Therefore, in the PMC program, it is possible at any time to know the values for the analog input signals by referring to the following addresses.

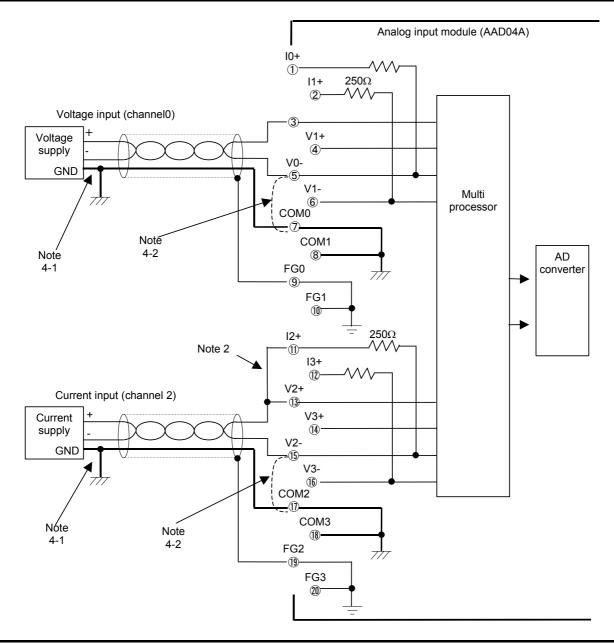
Address				— В	its ——				
in module	7	6	5	4	3	2	1	0	
0	D07-0	D06-0	D05-0	D04-0	D03-0	D02-0	D01-0	D00-0	
									Channel 0
1	X-0	X-0	X-0	X-0	D11-0	D10-0	D09-0	D08-0	
2	D07-1	D06-1	D05-1	D04-1	D03-1	D02-1	D01-1	D00-1	
									Channel 1
3	X-1	X-1	X-1	X-1	D11-1	D10-1	D09-1	D08-1	
		-	-	-	-	-			
4	D07-2	D06-2	D05-2	D04-2	D03-2	D02-2	D01-2	D00-2	
									Channel 2
5	X-2	X-2	X-2	X-2	D11-2	D10-2	D09-2	D08-2	
		-	-	-	-	-			
6	D07-3	D06-3	D05-3	D04-3	D03-3	D02-3	D01-3	D00-3	
									Channel 3
7	X-3	X-3	X-3	X-3	D11-3	D10-3	D09-3	D08-3	

D00-n and D11-n correspond to the weights of 2^0 and 2^{11} respectively. Here, D11-n corresponds to the sign bit in the complementary representation of "2."

In addition, in X-n is written the same value as that in D11-n.

NOTE

- 1 When addressing I/O modules, the beginning address for this module should be assigned to an even one. Moreover, when an A-D converted value is referred to in a PMC program, make sure to read the data in unit of a word (16 bits).
- 2 Note that on the PMC-N, -NA, and -QA (PMC for the Series 15 and F-D Mate), the high-order one byte and low-order one byte of a word (16 bits) are interchanged with each other as described below.


6.ANALOG INPUT MODULE

Addresses for word-unit operation in the PMC-N, NA, and QA

Analog input module \rightarrow PMC

	Address in the module	High-order byte	Low-order byte
Channel 0	0	D07-0 to D00-0	X-0,D11-0 to D08-0
Channel 1	+2	D07-1 to D00-1	X-1,D11-1 to D08-1
Channel 2	+4	D07-2 to D00-2	X-2,D11-2 to D08-2
Channel 3	+6	D07-3 to D00-3	X-3,D11-3 to D08-3

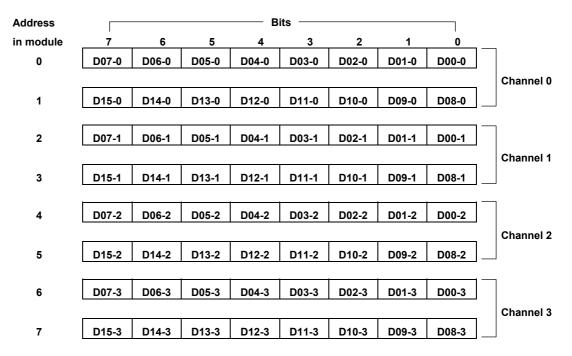
6.1.3 Connecting with Analog Input Module

NOTE

- 1 Though the example above shows the connection of channels 0 and 2, it is just the same with the channel 1 (I1+, V1+, V1-, COM1 and FG1) and the channel 3 (I3+, V3+, V3-, COM3 and FG3).
- 2 Either voltage input or current input can be specified for each channel. When current input is specified, make sure to short-circuit in + and Vn+ (n: 0 to 3).
- 3 Use shielded cables of twisted pair for connecting.
- 4 Fix a reference voltage by connecting the COMn (where n is 0, 1, 2, or 3) terminal of this module to the common line (GND) of the voltage or current source to be used as shown above (Note 4-1). If the voltage or current source has a terminal shared by the external output (terminal OUT-) and ground (GND), the Vn- and COMn (where n is 0, 1, 2, or 3) of this module can be connected to each other as shown above (Note 4-2).

6.2 16-BIT ANALOG INPUT MODULE (AAD04B)

6.2.1 Specifications


ltem		S	pecifications						
Number of input channel	4 c	hannel/module							
Analog input	Voltage input								
	-	10VDC to+10VD	C(input resistand	ce 4.7MΩ)					
	• C	Current input							
	-:	20mADC to+20n	nADC(input resis	tance 250Ω)				
	Са	,	thod to use, volta	• •					
			out, can be selec	•					
			g the correspond	ing input to	the				
		terminal b							
Digital output	16	bit binary (comp	lementary repres	entation of "	2".)				
Input/output		Analog	g input	Digital					
correspondence		Voltage input	Current input	output					
		+10V	-	+32000					
		+5V	+20mA	+16000					
		0	0	0					
		-5V	-20mA	-16000					
		-10V	-	-32000					
Resolution	Vo	Itage input: 0.31	25mV						
	Cu	rrent input: 1.25	μA						
Total precision	Vo	Itage input: ±0.5	%(For full scale)						
	Cu	rrent input: ±1%	(For full scale)						
Conversionary time	Ma	x.2ms (Note)							
Maximum input	±1	5V, ±30mA							
voltage/current									
Isolation			ed (between the	input signal a	and				
	the base)								
	However, not isolated between input channels								
Output connecting			al block(20 termir	nals, M3.5					
	screw terminal)								
Required input points	64 points								
Name assigned to module	"AI	D04A" or "/8"			e "AD04A" or "/8"				

NOTE

Conversion time means that only in a module. Actual response speed is determined by adding the scanning time depending on each system to this conversion time.

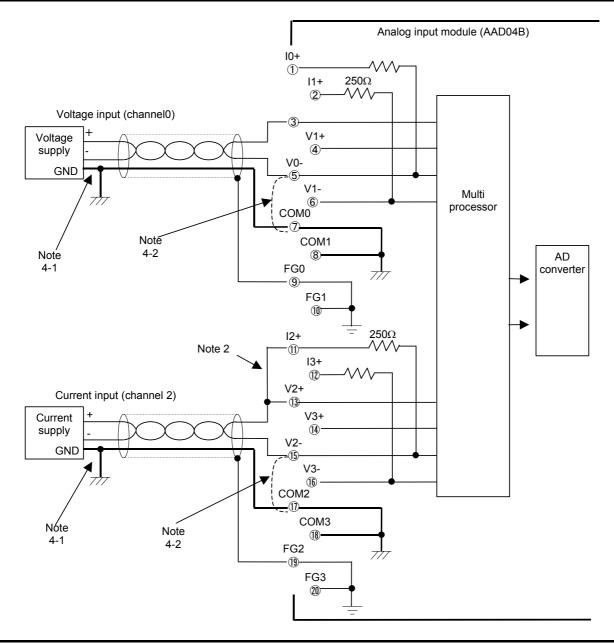
6.2.2 Correspondence between Input Signals and Addresses in a Module

In the analog input module AAD04B, the 4-channel analog input signals are cyclically A-D converted in order, and the converted digital data are written in the following addresses. Therefore, in the PMC program, it is possible at any time to know the values for the analog input signals by referring to the following addresses.

D00-n and D15-n correspond to the weights of 2^0 and 2^{15} respectively. Here, D15-n corresponds to the sign bit in the complementary representation of "2." (where n represents one of the channel numbers 0 to 3)

6.ANALOG INPUT MODULE CONNECTION

NOTE


- 1 When addressing I/O modules, the beginning address for this module should be assigned to an even one. Moreover, when an A-D converted value is referred to in a PMC program, make sure to read the data in unit of a word (16 bits).
- 2 This module has a very high resolution. When A/D-converted values are input to a system for reference by the PMC program, they may disperse largely depending on the system. If this is the case, the dispersion of input values can be suppressed by obtaining their moving average in the PMC program or lowering the resolution by masking the lowest-order bit if possible.
- 3 Note that on the PMC-N, -NA, and -QA (PMC for the Series 15 and F-D Mate), the high-order one byte and low-order one byte of a word (16 bits) are interchanged with each other as described below.

Addresses for word-unit operation in the PMC-N, NA, and QA

Analog input module \rightarrow PMC

	Address in the module	High-order byte	Low-order byte
Channel 0	0	D07-0 to D00-0	D15-0 to D08-0
Channel 1	+2	D07-1 to D00-1	D15-1 to D08-1
Channel 2	+4	D07-2 to D00-2	,D15-2 to D08-2
Channel 3	+6	D07-3 to D00-3	D15-3 to D08-3

6.2.3 Connecting with Analog Input Module

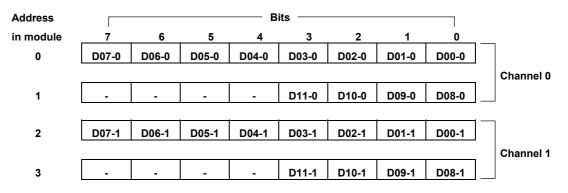
NOTE

- 1 Though the example above shows the connection of channels 0 and 2, it is just the same with the channel 1 (I1+, V1+, V1-, COM1 and FG1) and the channel 3 (I3+, V3+, V3-, COM3 and FG3).
- 2 Either voltage input or current input can be specified for each channel. When current input is specified, make sure to short-circuit in + and Vn+ (n: 0 to 3).
- 3 Use shielded cables of twisted pair for connecting.
- 4 Fix a reference voltage by connecting the COMn (where n is 0, 1, 2, or 3) terminal of this module to the common line (GND) of the voltage or current source to be used as shown above (Note 4-1). If the voltage or current source has a terminal shared by the external output (terminal OUT-) and ground (GND), the Vn- and COMn (where n is 0, 1, 2, or 3) of this module can be connected to each other as shown above (Note 4-2).

1 **ANALOG OUTPUT MODULE**

7.1 12-BIT ANALOG OUTPUT MODULE (ADA02A)

7.1.1 Specification


ltem		Specifi	cation		
Number of output channels	2 channels/module				
Digital input	12-bit binary (2's complement representation)				
Analog output	-10VDC to +10VDC(external load resistance: $10K\Omega$ or more) (Note 1) 0mADC to +20mADC(external load resistance: 400Ω or less)				
Input/output					
correspondence		Digital input	Analog output		
		+2000	+10V		
		+1000	+5V or +20mA		
		0	0V or 0mA		
		-1000	-5V		
		-2000	-10V		
Resolution	5m'	5mV or 20μA			
Comprehensive	Vol	Voltage output: ±0.5% (For the full scale)			
accuracy	Current output: ±1% (For the full scale)				
Converting time	1msec or less (Note 2)				
Insulation	Photocoupler insulation (between output signal and base). However, non-insulation between output channels.				
External connection	At removable terminal block (20 terminals, M3.5 screw terminals)				
Number of occupied output points	32 points				

NOTE

- 1 Which method to use, voltage input or current input, can be selected by connecting the corresponding input to the terminal block.
- 2 The converting time is the one only inside the module. The actual response time is added a scan time that is determined by the system.

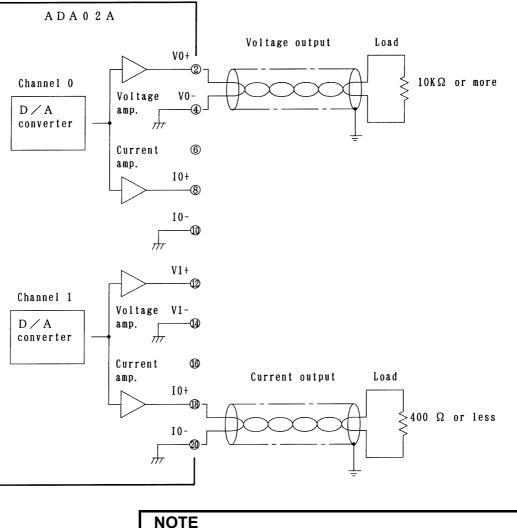
7.1.2 Correspondence between Output Signals and Addresses in a Module

In the analog output module ADA02A, a 12-bit digital value is written into each of the following addresses to output the desired voltage/current to its corresponding analog output.

D00-n corresponds to the 2^0 weight, while D11-n corresponds to the 2^{11} weight.

However, D11-n corresponds to the code bit 2's complement representation.

NOTE


- 1 When setting an I/O module address, this module initial address must be assigned to an even address. To write a value that is to be converted from digital to analog into a PMC program, be sure to write it in words (16 bits).
- 2 Note that on the PMC-N, -NA, and -QA (PMC for the Series 15 and F-D Mate), the high-order one byte and low-order one byte of a word (16 bits) are interchanged with each other as described below.

Addresses for word-unit operation in the PMC-N, NA, and QA

 $PMC \rightarrow 12$ -bit analog output module

	Module in address	High-order byte	Low-order byte
Channel 0	0	D07-0 to D00-0	D11-0 to D08-0
Channel 1	+2	D07-1 to D00-1	D11-1 to D08-1

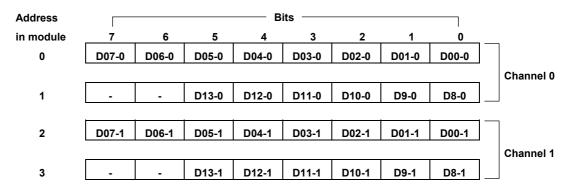
7.1.3 **Connection to Analog Output Module**

NOT

- Use a 2-core twisted shielded cable as the 1
 - connection cable
- 2 Ground the cable shield on the load side.

7.2 14-BIT ANALOG OUTPUT MODULE (ADA02B)

7.2.1 Specification


Item		Specification				
Number of output	2 c	2 channels/module				
channels						
Digital input	14-	14-bit binary (2's complement representation)				
Analog output	 Voltage output 10 VDC to +10 VDC (external load resistance of 10 kΩ or higher) ^(Note 1) Current output 0 mADC to +20 mADC (external load resistance of 400Ω or lower) 					
Input/output			1			
correspondence		Digital input	Analog output			
		3	Voltage output	Current output		
		+8000	+10V	+20mA		
		+4000	+5V	+10mA		
		0	0	0		
		-4000	-5V	-		
		-8000	-10V	-		
Resolution	Voltage output: 1.25 mV					
	Current output: 2.5 µA					
Overall precision	Voltage output: ±0.5% (of the full scale)					
		Current output: ±1% (of the full scale)				
Converting time	1 msec or shorter (Note 2)					
Insulation	Photocoupler-based insulation between output signal					
	and base, but no insulation between output channels					
External connection	Removable terminal block (20 terminals, M3.5 screw terminal)					
Number of occupied	32	32 points				
output points						

NOTE

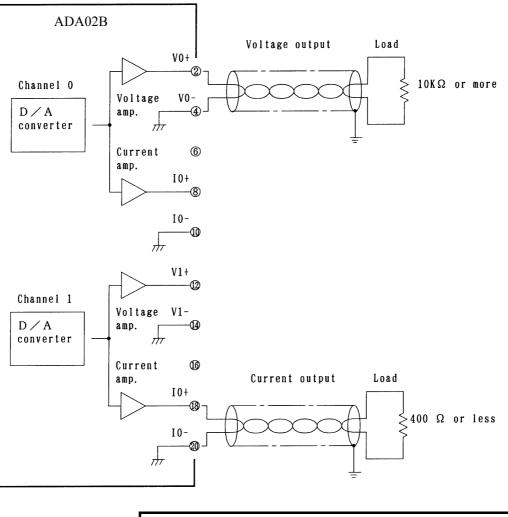
- 1 Which method to use, voltage input or current input, can be selected by connecting the corresponding input to the terminal block.
- 2 The converting time is that inside the module. The actual response time is added the scan time that is determined by the system.

7.2.2 Correspondence between Output Signals and Addresses in the Module

In the ADA02B analog output module, a 14-bit digital value is written to each of the following address to output the desired voltage/current from its corresponding analog output.

D00-n (where n is 0 or 1) corresponds to a weight of 2^0 , and D13-n to a weight of 2^{13} . However, D13-n corresponds to the sign bit of a two's complement representation.

NOTE


- When setting an I/O module address, this module initial address must be assigned to an even address. To write a value that is to be converted from digital to analog into a PMC program, be sure to write it in words (16 bits).
- 2 Note that on the PMC-N, -NA, and -QA (PMC for the Series 15 and F-D Mate), the high-order one byte and low-order one byte of a word (16 bits) are interchanged with each other as described below.

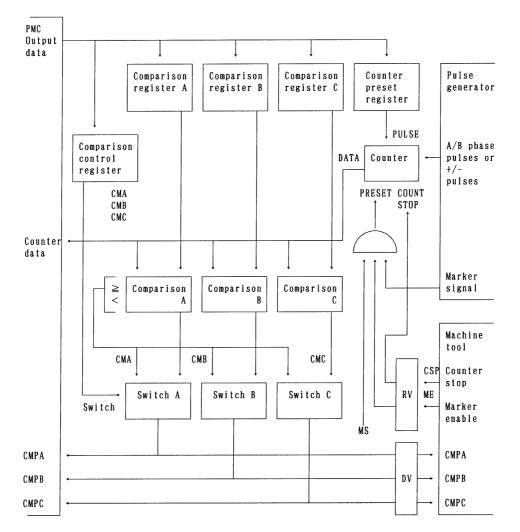
Addresses for word-unit operation in the PMC-N, NA, and QA

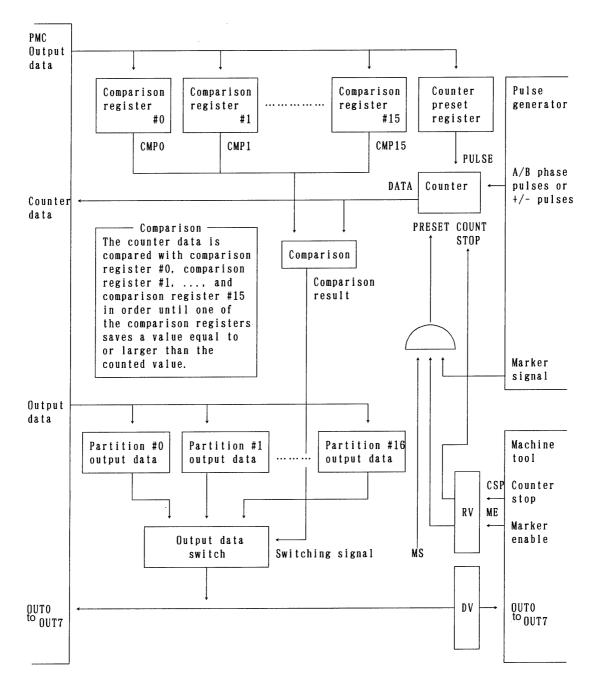
 $PMC \rightarrow 14$ -bit analog putput module

	Module		
	inaddress	High-order byte	Low-order byte
Channel 0	0	D07-0 to D00-0	D13-0 to D08-0
Channel 1	+2	D07-1 to D00-1	D13-1 to D08-1

7.2.3 **Connection between the Analog Output Module and Load**

NOTE


- 1 Use a shielded 2-conductor twisted pair cable for the connection between the analog output module and load.
- 2 Ground the cable shielding on the load side.


8.1 OUTLINE OF HIGH-SPEED COUNTER MODULE

The high-speed counter module consists of a counter which counts the pulses sent from a pulse generator such as a position detector in the machine tool and comparison registers for comparing preset values with counter data. The module can read the counter data and output the results of comparison to the machine.

The high-speed counter module can run in two different modes, mode A and mode B. These two modes differ in the way data is compared. Shown below are configuration diagrams, briefing either mode.

A. Mode A

B. Mode B

8.2 SPECIFICATIONS OF HIGH-SPEED COUNTER MODULE

8.2.1 Pulse Counter

- (1) Binary up/down counter (1)
- (2) Counter capacity
 - 0 to 8,388,607
- (3) Counter data

The pulse counter can preset data and read count data.

8.2.2 Comparison Function

- (1) Mode A
 - A. Comparison register (23 bits) Comparison registers A, B, and C are provided. The values to be compared are preset in the comparison registers.
 - B. Comparison output The results (CMPA, CMPB, and CMPC) of comparing the count data in the pulse counter with the data set in the comparison registers are output.
 - C. Comparison output values

The comparison output values are set as listed in the table below. The values depend on the states of CMA, CMB, and CMC, the comparison mode signals from the PMC.

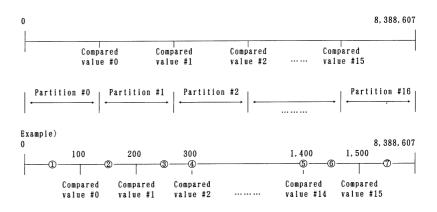
	Counter value ≤ comparison register value	Counter value > comparison register value
CMA=0	CMPA=0	CMPA=1
CMB=0	CMPB=0	CMPB=1
CMC=0	CMPC=0	CMPC=1
CMA=1	CMPA=1	CMPA=0
CMB=1	CMPB=1	CMPB=0
CMC=1	CMPC=1	CMPC=0

(2) Mode B

A. Comparison register (23 bits)

There are 16 comparison registers #0,#1, ...,#15. The values to be compared are preset in the comparison registers. The preset value in a comparison register having a larger register number should be larger than that in a comparison register having a smaller register number, as follows:

Value in register #0 < value in register #1 < ... < value in register #14 < value in register 15


B. Comparison output

The results (OUT0 to OUT7) of comparing the count data in the pulse counter with the data set in the comparison registers are output.

C. Comparison output values

The count data in the pulse counter is compared with the values in the comparison registers in sequential order from register 0 until the count data is equal to or less than the value in a comparison register. This enables a partition to be made which includes the count data. Then the output data for the partition (which is previously preset) is output. Eight output points (OUT0 to OUT7) are provided.

If the count data is equal to the value in a comparison register, the data in the partition having the same number as the register number is output.

Assume that, when count data is in partition #n, the data to be output is set to respective values in hexadecimal as listed below.

Output data from partition #0 = 0HOutput data from partition #1 = 1HOutput data from partition #2 = 2HOutput data from partition #3 = 3HOutput data from partition #4 = 4HOutput data from partition #5 = 5HOutput data from partition #6 = 6HOutput data from partition #7 = 7HOutput data from partition #8 = 8HOutput data from partition #9 = 9HOutput data from partition #10 = 10HOutput data from partition #11 = 11HOutput data from partition #12 = 12HOutput data from partition #13 = 13HOutput data from partition #14 = 20HOutput data from partition #15 = 21H Output data from partition #16 = FFH

8.HIGH-SPEED COUNTER MODULE CONNECTION

	Partition	OUT								
	Faittion	7	6	5	4	3	2	1	0	HEX value
1	0≤Counter value≤100	0	0	0	0	0	0	0	0	0h
2	100 <counter td="" value≤200<=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>1h</td></counter>	0	0	0	0	0	0	0	1	1h
3	200 <counter td="" value<300<=""><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>1</td><td>0</td><td>2h</td></counter>	0	0	0	0	0	0	1	0	2h
4		0	0	0	0	0	0	1	0	2h
(5)	Comparison value in partition 14 <counter td="" value≤1400<=""><td>0</td><td>0</td><td>1</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>20h</td></counter>	0	0	1	0	0	0	0	0	20h
6			0	1	0	0	0	0	1	21h
\bigcirc	1500 <counter td="" value≤8,388,607<=""><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>1</td><td>FFh</td></counter>	1	1	1	1	1	1	1	1	FFh

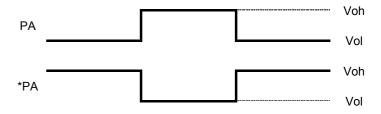
The output data is set as listed in the table below, depending on the counter values in \mathbb{O} to \mathbb{O} above.

NOTE

Preset an increasingly larger value in each of the compare registers (#0, #1, ..., #15) as the register number becomes larger.

Unless this condition is satisfied, it is likely that no normal compensation may take place, leading to an abnormal compare output.

8.2.3 Pulse Interface

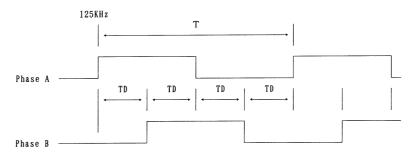

The following three types of pulses are entered in the high-speed counter module.

- A. Phase A/B pulses: The phase difference between these detection pulses is 90°
- B. +/- pulses: These detection pulses are separated in the positive and negative directions.

Select either type of the detection pulse.

- C. Marker signal: Used to preset data in the pulse counter.
- (1) Phase A/B pulse interface The phase A/B pulses are selected when the PSEL signal is open.
 - A. Interface IC

The signal of the pulse generator connected to the high-speed counter module is equivalent to that of the line driver SN75113. It also equivalent to that of the AM26LS31. The signals involved are the equilibrium transmission signals shown below.

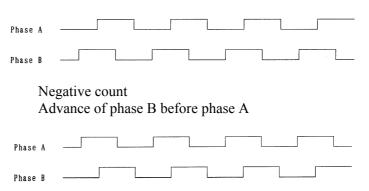


(The PB and MKS signals are the same, respectively, as PA and *PB. The *MKS signal is the same as *PA.)

The voltage ratings of the receiver in this module are: Voh = 2.4 V or higher and Vol = 0.45 V or lower. Be sure to use a pulse generator having a driver that satisfies these voltage requirements.

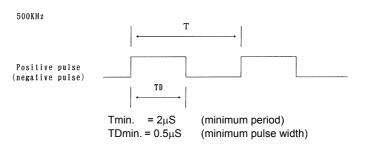
If you want to use a commercial rotary encoder as the pulse generator, select "line driver type output" that meets the above voltage requirements. It is impossible to use any output type (such as open-collector output or voltage output type) having a higher output rating.

B. Maximum frequency

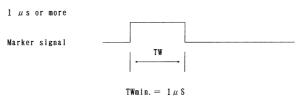


 $\begin{array}{ll} \mbox{Tmin.} & = 8 \mu S & (\mbox{minimum period}) \\ \mbox{TDmin.} & = 1.2 \mu S & (\mbox{minimum time between edges}) \end{array}$

C. Count and direction


A counter multiplied by four compared to phase A and B pulses is provided. It counts positive when phase A advances before phase B and it counts negative when phase B advances before phase A.

Positive count Advance of phase A before phase B



8.HIGH-SPEED COUNTER MODULE CONNECTION

- (2) Positive/negative pulse interface Positive and negative pulses are selected when the PSEL signal is connected to 0 VDC.
 - A. Interface IC See Paragraph A, "Interface IC", in Item (1), "Phase A/B pulse interface".
 - B. Maximum frequency

- (3) Marker signal
 - A. Interface IC Use differential drivers (SN75113 or equivalent) at the output ports of the pulse generator.
 - B. Minimum pulse width

8.2.4 External Contact Input

The pulse counter module uses insulating receivers (having a voltage rating of 24 VDC) at the input ports. The following two types of signal inputs are provided.

- Marker enable signal input (ME) The contact of the marker enable signal is closed to make the marker signal valid. This enables data to be preset in the counter.
- (2) Count stop signal input (CSP) The contact of the count stop signal is closed to stop the count operation.

8.2.5 External Contact Output

Solid state relays (SSR) are used for the contacts.

(1) Mode A

The comparison mode signal outputs A, B, C (CMPA, CMPB, and CMPC) are provided in mode A. These outputs indicate the results of comparing the comparison registers A, B, and C with the pulse counter. The comparison output values are determined depending on whether the control mode signals (CMA, CMB, and CMC) from the PMC are set to 1 or 0.

(2) Mode B

The results of comparing comparison register #0, comparison register #1, ..., comparison register #15 with the pulse counter are provided in mode B. The comparison output indicates the values in the output data registers for the partitions in which the count data is located. Eight output points are provided. (See Section 8.2.2 (2))

8.2.6 Marker Processing

(1) Mode A

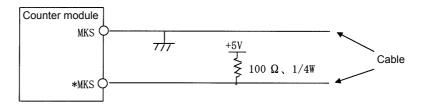
A. Synchronization with marker

The counter value is set to the data in the counter preset register at the rising edge of the first marker signal with the MS signal output from the PMC set to 1 and the contact of the marker enable signal input (ME) from the machine closed.

B. Marker hold

The MH signal is set to 1 at the rising edge of the first marker signal with the MS signal output from the PMC set to 1 and the contact of the marker enable signal input (ME) from the machine closed. The MH signal is reset when the marker hold reset (MHR), an output signal from the PMC, is set to 1 or the MS signal output from the PMC is set to 0.

- (2) Mode B
 - A. Synchronization with marker


When the MS signal output from the PMC is 1 and the contact of the marker enable (ME) signal input from the machine is closed, the counter is set to the data in the counter preset register at the rising edge of the first marker signal.

B. Maker hold

When the MS signal output from the PMC is 1 and the contact of the marker enable (ME) signal input from the machine is closed, the MH signal is set to 1 at the rising edge of the marker signal. The MH signal is reset when the MS signal output from the PMC is set to 0.

(3) Pin treatment when no marker signal is used

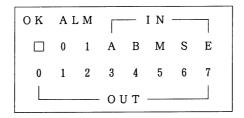
If you use (that is, preset) no marker signal, treat the corresponding pin as shown below. Otherwise, a broken-wire alarm will be raised. The counter keeps running even after a broken-wire alarm is raised, though.

If the treatment shown above cannot prevent a broken-wire alarm from being raised, make sure that the GND terminal of the pulse generator is connected to the LGND (0V) pin of the JA9 connector.

8.2.7 LED indicators

The high-speed counter module has the following indicators.

- (1) OK indicator See below Table.
- (2) ALM0 and ALM1 indicators See below Table.
- (3) Phase A and B pulses (positive and negative pulses) input signal indicators (A and B)
 The phase A pulse input signal indicator is on when the phase A pulse input is active.
 The phase B pulse input signal indicator is on when the phase B pulse input is active.
 If the pulse remains "1" (high) only for a short time and has a long period, it is difficult to recognize a blinking LED.
- (4) Marker signal indicator (M) The marker signal indicator is on while the marker signal (MP) from the pulse generator is active.
- (5) Count stop signal indicator (S) The count stop signal indicator is on when the contact of the count stop signal input sent from the machine is closed.
- (6) Marker enable signal indicator (E) The marker enable signal indicator is on when the contact of the marker enable signal input sent from the machine is closed.


8.HIGH-SPEED COUNTER MODULE CONNECTION

- (7) Comparison result output indicators (OUT0, OUT1, OUT2, OUT3, OUT4, OUT5, OUT6, and OUT7)
 - A. Mode A

The indicators OUT0, OUT1, and OUT2 correspond to the signals CMPA, CMPB, and CMPC. OUT1 goes on when CMPA goes on, OUT2 goes on when CMPB goes on, and OUT3 goes on when CMPC goes on.

B. Mode B

The indicators OUT0 - OUT7 go on corresponding to when the output data OUT0 - OUT7resulting from the comparisons between the count data and comparison resisters are set to 1.

LED indicator panel

ОК	ALM0	ALM1	Explanation of alarm	
•		0	Disconnection alarm	• : On
0		0	Self-diagnosis alarm, RAM error	O:Off
0	0	•	Self-diagnosis alarm, ROM error	
0	•	•	Watch dog alarm	
•	0	0	Normal operation	

The state of the OK, ALM0, or ALM1 is not held.

8.3 PMC INTERFACE

8.3.1 Mode A

(1) PMC I/O area

In mode A, four input bytes and four output bytes are used as the I/O area. The bytes in the I/O area have the following names. The input and output directions are specified on the basis of the PMC. The operation mode is set to mode A at power-on.

(a) Output data (sent from PMC to high-speed counter module)

- 0 CTRL (control)
- +1 DTOH (higher 8-bit data)
- +2 DTOM (middle 8-bit data)
- +3 DTOL (lower 8-bit data)

(b) Input data (entered from high-speed counter module to PMC)

- 0 CNTS (counter H and status)
- +1 CNTM (middle 8 bits of counter)
- +2 CNTL (lower 8 bits of counter)
- +3 STTS (status)
- (2) PMC outputs (entered from PMC to high-speed counter module) The PMC outputs are separated into control output CTRL and data outputs DTOH, DTOM, and DTOL. As with normal DOs, the control outputs of bit 3 to bit 7 are controlled independently. The control outputs of bit0 to bit2 constitute the SELECT indicating the target data specified by DTOH, DTOM, and DTOL.
 - (a) Control output
- CTRL

7	6	5	4	3	2	1	0
MHR	MS		CE	PRS		SELECT	

- PRS : Preset
- CE : Count enable
- MS : Marker synchronization
- MHR : Marker hold reset
 - (b) Details of DTOH, DTOM, and DTOL The SELECT bits indicate the target data.

SELECT	
0	CCTR (comparison control)
1	Counter preset data
2	Comparison register A
3	Comparison register B
4	Comparison register C
7	Change to mode B

8.HIGH-SPEED COUNTER MODULE CONNECTION B-61813E/04

	Change	e to moo f CCTR		ee Sec	tion 8.3	3.2, "M	ode B".
DTOH		_			_		
7	6	5	4	3	2 СМС	1 СМВ	0 CMA
(3) P	MC inpu		ed from	high-sp			ule to PMC)
		own belo			e status	and cou	nter data. Th
0	CNTS (c	ounter H a	Ind status	6)			
+1	CNTM (I	middle 8 bi	ts of cou	nter)			
+2	CNTL (I	ower 8 bits	of count	er)			
+3	STTS (s	tatus)					
7 TRA	6 : Tran		4	3 nost sian	2 ficant 7 b	1 its)	0
NO 2 [of STTS	8				
7	6	5	4	3	2	1	0
TRB	ALM	CSP	ME	МН	CMPC	СМРВ	CMPA
CMPA CMPE CMPC MH ME CSP	C: Com C: Com Marl Marl Cou	parison c parison c parison c ker hold ker enable nt stop	output B output C e			arm)	

8.3.2 Mode B

Change to mode B

The operation mode is set to mode A at power-on. The following data is output to the counter module and the mode changes from A to B. The mode cannot change from B to A.

0	CTRL	: 0FH (SELECT = 7, PRS = 1)
+1	DTOH	: 01H
+2	DTOM	: 00H
+3	DTOL	: 00H

(1) PMC I/O area

In mode B, eight input bytes and four output bytes are used as the I/O area. The bytes in the I/O area have the following names. The input and output directions are specified on the basis of the PMC.

- (a) Output data (sent from PMC to high-speed counter module)
- 0 CTRL (control)
- +1 DTOH (higher 8-bit data)
- +2 DTOM (middle 8-bit data)
- +3 DTOL (lower 8-bit data)

(b) Input data (entered from high-speed counter module to PMC)

- 0 CNTS (counter H and status)
- +1 CNTM (middle 8 bits of counter)
- +2 CNTL (lower 8 bits of counter)
- +3 STTS (status)
- +4 OUTD
- +5 MODD
- +6 Unused
- +7 Unused

(2) PMC outputs (outputs from PMC)

The PMC outputs are separated into control output CTRL and data outputs DTOH, DTOM, and DTOL. As with normal DOs, the control outputs of bit 5 to bit 7 are controlled independently. The control outputs of bit 0 to bit 4 constitute SELECT indicating the target data specified by DTOH, DTOM, and DTOL.

(a) Control outputs

 7	6	5	4	3	2	1	0
MS	CE	PRS			SELECT		

- PRS : Preset
- CE : Count enable
- MS : Marker synchronization

(b) Details of DTOH, DTOM, and DTOL Enter the comparison value and preset value (24 bits) to the DTOH, DTOM, and DTOL.
Enter a comparison result (8 bits) output for each partition, respectively, to the DTOH, DTOM, and DTOL.

SELECT	Target data						
0	Comparison data : Specify a comparison value (24 bits) for pa	rtition #0.					
1	Comparison data : Specify a comparison value (24 bits) for pa	rtition #1.					
2	Comparison data : Specify a comparison value (24 bits) for partition #2.						
3	Comparison data : Specify a comparison value (24 bits) for partition #3.						
4	Comparison data : Specify a comparison value (24 bits) for pa	rtition #4.					
5	Comparison data : Specify a comparison value (24 bits) for pa	rtition #5.					
6	Comparison data : Specify a comparison value (24 bits) for pa	rtition #6.					
7	Comparison data : Specify a comparison value (24 bits) for pa	rtition #7.					
8	Comparison data : Specify a comparison value (24 bits) for pa	rtition #8.					
9	Comparison data : Specify a comparison value (24 bits) for pa	rtition #9.					
10	Comparison data : Specify a comparison value (24 bits) for pa	rtition #10.					
11	Comparison data : Specify a comparison value (24 bits) for pa	rtition #11.					
12	Comparison data : Specify a comparison value (24 bits) for pa	rtition #12.					
13	Comparison data : Specify a comparison value (24 bits) for pa	rtition #13.					
14	Comparison data : Specify a comparison value (24 bits) for pa	rtition #14.					
15	Comparison data : Specify a comparison value (24 bits) for pa	rtition #15.					
16	Comparison output data (8 bits) for partition #0 to #2	Partition #0: DTOH					
		Partition #1: DTOM					
		Partition #2: DTOL					
17	Comparison output data (8 bits) for partition #3 to #5	Partition #3: DTOH					
		Partition #4: DTOM					
		Partition #5: DTOL					
18	Comparison output data (8 bits) for partition #6 to #8	Partition #6: DTOH					
		Partition #7: DTOM					
		Partition #8: DTOL					
19	Comparison output data (8 bits) for partition #9 to #11	Partition #9: DTOH					
		Partition #10: DTOM					
		Partition #11: DTOL					
20	Comparison output data (8 bits) for partition #12 to #14	Partition #12: DTOH					
		Partition #13: DTOM					
		Partition #14: DTOL					
21	Comparison output data (8 bits) for partition #15 and #16	Partition #15: DTOH					
		Partition #16: DTOM					
22	Counter preset data (24 bits)						

(The numbers of DTOH, DTOM, and DTOL indicate the output data for the partitions specified by the numbers.)

CONNECTION 8.HIGH-SPEED COUNTER MODULE

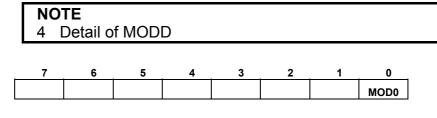
- (c) PMC inputs (inputs to PMC) The inputs to the PMC include the status and counter data. The data is shown below.
- 0 CNTS (counter H and status)
- +1 CNTM (middle 8 bits of counter)
- +2 CNTL (lower 8 bits of counter)
- +3 STTS (status)
- +4 OUTD
- +5 MODD +6 Not use
- +6 Not used +7 Not used
- NOTE

1 Detail of CNTS

0

 7
 6
 5
 4
 3
 2
 1

 TRA
 Counter H (most significant 7 bits)


TRA : Transfer A

NOTE 2 Details of STTS												
7												
TRB	ALM	CSP	ME	мн								
MH : Marker hold ME : Marker enable CSP : Count stop ALM : Alarm (disconnection or watch dog alarm) TRB : Transfer B NOTE												
NO	TE)			,						
NO	TE)	3	2	1	0					
NO 3 [NOTE 3 Detail of OUTD 7 6 5 4 3 2 1 0											

OUT6 : Bit 6 of comparison output

OUT7 : Bit 7 of comparison output

8.HIGH-SPEED COUNTER MODULE CONNECTION

MOD0: Set to 1 after the mode changes to B.

8.3.3 Details of PMC Interface Signals

- (1) PMC inputs (inputs from PMC)
 - (a) TRA and TRB

The counter data is valid when TRA is equal to TRB and invalid when TRA is not equal to TRB.

- (b) CMPA, CMPB, and CMPC (comparison output signals A, B, and C, only in mode A) The CMPA, CMPB, and CMPC signals are output signals resulting from the comparison between the comparison registers A, B, and C and the counter data, respectively. The output levels of CMPA, CMPB, and CMPC are determined by the comparison mode signals CMA, CMB, and CMC. When CMA, CMB, and CMC are 0, and the counter data is larger than the values in comparison registers A, B, and C, CMPA, CMPB, and CMC are 1, and the counter data is equal to or less than the values in comparison registers A, B, and C, CMPA, CMPB, and CMPC are set to 1.
- (c) OUT0 to OUT 7 (comparison output signal 0 to comparison output signal 7, only in mode B)
 OUT0 OUT7 correspond to bit 0 to bit 7 in the comparison result output of a single byte.
- (d) MH (marker hold signal) The marker hold signal MH is set to 1 at the rising edge of the marker signal when the marker enable signal is 1. The marker hold signal is reset when MHR=1 or MS=0. (In mode B, the marker hold signal MH is reset only when MS=0.)
- (e) ME (marker enable signal) The marker enable signal ME enables the marker signal as follows:

ME=1: Marker signal enabled ME=0: Marker signal disabled

(f) CSP (count stop signal) The counter stops counting when the contact for the external input signal CSP is closed. (g) ALM (alarm signal) The alarm signal ALM is set to 1 if the signal line for the count pulse or the marker signal is disconnected or short-circuited.ALM is also set to 1 when the watch dog alarm is activated.

ALM is also set to 1 when the watch dog alarm is activated.

- (2) PMC outputs (outputs from PMC)
 - (a) SELECT (selection signal)

The SELECT signal selects the register in which data will be set. That is, the signal specifies the register for presetting data. The SELECT signal should be set when or before the PRS signal is reversed.

(b) PRS (preset signal)

The PRS signal presets data in registers. If data is set in DTOH, DTOM, and DTOL and then PRS is reversed, the data is set in the register specified by SELECT. Reversing the PRS signal means that PRS changes from level 0 to level 1 or vise versa.

DTOH, DTOM, DTOL, and SELECT should not be changed within two scans after the PRS is reversed. Also, the PRS must not reversed again within this period.

When SELECT=1, data is set in both the counter preset register and the counter.

Data is set by setting the first PRS to 1 after power-on or after the mode changes to B.

(c) CE (count enable signal)

The CE signal determines whether the counter counts. When the CE is set to 1 and the external input signal CSP closes the contact, the counter retains its value, instead of counting. When CE = 1 and the CSP external input contact is open, the counter counts input pulses. Presetting the counter requires maintaining CE = 0.

(d) MS (marker synchronization signal)

The MS signal determines whether marker synchronization is provided. When the MS is 1 and the contact of external input signal ME is closed, the counter is preset to the value in the counter preset register at the rising edge of the first marker signal.

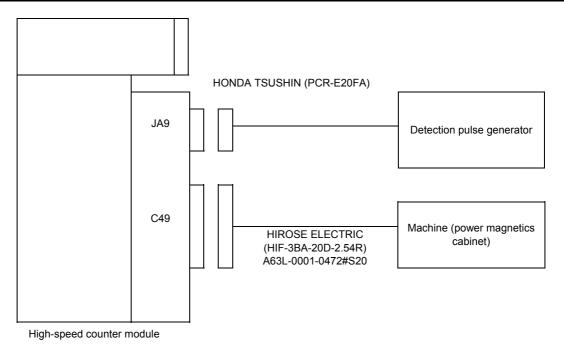
For mode A, after presetting:

<1> Set MS bit $(0 \rightarrow 1)$ again, or

<2> Reset MHR bit $(1 \rightarrow 0)$.

When either of the above conditions is satisfied, marker synchronization is established again.

(Note that item <2> is unusable for mode B.)


(e) MHR (marker hold reset signal, only in mode A) The MHR signal resets the marker hold (MH) signal which is output to the PMC. The MHR is set to 1 to reset the marker hold signal. (f) CMA, CMB, and CMC (comparison mode signals A, B, and C, only in mode A)
The CMA, CMB, and CMC signals specify the levels of the comparison outputs A, B, and C (CMPA, CMPB, and CMPC), respectively.
When CMA, CMB, and CMC are 0, and the value of the counter is larger than the values in comparison registers A, B, and C, CMPA, CMPB, and CMPC are set to 0.
When CMA, CMB, and CMC are 1, and the value of the counter is equal to or less than the values in comparison

registers A, B, and C, CMPA, CMPB, and CMPC are set to 1.

- 116 -

8.4 TOTAL CONNECTION OF HIGH-SPEED COUNTER MODULE

8.4.1 Connection Diagram

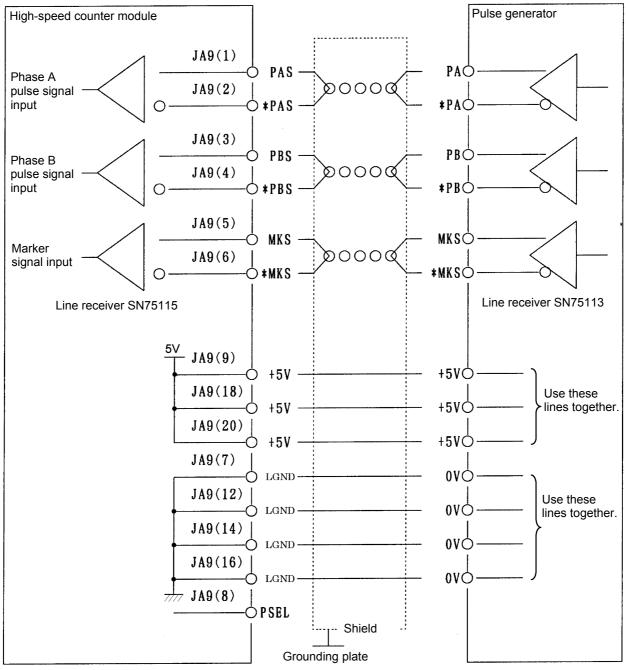
8.4.2 Connector Signal List

J	A	9

·	1	10			1	20	+5V
9	+5V	-	DOEL	19			-
7	LGND	8	PSEL	17		18	+5V
1	LGIND	6	*MKS	17		16	LGND
5	MKS	<u> </u>		18			
-		4	*PBS	4.0		14	LGND
3	PBS	2	*PAS	13		12	
1	PAS	2	PAS	11		12	LGND
	173						

- PAS : Phase A pulse input signal (Negative pulse input signal) (positive)
- *PAS : Phase A pulse input signal (Negative pulse input signal) (negative)
- PBS : Phase B pulse input signal (Positive pulse input signal) (positive)
- *PBS : Phase B pulse input signal (Positive pulse input signal) (negative)
- MKS : Marker signal (positive)
- *MKS : Marker signal (negative)
- PSEL: Pulse select signal
- +5V : 5V (output from this module)
- LGND: 0V

8.4.2.1 C49 signal (for mode A)


	Α	В	
01	ME		
02	CSP		
03	COM1		
04			
05			
06	CMP A		
07	CMP B		
08	CMP C		
09			
10	COM2		
ME	: Marker enab	le signal input	
CSP	: Counter stop	signal input	
CMP A		•	
CMP B			
CMP C	1	*	
COM1		nal for ME and	CSP
COM2	: Common sig		ison result output CMP

8.4.2.2 C49 signal (for mode B)

C49			_
	Α	В	
01	ME		
02	CSP		
03	COM1		
04			
05			
06	OUT0	OUT4	
07	OUT1	OUT5	
08	OUT2	OUT6	
09	OUT3	OUT7	
10	COM2	COM3	
ME :	Marker enable	e signal input	
CSP :	Counter stop :	signal input	
OUT0 :	Comparison r	esult output	
OUT1 :	Comparison r	esult output	
OUT2 :	Comparison r	esult output	
OUT3 :	Comparison r	esult output	
OUT4 :			
OUT5 :			
OUT6 :			
OUT7 :	Comparison r		
COM1 :		al for ME and C	SP
COM2 :	•		n result output 0 to comparis
	result output 2		······································
COM3 :	*	al for compariso	n result output 4 to comparis

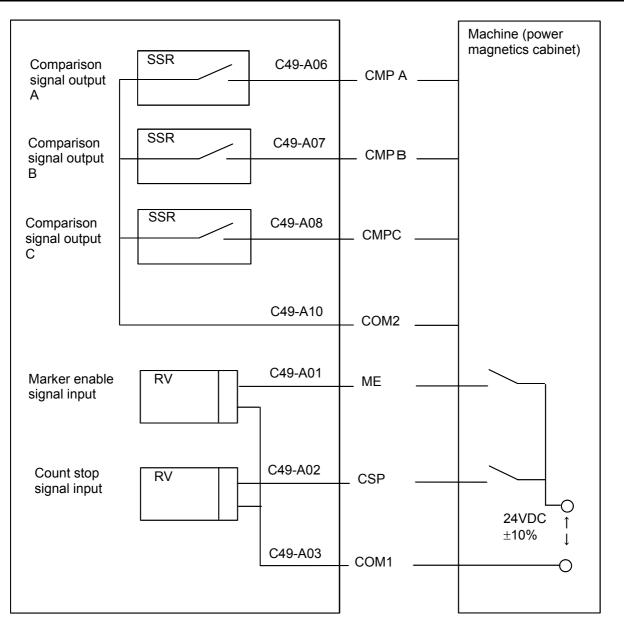
8.5 CONNECTION WITH PULSE GENERATOR

8.5.1 Use of Phase A and B Pulses

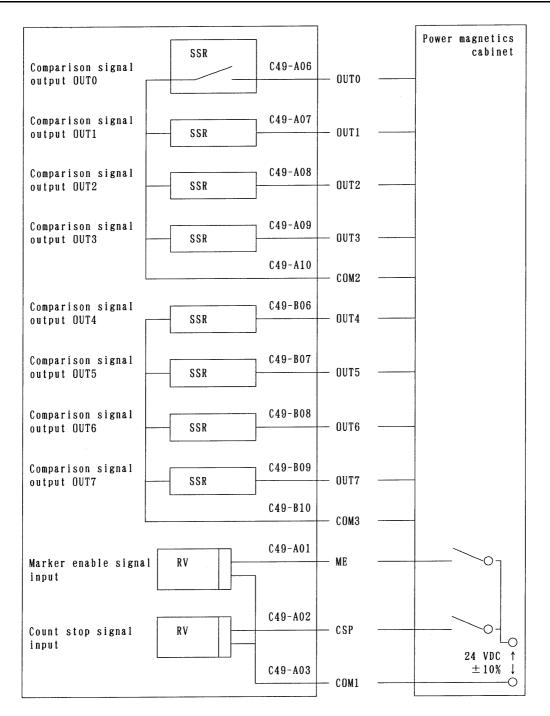
(*) The maximum current rating for each 5-V output is 300 mA.

Recommended cable A66L-0001-0286 (#20AWG×7, #24AWG×3 Pairs)

Pulse generator High-speed counter module JA9(1)PAS Negative JA9(2)0000 pulse signal input *PAS JA9(3)PBS С Positive 000 JA9(4)pulse signal input *PBS *+ C JA9(5)MKSĊ MKS О Marker ୬୦୦୦ଔ JA9(6)signal input *MKSĊ *MKS \cap Line receiver SN75113 Line receiver SN75115 5V JA9(9)+5VĊ +5V JA9(18)Use these lines together. +5VĊ +5V JA9(20)+5VĊ +5V JA9(7)0VĊ LGND JA9(12)Use these 0VĊ LGND lines together. JA9(14)0VĊ LGND JA9(16)٥٧Ċ LGND JA9(8)) P S E L Shield Grounding plate


8.5.2 Use of Positive/Negative Pulses

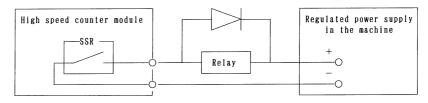
(*) The maximum current rating for each 5-V output is 300 mA.


Recommended cable A66L-0001-0286 (#20AWG×8, #24AWG×3 Pairs)

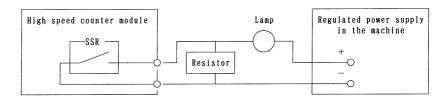
8.6 CONNECTION WITH MACHINE (POWER MAGNETICS CABINET)

8.6.1 Use in Mode A

8.6.2 Use in Mode B


8.7 I/O SIGNALS CONVENTIONS

8.7.1 Solid State Relay Output Signals (OUT0 to OUT7)

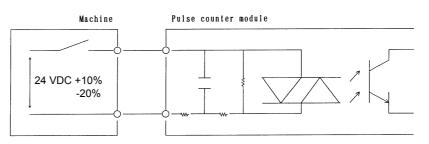

The solid state relay output signals drive relays in the machine (power magnetics cabinet) side and indicator LEDs.

- (1) Solid state relays
 - (a) Maximum load current at output-on
 250 mA: Up to three outputs set to on
 125 mA: Eight outputs set to on
 - (b) Saturation voltage at output-on Not more than 6 × IL [V] (IL: load current)
 - (c) Withstand voltage at output-off30 VDC max. even for instantaneous voltage
 - (d) Leak current at output-off Not more than 100μA

(2) Output circuit

- (3) Always install spark arresters when inductive loads such as relays are connected in the machine. Insert the spark arresters as near the load as possible (less than 20 cm). When capacitive loads are used in the machine, insert current limiting resistors in series with the loads to prevent the instantaneous current and voltage from exceeding the rated values.
- (4) If a lamp is turned on by a solid state relay output, the resulting surge current may damage the solid state relay. Thus, as shown in the figure below, provide a protective resistor to prevent the instantaneous current and voltage from exceeding the rated values.

8.7.2 DC Input Signals (ME and CSP)


The DC input signals (such as relay contact signal) are sent from the machine (control circuit) to the pulse counter module.

- Input conditions
 On voltage and current: 15 VDC or more, 4.5 mA or more
 Off voltage and current: 6 VDC or less, 2 mA or less
 Response time: 20 ms or less
- (2) Voltage and polarity Voltage : 24 VDC +10%, -20% Polarity : Positive or negative polarity available (The power is not supplied from the pulse counter module.)
- (3) Logical correspondence

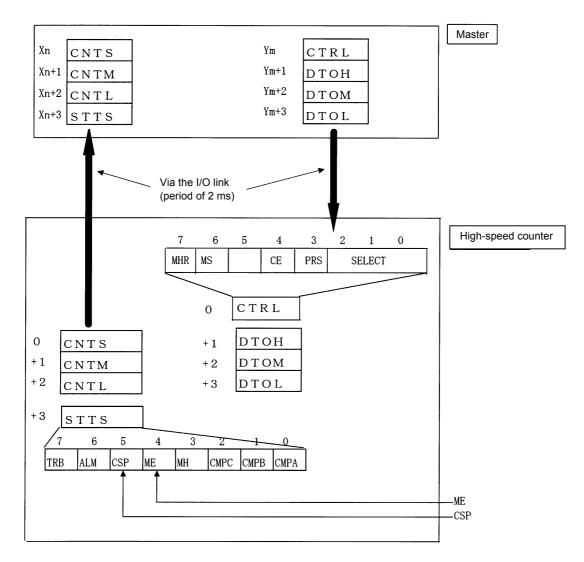
Contact	Logic
Open	0
Closed	1

(4) Receiver circuit of DC input signal

Machine Pulse counter module

8.7.3 +5-V Output from JA9 Connector

A voltage of +5 V on the JA9 connector of this module is the output of the counter module (300 mA maximum).
 It is necessary to satisfy Table 4.4 in Section 4.4, "Required Current", though.


Example: Assuming that 100 mA is supplied from the +5-V pin of the JA9 connector: $170 + 0.3 \times 100 = 200$

Thus, the required current is 200 mA.

8.8 SUPPLEMENT

8.8.1 Configuration of Mode A

How mode A is configured is shown below. The contents of the CNTS, CNTM, CNTL, and STTS on a high-speed counter module are sent to the X area assigned on the master via the I/O link. The contents of the Y area assigned on the master are sent to CTRL, DTOH, DTOM, and DTOL on the high-speed counter module, via the I/O link.

8.8.2 Counter Presetting and Counting

- (1) Presetting a counter value (using the external signal MKS) To preset a counter value, using the MKS signal, follow this procedure:
 - (a) Reset the MH (marker hold) signal.
 - (b) Preset a value in the counter at the rising edge of the MKS signal.

The MH signal is set at the same time the counter is preset with data.

- (a) Resetting the MH signal For mode A, both methods, (i) and (ii), are usable. For mode B, method (ii) is usable.
 - (i) Resetting the MS bit (bit 6) of the CTRL (control) register to 0......Control example 1

		Со	Status			
	MHR of CTRL	MS of CTRL	ME of MKS of external external signal signal		ME of STTS	MH of STTS
(i)	×	0	×	×	×	Changes to 0.
(ii)	1	×	×	×	×	Changes to 0.

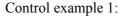
• The cross × in the above table means that the corresponding bit can be either 0 or 1. (The ME bit of the STTS register corresponds to the state of the external signal ME.)

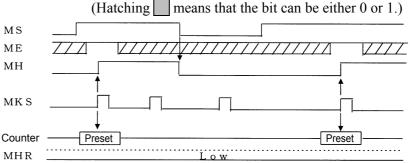
(b) Presetting a counter value

For both methods, (i) and (ii), the presetting is completed within $100 \mu s$ after the MKS has arisen.

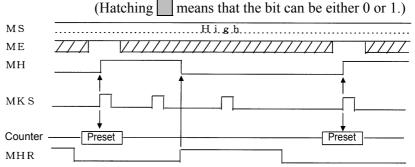
		Co	Status			
	MHR of CTRL	MHR of MS of external e		MKS of external signal	ME of STTS	MH of STTS
(i), (ii)	0	1	Contact "Closed"	First ↑ state	1	1

• Contact "Closed" in the above table means that 24 V is applied to the ME pin.


(2) Presetting a counter value (operating the PRS bit by ladder)


- <1> Load the 3 low-order CTRL bits (SELECT) with 001 by ladder.
- <2> Preset the DTOH, DTOM, and DTOL by ladder.
- <3> Invert the PRS bit by ladder.

(If the PRS is 0, set it to 1. If it is 1, reset it to 0.)


NOTE

- Once the PRS bit has been inverted, do not change the content of the DTOH, DTOM, DTOL, or CTRL within the period of two ladder cycle scans. Also do not invert the PRS bit again within the same period.
- 2 It takes about 5 ms for the counter to be preset since the inversion of the PRS bit.

Control example 2:

(3) Count The following table lists the conditions for counting by this module.

		Status		
	CE of CTRL	CSP of external signal	PSEL of external signal	CSP of STTS
Count (A/B phase pulse)	1	Contact "Open"	Open	Reset to 0.
Count (+/- pulse)	1	Contact "Open"	Connected to 0 V	Reset to 0.

• Contact "Open" in the above table means that the CSP pin is open (0 or NEG).

NOTE

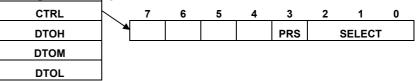
The count value does not become negative. The highest-order bit of the CNTS register is the TRA bit (see Subsection 8.8.4). Count-down: +1(00 0001H) \rightarrow 0(00 0000H) \rightarrow +8,388,607(7F FFFFH) \rightarrow +8,388,606(7F FFFEH)

(4) Stopping counting

The following table lists the condition for this module to stop counting.

		Condition		Status
	CE of CTRL	CSP of external signal	PSEL of external signal	CSP of STTS
Count stop method 1	0	×	×	×
Count stop method 2	×	Contact "Closed"	×	Reset to 1.

• Contact "Closed" in the above table means that 24 V is applied to the CSP pin (1 or POS).


 The cross × in the above table means that the corresponding bit can be either 0 or 1.
 (The × state of the CSP pin of the STTS register corresponds to the state of

the external signal CSP.)

8.8.3 Setting Data

Data for some models (such as the FS15 and FS18) is in the opposite order to that of the NC data. In this case, convert (rearrange) the data in byte units.

[Example of setting]

Example 1:

To preset the counter preset register with a specific value (the counter is also set to preset value), follow the steps below.

- (1) Preset the DTOH, DTOM, and DTOL with a desired value.
- (2) Set SELECT to 001.
- (3) Reverse the setting of the PRS (from 0 to 1 or from 1 to 0).
- (4) Wait for two scanning periods.
 - Another method for presetting the counter is to use the MKS external signal (see Subsection 8.8.2). It takes a maximum of 5 ms to preset using the first method, while it takes only a maximum of 100 µs to preset using the MKS external signal.

Example 2 :

To set the comparison control register with the setting (0 or 1) of CMA, CMB, and CMC, follow the steps below.

(1) Set DTOH bits 0, 1, and 2 to the desired data.

- (2) Set SELECT to 000.
- (3) Reverse the setting of the PRS (from 0 to 1 or from 1 to 0).
- (4) Wait for two scanning periods.

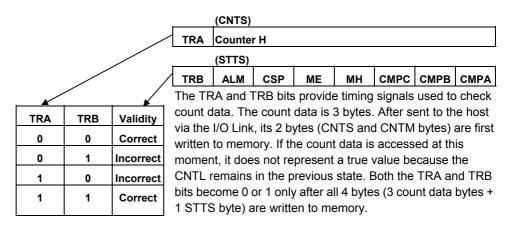
Example 3 :

To set comparison register B to a desired comparison value, follow the steps below.

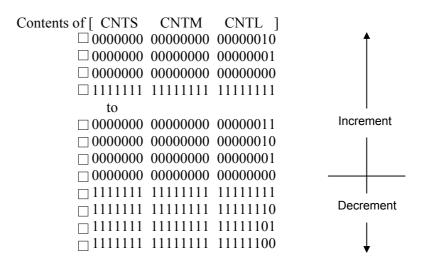
- (1) Set DTOH, DTOM, and DTOL to the desired comparison value.
- (2) Set SELECT to 011.
- (3) Reverse the setting of the PRS (from 0 to 1 or from 1 to 0).
- (4) Wait for two scanning periods.

The result of comparing comparison registers A, B, and C with the pulse counter is output via OUT0 to OUT2 of connector C49 of this counter module (A \rightarrow OUT0, B \rightarrow OUT1, and C \rightarrow OUT2).

Their output status is output via OUT0 to OUT2 of the LED indication panel (A \rightarrow OUT0, B \rightarrow OUT1, and C \rightarrow OUT2).

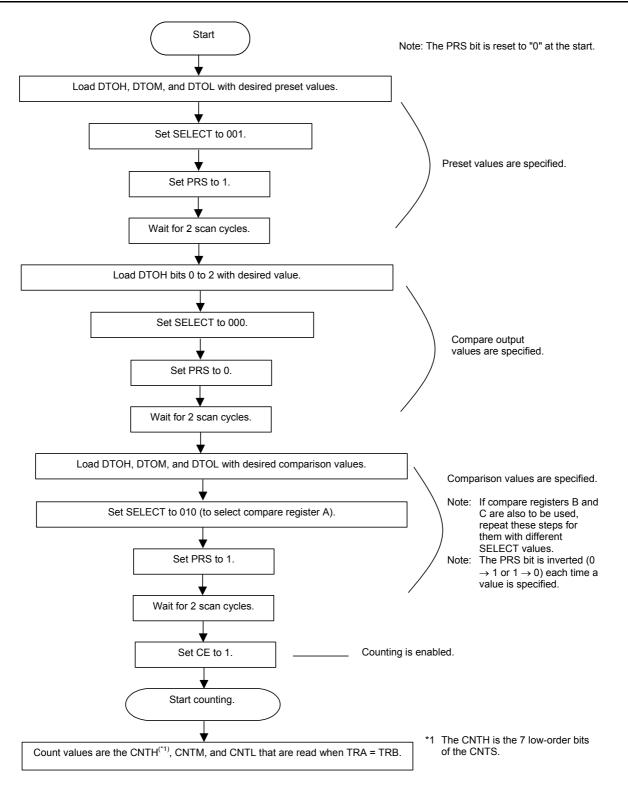

The result of comparison can be confirmed by checking STTS bits 0, 1, and 2 (CMPA, CMPB, and CMPC) with the PMC.

B-61813E/04


8.8.4 Reading Data

The CNTS and STTS are two of the four input bytes. The most significant bit, TRA, of the CNTS and the most significant bit, TRB, of the STTS can be used to determine whether the count data is correct. **If both TRA and TRB are 0 or 1, the count data is correct.** The time during which the TRA and TRB bits have a different value from each other is abut 2 msec.

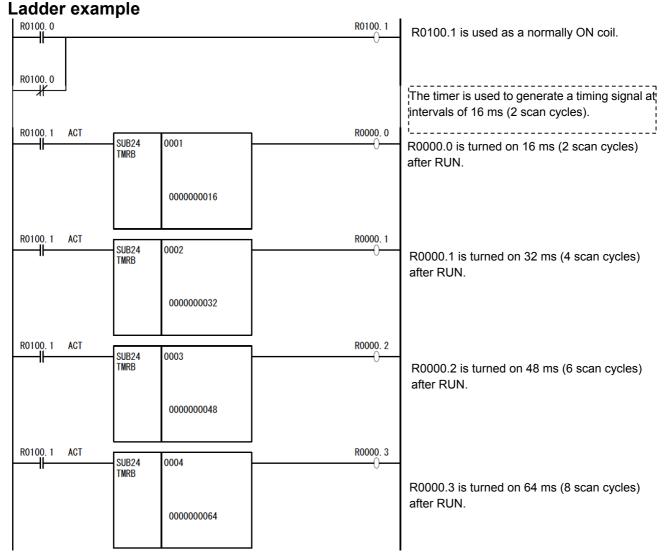
In almost all cases, both TRA and TRB will be 0 or 1 when you view the diagnostic display. (Do not determine that the data has not changed because of the fact that the TRA and TRB do not become 0 or 1 alternately.) **Note that the count data does not take a negative value**.

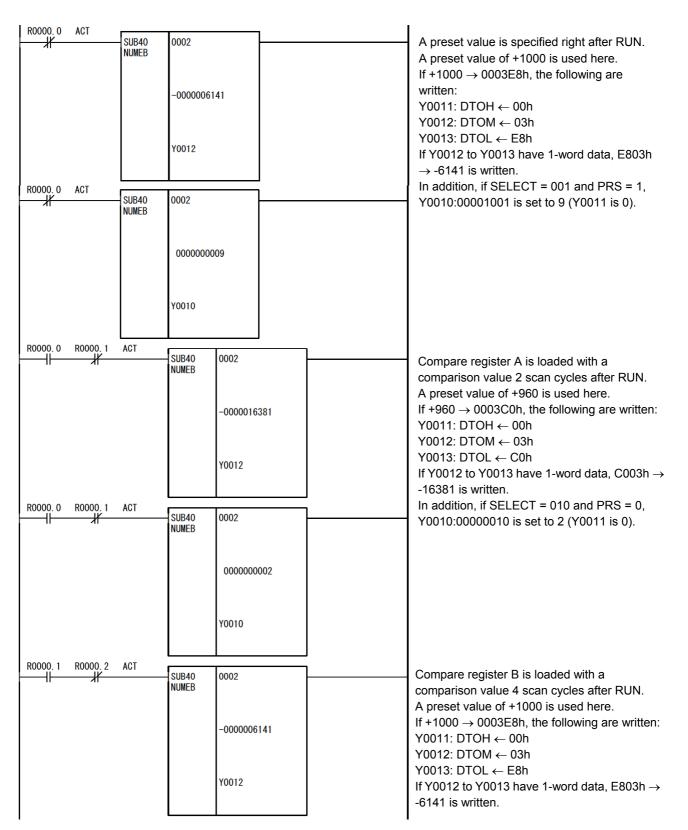

The counter assumes the following data when it is incremented or decremented.

The square \Box represents the TRA. (The most significant bit is the TRA. It is not a sign bit.)

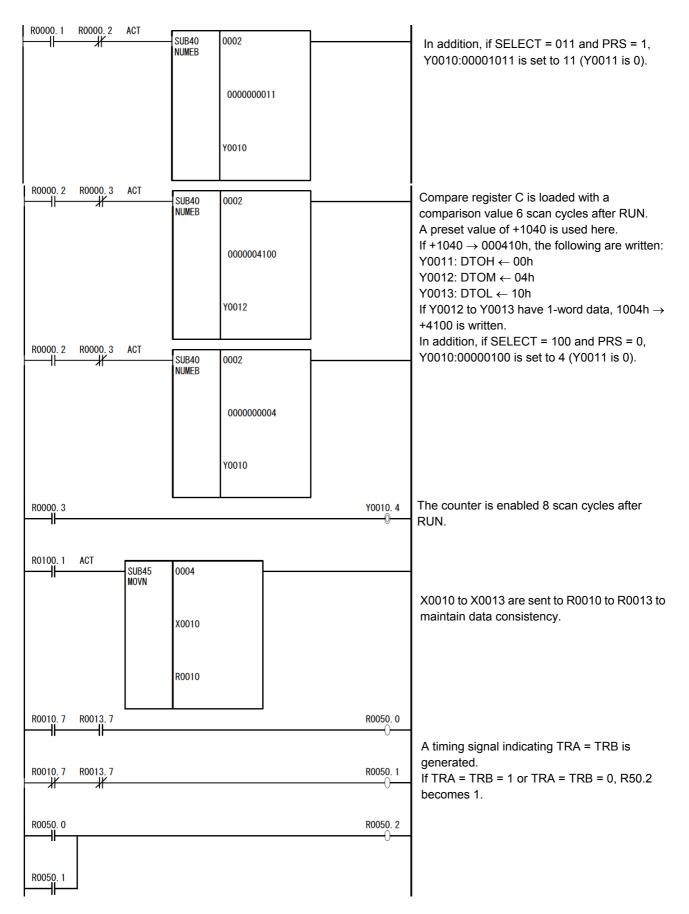
8.9 EXAMPLE OF STARTING UP ACT01A

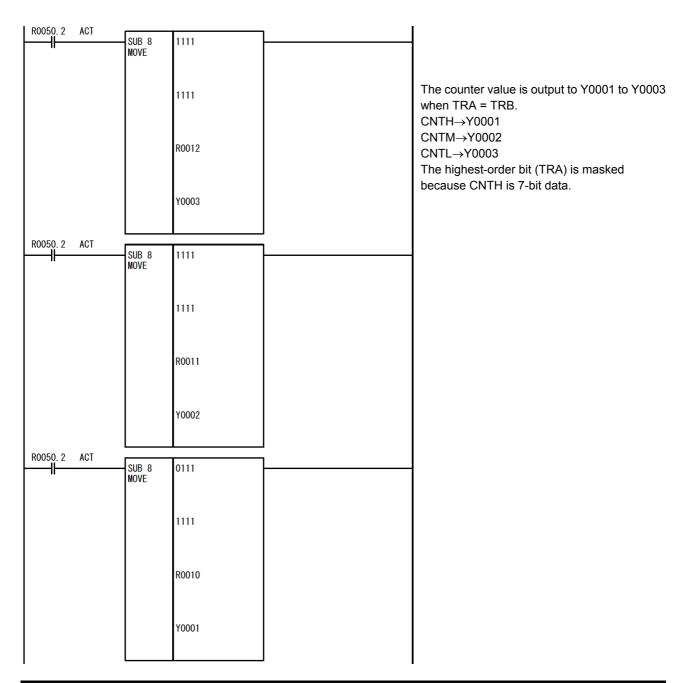
8.9.1 Mode A Startup Flowchart



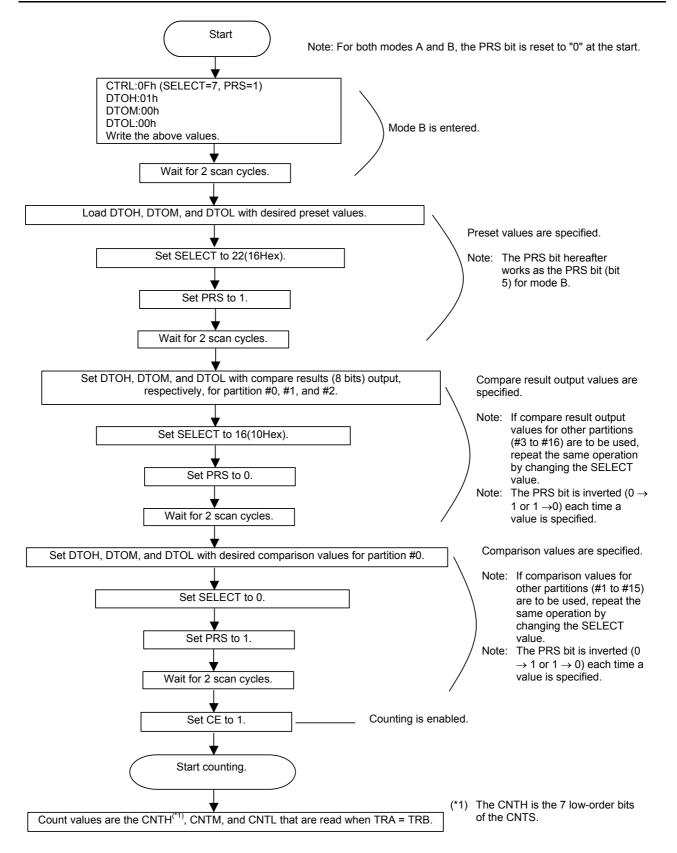

8.9.2 Example of Mode A Ladder

Allotment


/										
Address	Group	Base	Slot	Module nar	ne Address	Group	Base	Slot	Module name	
X0000					Y0000	0	0	01	/2	
X0001					Y0001	0	0	01	/2	
X0002					Y0002	0	0	02	/2	
X0003					Y0003	Ō	Ō	02	/2	
X0004					Y0004				/-	
X0005					Y0005					
X0006					Y0006					
X0007					Y0007					
X0008					Y0008					
X0009					Y0009					
X0010	0	0	05	/4	Y0010	0	0	05	/4	
X0011	Õ	Õ	05	/4	Y0011	0	0	05	/4	
X0012	ŏ	Ŏ	05	/4	Y0012	0	0	05	/4	
X0013	Õ	Ō	05	/4	Y0013	0	0	05	/4	
X0014					Y0014					
X0015					Y0015					


The ACT01A is allocated to X0010 to X0013 and Y0010 to Y0013. Y0000 to Y0003 are the addresses used to confirm count values.

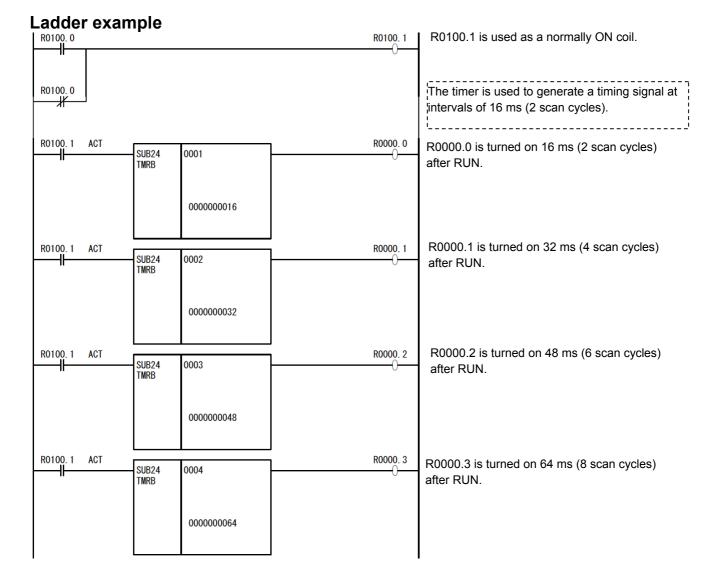
8.HIGH-SPEED COUNTER MODULE CONNECTION



NOTE

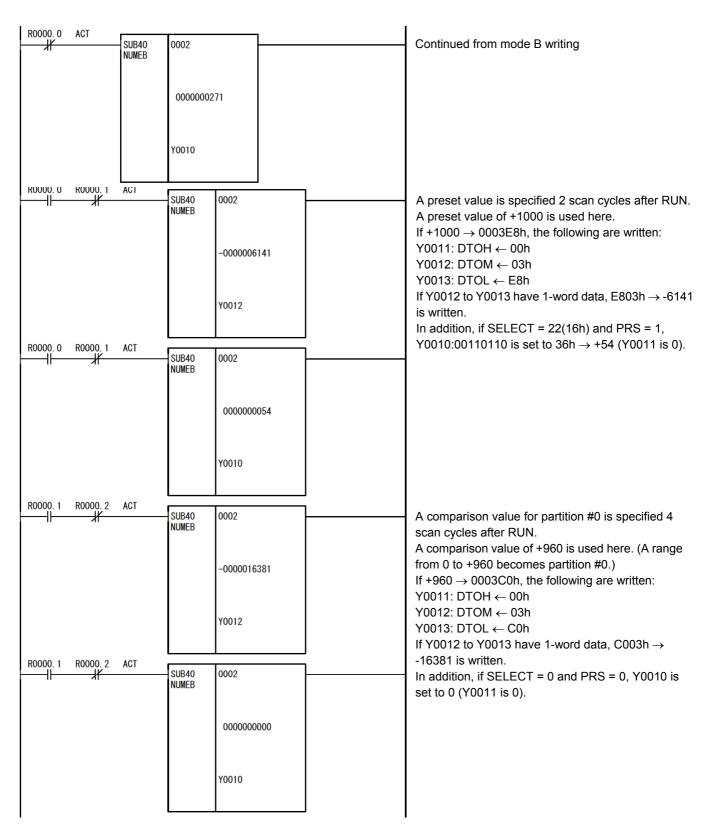
- 1 This sample ladder does not specify what the compare output is. To have it specify, perform the same operation as for setting the compare register by changing the SELECT value. Note that it is necessary to invert the PRS bit $(0 \rightarrow 1 \text{ or } 1 \rightarrow 0)$ each time a value is specified.
- 2 The compare output value and comparison value can be specified in any order until CE = 1 (counter enable).

8.9.3 Mode B Startup Flowchart

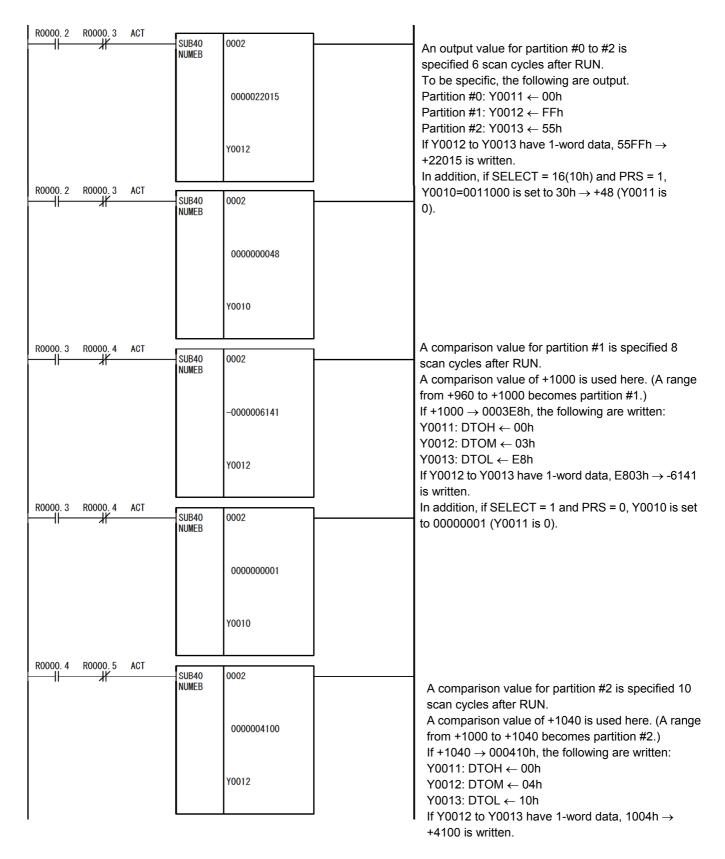


8.9.4 Example of Mode B Ladder

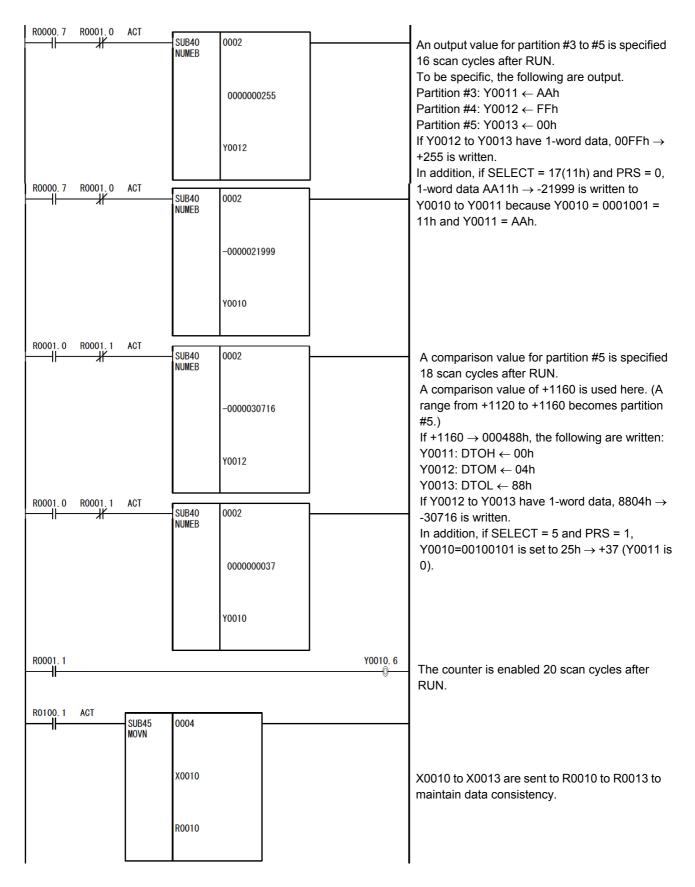
Allotment

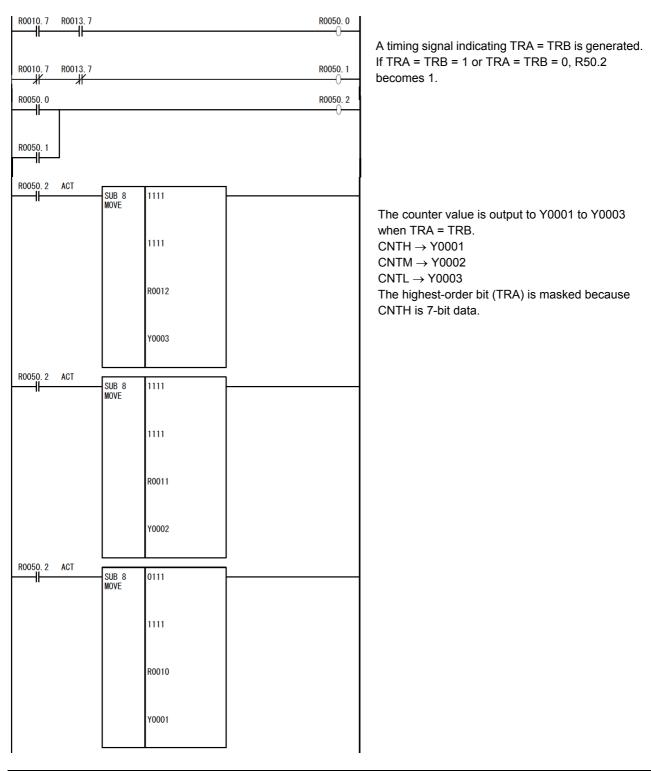

Allound	///									
Address	Group	Base	Slot	Module nan	ne Address	Group	Base	Slot	Module name	
X0000					Y0000	0	0	01	/2	
X0001					Y0001	0	0	01	/2	
X0002					Y0002	Ō	Ō	02	/2	
X0003					Y0003	Õ	Ō	02	/2 /2 /2	
X0004					Y0004				/ -	
X0005					Y0005					
X0006					Y0006					
X0007					Y0007					
X0008					Y0008					
X0009					Y0009					
X0010	0	0	05	/8	Y0010	0	0	05	/4	
X0011	0	0	05	/8	Y0011	0	0	05	/4	
X0012	0	0	05	/8	Y0012	0	0	05	/4	
X0013	0	0	05 05	/8	Y0013	0	0	05	/4	
X0014	0	0	05	/8	Y0014					
X0015	0	0	05	/8	Y0015					
X0016	0	0	05	/8	Y0016					
X0017	0	0	05	/8	Y0017					
X0018					Y0018					

The ACT01A is allocated to X0010 to X0017 and Y0010 to Y0013. Y0000 to Y0003 are the addresses used to confirm count values.


8.HIGH-SPEED COUNTER MODULE CONNECTION B-61813E/04

R0100.1 ACT		1	R0000. 4	R0000.4 is turned on 80 ms (10 scan cycles)
	SUB24 TMRB	0005	00	after RUN.
		000000080		
R0100. 1 ACT	SUB24	0006	R0000. 5	R0000.5 is turned on 96 ms (12 scan cycles)
	TMRB		0	after RUN.
		000000096		
R0100. 1 ACT	SUB24	0007	R0000. 6	R0000.6 is turned on 112 ms (14 scan cycles) after RUN.
	TMRB			
		0000000112		
R0100. 1 ACT		1	R0000. 7	R0000.7 is turned on 128 ms (16 scan cycles)
	SUB24 TMRB	0008	000	after RUN.
		000000128		
R0100.1 ACT	SUB24	0009	R0001. 0	R0001.0 is turned on 144 ms (18 scan cycles) after RUN.
	TMRB			
		0000000144		
		000000144		
R0100.1 ACT			R000 <u>1</u> .1	R0001.1 is turned on 160 ms (20 scan cycles)
R0100.1 ACT	SUB24 TMRB	0010	0	after RUN.
		000000160		
R0000. 0 ACT	SUB40	0002		Mode B is entered right after RUN.
21	NUMEB			The following are written:
				CTRL: 0Fh (SELECT = 7 and PRS = 1) DTOH: 01h
		000000000		DTOM: 00h
				DTOL: 00h
		Y0012		
•				




8.HIGH-SPEED COUNTER MODULE CONNECTION

B-61813E/04

R0000.4	R0000 5	ACT			I.	
	#		SUB40 Numeb	0002	Y001	dition, if SELECT = 2 and PRS = 1, 0=00100010 is set to 22h \rightarrow +34 (Y0011
				000000034	is 0).	
				Y0010		
R0000.5	R0000, 6	ACT	<u> </u>			
	¥		- SUB40 Numeb	0002	spe	omparison value for partition #3 is cified 12 scan cycles after RUN. omparison value of +1080 is used here. (A
				0000014340	ran #3.	ge from +1040 to +1080 becomes partition
				Y0012	Y00 Y00 Y00	011: DTOH ← 00h 012: DTOM ← 04h 013: DTOL ← 38h
R0000. 5	R0000.6	ACT	SUB40	0002		0012 to Y0013 have 1-word data, $3804h \rightarrow$
	A		NUMEB	0002		340 is written. Iddition, if SELECT = 3 and PRS = 0,
						010=00000011 is set to +3 (Y0011 is 0).
				000000003		· · · · · · · · · · · · · · · · · · ·
				Y0010		
R0000.6	R0000. 7	ACT	SUB40	0002		
	 /		NUMEB	0002		omparison value for partition #4 is specified scan cycles after RUN.
						omparison value of +1120 is used here. (A
				0000024580		ge from +1080 to +1120 becomes partition
					#4.)	
						1120 \rightarrow 000460h, the following are written: 11: DTOH \leftarrow 00h
				Y0012		12: DTOM \leftarrow 04h
						13: DTOL ← 60h
R0000.6	R0000.7	ACT	SUB40	0002		0012 to Y0013 have 1-word data, 6004h \rightarrow
	A		NUMEB	0002		580 is written. ddition, if SELECT = 4 and PRS = 1,
						$10=00100100 \text{ is set to } 24h \rightarrow +36 \text{ (Y0011)}$
				000000036	is 0	-
				Y0010		
-					•	

NOTE

- 1 This sample ladder does not set a comparison value or output value for partition #6 and above. If comparison and output values for these partitions are to be used, repeat the same operation as for partition #6 and below by changing the SELECT value. Be sure to invert the PRS bit (0 → 1 or 1 → 0) each time a value is specified.
- 2 The comparison and compare output values for each partition can be specified in any order until CE = 1 (counter enable).

9 TEMPERATURE INPUT MODULE

9.1 OVERVIEW

A temperature input module is used to measure the temperature of machine tools and similar equipment. The temperature input module can be either of the following, depending on the type of the sensor used.

- Thermoresistance-type temperature input module: ATI04A
- Thermocouple-type temperature input module: ATI04B

These modules can measure temperature on up to four channels. For the thermoresistance-type temperature input module, either JPt100 Ω or Pt100 Ω can be selected. For the thermocouple-type temperature input module, either K or J thermocouple input can be selected. This selection is made using the PMC user program (ladder).

9.2 TEMPERATURE INPUT MODULE SPECIFICATION

Input signal types and	• Types ATI04A						
number of input	Three-wire thermoresistance (JPt100 Ω)						
channels	Three-wire thermoresistance (Pt100 Ω)						
	ATI04B						
	J thermocouple (can also be used with						
	the tip grounded)						
	K thermocouple (can also be used with						
	the tip grounded)						
	Number of input channels						
	2/4, for all for which the input is the same						
Input signal switching	• User program (ladder)						
method							
Temperature	Thermoresistance type (ATI04A)						
measurement range	-50 to 300.0°C						
and precision	Resolution 0.1°C						
	Overall precision ±1%FS						
	Thermocouple type (ATI04B)						
	0 to 600.0°C						
	Resolution 0.1°C						
	Overall precision ±1%FS						
Data sampling period	 0.3 s per two channels 						
setting (Note)	 0.5 s per four channels to 10 s per four channels 						
	(4 s per four channels is assumed if no specification is						
	made)						
System failure check	 Self-diagnosis 						
	A watchdog timer is used.						
	 Abnormal temperature (including sensor input 						
	disconnection)						
	Failure information about each abnormal channel						
	is sent to the PMC.						
Interface with the PMC	• PMC \rightarrow temperature module						
	Information format: Binary or bit						
	Signals: 32 points						
	• Temperature module \rightarrow PMC						
	Information format: Binary or bit						
	Signals: 32 points						
External connection	Connector						
	(Hirose Electric : HIF3BA-34PA-2.54DS)						

NOTE

The actual response time is the sum of the time required for the signal to pass the filter and the scan time that is determined depending on the system1

9.3 PMC INTERFACE

9.3.1 PMC I/O Area

This temperature module uses an input/output area consisting of four bytes for input and the same number of bytes for output. Each byte of the input/output area has the following meanings. The terms "input" and "output" are used in reference to the PMC. When input/output addresses are assigned to the module, "/4" is used as the module name.

(1) Output (PMC \rightarrow temperature module)

Addresses in the module

	1	
0	DO07 to DO00	Period for 4-channel automatic measurement mode
		(lower 8 bits)
+1	DO15 to DO08	Period for 4-channel automatic measurement mode
		(higher 8 bits)
+2	DO23 to DO16	Module setting data and timing data
+3	DO31 to DO24	Module setting data and timing data

(2) Input (temperature module \rightarrow PMC)

Addresses in the module

0		CH1 temperature data, CH3 temperature data, or abnormality data (lower 8 bits)
+1		CH1 temperature data, CH3 temperature data, or abnormality data (higher 5 bits)
		abriorrianty data (nigher 5 bits)
	DI15 to DI13	Status signal
+2		CH2 temperature data, CH4 temperature data, or abnormality data (lower 8 bits)
+3	DI28 to DI24	CH2 temperature data, CH4 temperature data, or
		abnormality data (higher 5 bits)
	DI31 to DI29	Status signal

NOTE

0

If you are using the PMC-N, NA, or QA (the PMC for Series 15 or F-D Mate), all addresses up to those listed above can be used without modifying them if the data is manipulated in byte (8-bit) units. When manipulating data in word (16-bit) units, note that the byte addresses are transposed as shown below.

Addresses for word-unit operation in the PMC-N, NA, and QA

$PMC \rightarrow Temperature module$	Temperature modul
High-order bits Low-order bits	High-order bits Lo
Addresses in the module	Addresses in the mo

 $le \rightarrow PMC$ ow-order bits odule

- DO07 to DO00 DO15 to DO08 0 DI07 to DI00 DI15 to DI08
- DO23 to DO16 DO31 to DO24 +2 DI23 to DI16 DI31 to DI24 +2

9.3.2 Measurement Mode

This temperature module can operate in any of the following three measurement modes. The mode to use can be selected using a user program (ladder).

- 2-channel measurement mode This mode uses two channels, CH1 and CH2, for measurement. Data on each channel is updated every 0.3 s.
- (2) 4-channel automatic measurement mode This mode uses four channels, CH1 to CH4, for measurement. Input switching from CH1 and CH2 data to CH3 and CH4 data and vice versa is performed automatically. Data on each channel is updated at a specified interval, say, every 0.5 to 10 s.
- (3) 4-channel manual measurement mode This mode uses four channels, CH1 to CH4, for measurement. The PMC can reference CH1 and CH2 data or CH3 and CH4 data at the desired timing.

9.3.3 Details of Output Signals (PMC → Temperature Module)

DO07	DO06	DO05	DO04	DO03	DO02	DO01	DO00
DO15	DO14	DO13	DO12	DO11	DO10	DO09	DO08
_		_	_			_	
	DO22			DO19	DO18	DO17	DO16
					DO26	DO25	DO24

(1) Before setting the module setting data bit (NC READY (DO16)) to "1", set the following bits.

DO00 (LSB) to DO15 (MSB):

Channel switching period for 4-channel automatic measurement mode

These bits are set with a binary number representing the channel switching period for the 4-channel automatic measurement mode. They need not be set for the 2-channel mode.

The period can be varied in a range between 0.5 s and 10 s. When setting the bits, use a value ten times the desired period.

(Example) $2 \text{ s} \rightarrow 20 (14\text{h})$

The valid data range is between 5 and 100 (64h). Any value out of this range is regarded as being 40 (28h), that is, 4 s. If nothing is specified, a period of 4 s is again assumed.

DO17 : Module type

This bit is set according to the type of the temperature module being used.

- 0 :Thermocouple-type module (ATI04B)
- 1 : Thermoresistance-type module (ATI04A)
- DO18 : Sensor type

This bit is set according to the type of the temperature sensor being used.

- ATI04A
 - 0 : Pt
 - 1 : JPt

• ATI04B

- 0: K
- 1:J
- DO19 : Reserved for future use This bit must always be set to "0".
- DO24 : Number of channels

This bit is used to specify the number of channels to be measured.

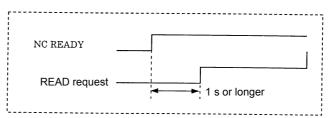
0:2 channels

1 :4 channels (if 1 is selected, DO25 must also be used.)

DO25 : 4-channel mode specification

- This bit is used to select the 4-channel mode to be used. 0 :Automatic measurement (the period is specified using DO00 to DO15.)
 - 1 :Manual measurement (a request is issued using DO22 and DO26 at every data read.)
- 2) Timing data

DO16: NC READY


When the power is switched on, this bit is set to "1" to cause the module setting data to be set in the temperature module.

The NC READY bit is enabled only once after the power is switched on. To rewrite the module setting data, switch the power off and then on again.

DO22 : READ request

This bit serves as the timing signal used in 4-channel manual measurement mode. Setting the bit to "1" issues a request for temperature data. When the input signal data READY signal becomes "1", read the temperature data.

This bit need not be set for 2-channel mode.

NOTE

After setting the NC READY bit to "1", wait for one second, and then set the READ request to "1".

DO26 : Channel select

This bit is used to specify channel switching for 4-channel manual measurement mode.

- 0: Channels 1 and 2
- 1: Channels 3 and 4

NOTE

See Section 9.5, "Timing Charts," for concrete explanations about how to handle the timing data.

9.3.4 Details of Input Signals (Temperature Module \rightarrow PMC)

(1) Status signals and CH1 temperature data, CH3 temperature data, or abnormality data

DI07	D106	DI05	DI04	DI03	DI02	DI01	D100
r	I	I		I			[
DI15	DI14	DI13	DI12	DI11	DI10	D109	D108

• Status signals

DI13 : Abnormality sign bit

- 1 : This bit is set to "1" when the temperature input is abnormal. DI00 to DI12 are used to describe the abnormality.
- 0: DI00 to DI12 are used to indicate the temperature data.
- DI14 : CH1 data READY
 - 1 : Read the CH1 temperature data from DI00 to DI12 when this bit is set to "1".
- DI15 : CH3 data READY
 - 1 : Read the CH3 temperature data from DI00 to DI12 when this bit is set to "1".
- CH1 temperature data, CH3 temperature data, or abnormality data

DI00 (LSB) to DI12 (MSB):

These bits indicate temperature input data (CH1/CH3) or abnormality data.

Temperature input data

The temperature input data is in binary. It is ten times the actual temperature.

Example

 $(\underline{83E}\text{Dh} \rightarrow 1005 \rightarrow 100.5^{\circ}\text{C})$

The highest three bits are status signals.

For the thermoresistance-type module (ATI04A), the DI12 bit is a sign bit. (Negative data is represented in two's complement.) Example

 $(9F9Ch \rightarrow -10.0^{\circ}C)$

The highest three bits are status signals.

Abnormality data

If an abnormality occurs in the input data or in the module, the DI13 bit (status signal) becomes "1", resulting in the display changing from temperature input data to abnormality data. Abnormality data is assigned to these bits as listed below:

- DI00 : CH1 input out of scale--the current temperature falls outside the measurable range.
- DI01 : CH1 input burn-out--the cable or connector has been detached.
- DI02 : CH3 input out of scale--the current temperature falls outside the measurable range.
- DI03 : CH3 input burn-out--the cable or connector has been detached.
- DI04 : Cold-junction abnormality (only for thermocouple-type input module)--the temperature of the terminal board unit falls outside the measurable range.
- DI05 : System error--the internal circuit is abnormal.
- DI06 : Wrong module--other than the correct module has been installed.
- (2) Status signals, CH2 temperature data, CH4 temperature data, or abnormality data

DI23	DI22	DI21	DI20	DI19	DI18	DI17	DI16
Dia	Diag	Diag	Diag	D 10 -	Diag	2105	D IO (
DI31	DI30	DI29	DI28	DI27	DI26	DI25	DI24

Status signals

•

- DI129 : Abnormality sign bit
 - 1 : This bit becomes "1" when the temperature input becomes abnormal. DI16 to DI28 are used to describe the abnormality.
 - 0: DI16 to DI28 are used to indicate the temperature data.

DI30 : CH2 data READY

- 1 : Read the CH2 temperature data from DI16 to DI28 when this bit is set to "1".
- DI31 : CH4 data READY
 - 1 : Read the CH4 temperature data from DI16 to DI28 when this bit is set to "1".
- CH2 temperature data, CH4 temperature data, or abnormality data

DI16 (LSB) to DI28 (MSB):

These bits indicate temperature input data (CH2/CH4) or abnormality data.

Temperature input data

The temperature input data is in binary. It is ten times the actual temperature.

Example

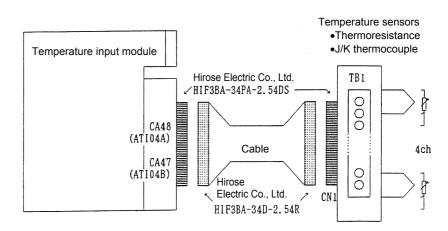
 $(\underline{41F}3h \rightarrow 0499 \rightarrow 49.9^{\circ}C)$

The highest three bits are status signals.

For a thermoresistance-type module (ATI04A), the DI28 bit is a sign bit. (Negative data is represented in two's complement.) Example

$$(5FFBh \rightarrow -0.5^{\circ}C)$$

The highest three bits are status signals.


Abnormality data

If an abnormality occurs in the input data or the module, the DI29 bit (status signal) is set to "1", resulting in the display changing from temperature input data to abnormality data. Abnormality data is assigned to these bits as listed below:

- DI16 : CH2 input out of scale--the current temperature falls outside the measurable range.
- DI17: CH2 input burn-out--the cable or connector has been detached.
- DI18 : CH4 input out of scale--the current temperature falls outside the measurable range.
- DI19: CH4 input burn-out--the cable or connector has been detached.
- DI20 : Cold-junction abnormality (only for thermocouple-type input module)--the temperature of the terminal board unit falls outside the measurable range.
- DI21 : System error--the internal circuit is abnormal.
- DI22 : Wrong module--other than the correct module has been installed.

9.4 COMPLETE CONNECTION OF TEMPERATURE INPUT MODULE

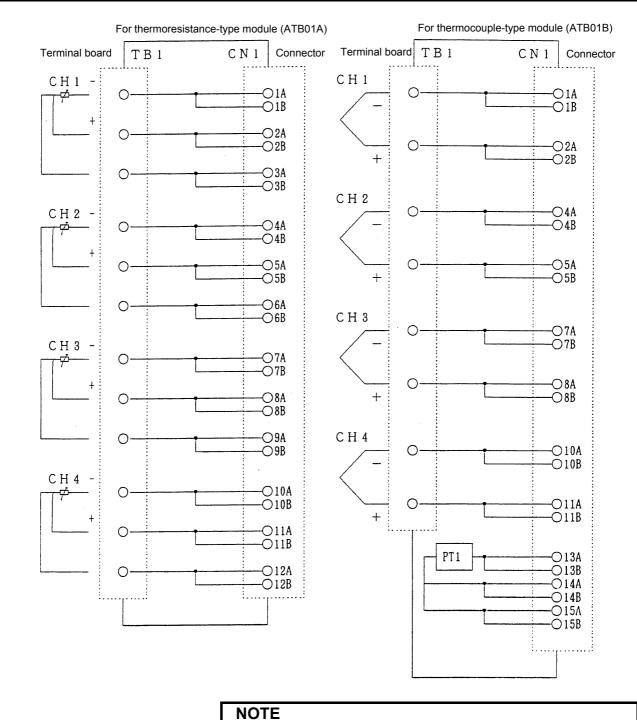
9.4.1 Temperature Input Module Connection Diagram

Terminal board unit

(There are two types of terminal board units, the first for a thermoresistance-type module and the second for a thermocouple-type module.)

See Section 9.7 for explanations about the dimensions of the terminal board.

9.4.2 **Connector Signal Lists**

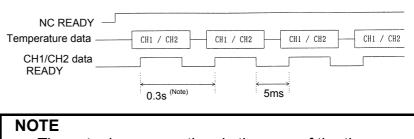

A	ГІ04А		
-	Channel	Pin No.	Pin No.
	Channel 1 -	1A	1B
	Channel 1 +	2A	2B
	Channel 1 +	ЗA	3B
	Channel 2 -	4A	4B
	Channel 2 +	5A	5B
	Channel 2 +	6A	6B
	Channel 3 -	7A	7B
	Channel 3 +	8A	8B
	Channel 3 +	9A	9B
	Channel 4 -	10A	10B
	Channel 4 +	11A	11B
	Channel 4 +	12A	12B
	Unusable	13A	13B
	Unusable	14A	14B
	Unusable	15A	15B
	Unusable	16A	16B
	Unusable	17A	17B

(1) Thermoresistance input module

(2) Thermocouple input module ATI04B

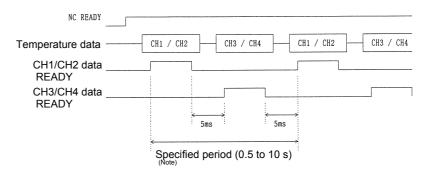
-	Channel	Pin No.	Pin No.
	Channel 1 -	1A	1B
+	Channel 1 +	2A	2B
	Unusable	3A	3B
	Channel 2 -	4A	4B
	Channel 2 +	5A	5B
	Unusable	6A	6B
	Channel 3 -	7A	7B
	Channel 3 +	8A	8B
	Unusable	9A	9B
	Channel 4 -	10A	10B
	Channel 4 +	11A	11B
	Unusable	12A	12B
Cold-ju	nction compensation element A	13A	13B
Cold-jur	nction compensation element B1	14A	14B
Cold-jur	nction compensation element B2	15A	15B
	Unusable	16A	16B
	Unusable	17A	17B

B-61813E/04


9.4.3 Terminal Board Unit Connection Diagram

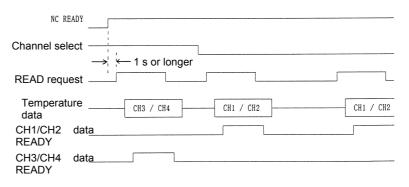
Th

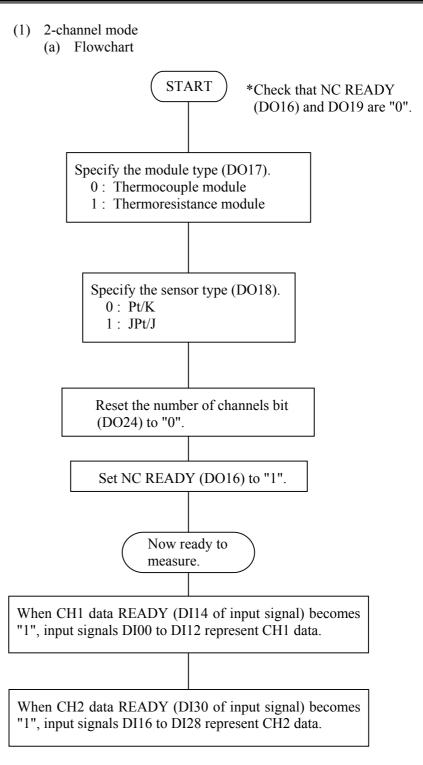
The thermocouple module ATB01B incorporates a cold-junction compensation device (PT1). It is essential to temperature measurement with a thermocouple. Use the ATB01B whenever the ATI04B is used.


9.5 TIMING CHARTS

(1) 2-channel mode

The actual response time is the sum of the time required to pass the filter and the scan time that is determined depending on the system.


(2) 4-channel automatic measurement mode


NOTE

The actual response time is the sum of the time required to pass the filter and the scan time that is determined depending on the system.

(3) 4-channel manual measurement mode

9.6 MEASUREMENT EXAMPLES

(b) Ladder example

The following measurement and ladder examples apply when a thermoresistance module with Pt is used for measurement.

PMC measurement

	GROUP	BASE	SLOT	NAME		GROUP	BASE	SLOT	NAME
X000	0	0	1	/4	Y000	0	0	1	/4
X001	0	0	1	/4	Y001	0	0	1	/4
X002	0	0	1	/4	Y002	0	0	1	/4
X003	0	0	1	/4	Y003	0	0	1	/4

NOTE

Set the ladder scan time to 0.25 s or less. This example of ladder use is for the second level. R0.0 is used as a normally open relay.

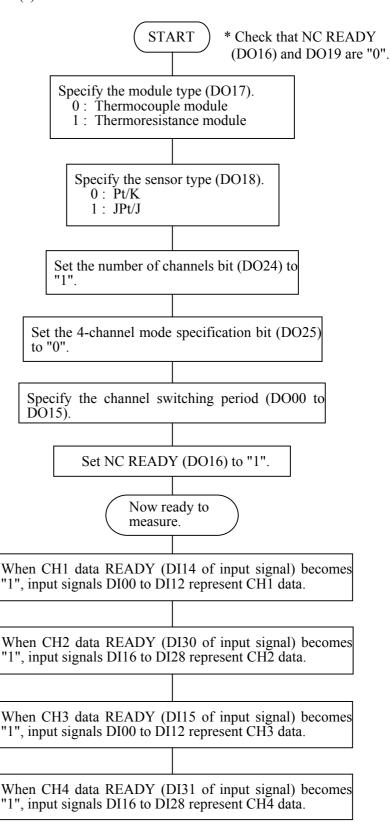
Ladder

			· 1
R0.0			Y2.1
R0.0			¥2.2
R0.0			Y3.0
R1. 0			Y2.0
X1.6	MOVE	1111 1111 X000 R010	
X1.6	MOVE	1111 0001 X001 R011	
ХЗ.6 г			-
	MOVE	1111 1111 X002 R012	
X3.6	MOVE	1111 0001 X003 R013	

Specify the module.

(thermoresistance-type module) Specify the sensor (Pt).

Specify the number of channels (two channels).


NC READY (When R1.0 becomes "1", NC READY becomes "1" to start measurement.)

When CH1 data READY is "1", CH1 temperature data is sent to R010 to R011.

When CH2 data READY is "1", CH2 temperature data is sent to R012 to R013.

9.TEMPERATURE INPUT MODULE CONNECTION

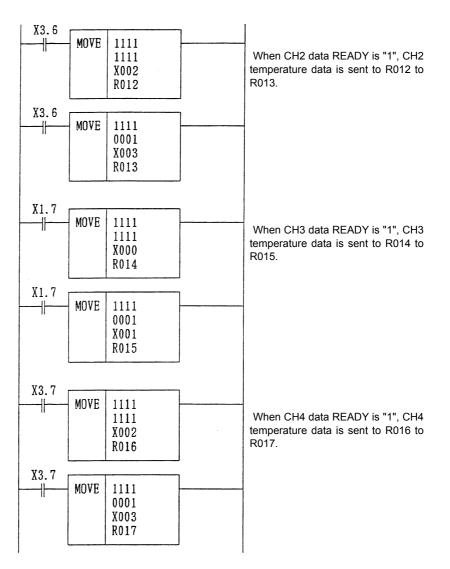
(2) 4-channel automatic measurement mode(a) Flowchart

(b) Ladder example

The following measurement and ladder examples apply when a J thermocouple module is used for measurement. PMC assignment

	GROUP	BASE	SLOT	NAME		GROUP	BASE	SLOT	NAME
X000	0	0	1	/4	Y000	0	0	1	/4
X001	0	0	1	/4	Y001	0	0	1	/4
X002	0	0	1	/4	Y002	0	0	1	/4
X003	0	0	1	/4	Y003	0	0	1	/4

NOTE


This example of ladder use is for the second level. R0.0 is used as a normally open relay.

Ladder

R0.0		¥2.1	Specify the module.
R0.0 ──# ──		¥2.2	(thermocouple-type module) Specify the sensor
R0.0		Y3.0	(J thermocouple).
─₩ R0.0		O ¥3.1	Specify the number of channels (four channels).
			Specify a 4-channel mode (automatic measurement).
R0.0	- NUMEB 0002 000000025 Y000	5	Specify the channel switching period for 4-channel automatic measurement. Specify <u>0025</u> to provide a period of 2.5 s. ^(Note)
R1.0 X1.6 	MOVE 1111 1111 X000 R010	¥2.0	NC READY (When R1.0 is set to "1", NC READY becomes "1" to start measurement.)
X1.6	- MOVE 1111 0001 X001 R011]	When CH1 data READY is set to "1", CH1 temperature data is sent to R010 to R011.

NOTE If your machine is the PMC-N, NA, or QA, specify $\underline{6400}$. $0025 \Rightarrow 0019h$. Because the upper byte is

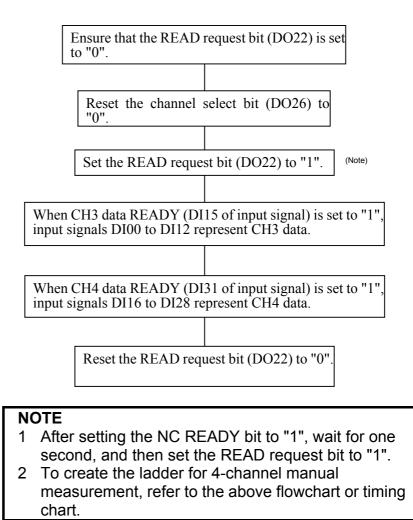
exchanged with the lower byte, $1900h \Rightarrow 6400$.

* Check that NC READY (DO16) and DO19 are "0".

(3) 4-channel manual measurement mode(a) Flowchart

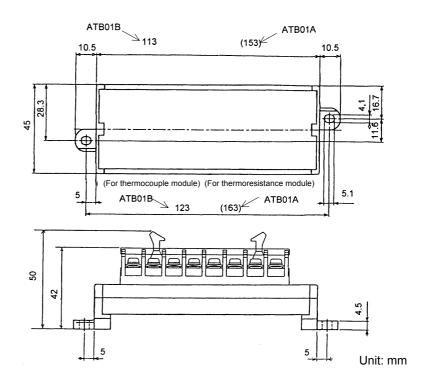
START

Specify the module type (DO17).

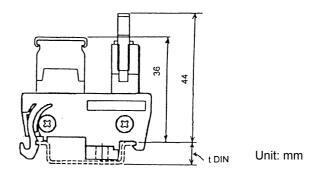

0 : Thermocouple module 1 : Thermoresistance module Specify the sensor type (DO18). 0 : Pt/K 1 : JPt/J Set the number of channels bit (DO24) to "1". Set the 4-channel mode specification bit (DO25) to "1". Set NC READY (DO16) to "1". Now ready to measure. * Reading CH1 and CH2 data Ensure that the READ request bit (DO22) is set to "0". Reset the channel select bit (DO26) to "0". Set the READ request bit (DO22) (Note) to "1". When CH1 data READY (DI14 of input signal) is set to "1", input signals DI00 to DI12 represent CH1 data. When CH2 data READY (DI30 of input signal)

becomes "1", input signals DI16 to DI28 represent CH2 data.

Reset the READ request bit (DO22) to "0".


NOTE

After setting NC READY to "1", wait for one second, and then set the READ request to "1".



* Reading CH3 and CH4 data

9.7 TERMINAL BOARD UNIT DIMENSIONS

To use a DIN rail, add its height (tDIN) to the dimension shown below.

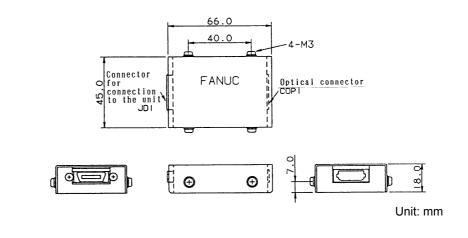
- 165 -

Λ

V OPTICAL I/O Link ADAPTER

The signal cable K1X shown in the general connection diagram (in section 4.1) can be extended to the maximum length of 200 m with optical fiber cables using an optical I/O link adapter.

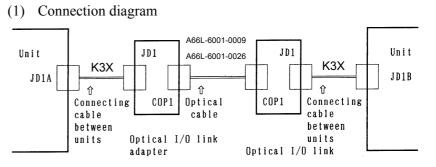
Two optical I/O Link adapters, A13B-0154-B001 and A13B-0154-B002 (high-speed response type).

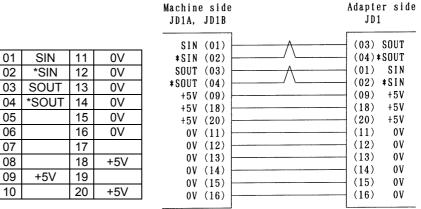

NOTE

- 1 For the cable K2X, the optical I/O link adapter cannot be applied to.
- 2 In the following cases, make sure to use an optical fiber cable for K1X. For cabling within the same cabinet, however, this applies only when the cable is 15 m or longer.
 - When the cable is more than 10 meters long.
 - When the cable K1X runs between different cabinets and it is impossible to connect the cabinets with a wire of 5.5 mm² or thicker.
 - When there is concern that the cable K1X is influenced by strong noise. For example:

When there is a strong electromagnetic noise source beside the cable K1X such as a welding machine and the like.

When a noise generating cable such as a power cable and the like runs for a long distance in parallel with the cable K1X.


10.1 EXTERNAL DIMENSION OF OPTICAL I/O Link


10.2 WEIGHT OF OPTICAL I/O Link

Main body: Approx. 100g

10.3 CONNECTION OF OPTICAL I/O Link

(2) Interunit connecting cables K3X

- (a) Recommended connector for cable side: PCR-E20FA (manufactured by HONDA TSUSHIN) FI30-20S (manufactured by HIROSE ELECTRIC) FCN-247J020-G/E (manufactured by Fujitsu) 52622-2011 (manufactured by Molex)
- (b) Recommended cable (with material): A66L-0001-0284#10P
- (c) Cable length: Max.2m (when the recommended cable is used)

(3) Optical cable

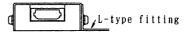
- <1> Specification (Be sure to use the optical cable conforming to this specification.):
 - A66L-6001-0009 (usable only with the standard type optical I/O Link adapter)
 - A66L-6001-0026
- <2> Cable length:

Max.200m (when the standard type optical I/O Link adapter A13B-0154-B001 is used)

Max.100m (when the high-speed response type optical I/O Link adapter A13B-0154-B002 is used)

NOTE

The cable length stated above applies when the optical fiber junction adapter A02B-0094-K841 is not in use. See Subsection 10.7.5 for details.


10.4 POWER SOURCE OF OPTICAL I/O Link ADAPTER

The power source is common to the standard type (A13B-0514-B001) and the high-speed response type (A13B-0154-B002).

- (1) Power voltage: 4.75 V to 5.25 V (at the receiving end)
- (2) Consumption current: 200mA
- (3) Power is supplied via the I/O Link cable K3X.

10.5 INSTALLATION CONDITIONS OF OPTICAL I/O Link ADAPTER

- (1) As this adapter is not a closed type, install it in the same closed type cabinet as used for the NC control unit.
- (2) Make sure to ground the case using the case fixing screw of the adapter.
- (3) As the adapter is light, it is not necessary to fix it with screws. However, keep it from getting contact with other circuits lest it should be short-circuited. In addition, when fixing the adapter in a cabinet and the like, fix it with a L-type fitting using the case fixing screws (M3) of the adapter.

10.6 CAUTIONS FOR USING OPTICAL I/O Link ADAPTERS

10.6.1 Configuring I/O Links Using Optical I/O Link Adapters

The following restriction applies when I/O Links are configured using optical I/O Link adapters.

Restriction on the number of optical I/O Link adapters used per I/O Link channel

Master - Group#0 - - - - - Group#1 - - - • • • • • - - - Group#15(CNC) \uparrow (I/O-A or the like) \uparrow (I/O-A or the like) \uparrow \uparrow (I/O-A or the like)Partition #1Partition #2Partition #3Partition #4

When using the standard-type optical I/O Link adapter (A13B-0154-B001):

Up to 5 partitions (I/O Link master -- group #0 -- group #1 -- ... -- group #15) can be configured with optical fibers.

Use electrical cables for the K1X in the other partitions.

When using the high-speed response type optical I/O Link adapter (A13B-0154-B002):

The A13B-0154-B002 performs optical-electrical conversion faster than the A13B-0154-B001.

All (16) partitions (master -- group #0 -- group #1 -- ... -- group #15) can be configured with optical fiber.

NOTE

- 1 When using an optical fiber for I/O Links, use optical I/O Link adapters conforming to the same specification on both ends of the optical fiber.
- 2 When using the high-speed response type optical I/O Link adapter (A13B-0154-B002), do not use any optical fiber cable other than the A66L-0001-0026.

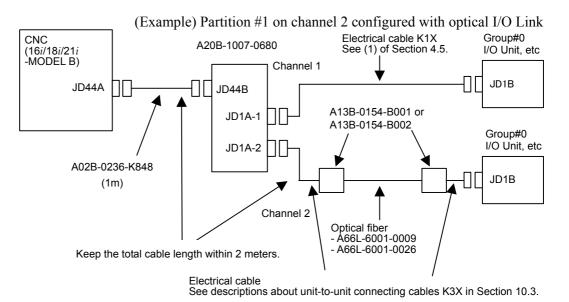
When using the standard-type optical I/O Link adapter (A13B-0154-B001), either of the optical fiber cables A66L-0001-0009 and A66L-0001-0026 can be used.

3 If 6 or more partitions of an I/O Link are configured with optical fibers, using the standard-type optical I/O Link adapter even in one of these partitions disables the I/O Link from operating normally.

When using optical fibers in 6 or more partitions, do not use the standard-type optical I/O Link adapter; use only the high-speed response type optical I/O Link adapter.

Parts required per optical I/O Link partition

- When configuring 5 or fewer partitions with optical fibers Two standard-type optical I/O Link adapters (A13B-0154-B001) Two unit-to-unit connecting cables (K3X) One optical cable (A66L-6001-0026 or A66L-6001-0009)
- When configuring six or more partitions with optical fibers
 Two high-speed response type optical I/O Link adapters (A13B-0154-B002)
 Two unit-to-unit connecting cables (K3X)
 One optical cable (A66L-6001-0026)


10.6.2 When Using Series 16*i*/18*i*/21*i*-MODEL B as Master

Two channels' worth of I/O Link signals are allocated to the I/O Link connector (JD44A) of the Series 16*i*/18*i*/21*i*-MODEL B.

- When using only one I/O Link channel No I/O Link connector adapter (A20B-1007-0680) is required. Either an electrical cable or optical I/O Link can be used as the K1X. When using the optical I/O Link, make a connection as described in (1) of Section 10.3. In this connection, the DI/DO data of channel 2 is invalid.
- (2) When using two I/O Link channels
 - Using two I/O Link channels requires using the I/O Link connector adapter (A20B-1007-0680). When configuring an optical I/O Link, you can use optical fibers between the I/O Link connector adapter and group #15 (all partitions on channels 1 and 2). No optical fiber can be used between the CNC (JD44A) and I/O Link connector adapter (JD44B). Use a 1-meter electrical cable (A02B-0236-K848).

NOTE

Do not have the cable length from the CNC (JD44A) to the I/O Link connector adapter and then to the optical I/O Link adapter exceed 2 meters in total.

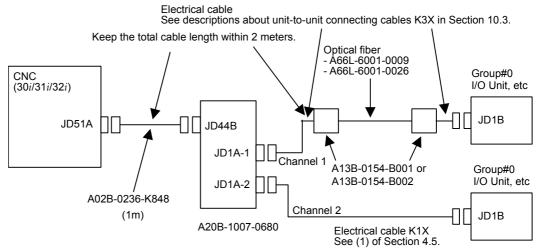
10.6.3 When Using Series 30i/31i/32i-MODEL B as Master

Three channels' worth of I/O Link signals are allocated to the I/O Link connector (JD51A) of the Series 30*i*/31*i*/32*i*-MODEL B.

(1) When using only one I/O Link channel

You do not need to use the I/O Link connector adapter (A20B-1007-0680) or 3-channel I/O Link connector adapter (A20B-1008-0360).

Either an electrical cable or optical I/O Link can be used as the K1X. When using the optical I/O Link, make a connection as described in (1) of Section 10.3.

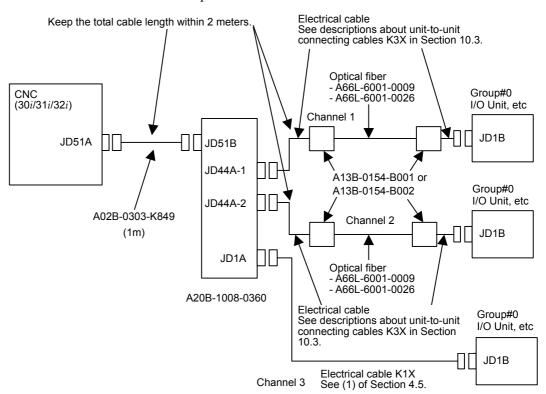

In this connection, the DI/DO data for channels 2 and 3 is invalid.

(2) When using two I/O Link channels Using two I/O Link channels requires using the I/O Link connector adapter (A20B-1007-0680).
When configuring an optical I/O Link, you can use optical fibers between the I/O Link connector adapter and group #15 (all partitions on channels 1 and 2). No optical fiber can be used between the CNC (JD51A) and I/O Link connector adapter (JD44B). Use a 1-meter electrical cable (A02B-0236-K848).

NOTE

Do not have the cable length from the CNC (JD51A) to the I/O Link connector adapter and then to the optical I/O Link adapter exceed 2 meters in total.

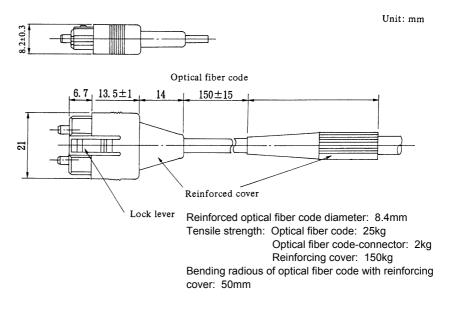
(Example) Partition #1 on channel 1 configured with optical I/O Link



(3) When using three I/O Link channels Using three I/O Link channels requires using the 3-channel I/O Link connector adapter (A20B-1008-0360).
When configuring an optical I/O Link, you can use optical fibers between the I/O Link connector adapter and group #15 (all partitions on channels 1, 2, and 3). No optical fiber can be used between the CNC (JD51A) and I/O Link connector adapter (JD51B). Use a 1-meter electrical cable (A02B-0303-K849).

NOTE

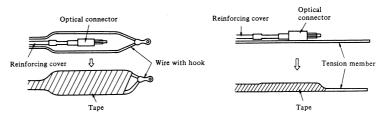
Do not have the cable length from the CNC (JD51A) to the I/O Link connector adapter and then to the optical I/O Link adapter exceed 2 meters in total.


(Example) When configuring partition #1 on channels 1 and 2 with the optical I/O Link

10.7 OPTICAL FIBER CABLE

This CNC uses optical cables for connections between the control unit and the I/O Unit. Unlike the conventional power cables, optical fiber cables need special care in installation and handling. No optical fiber cable can be used on movable parts.

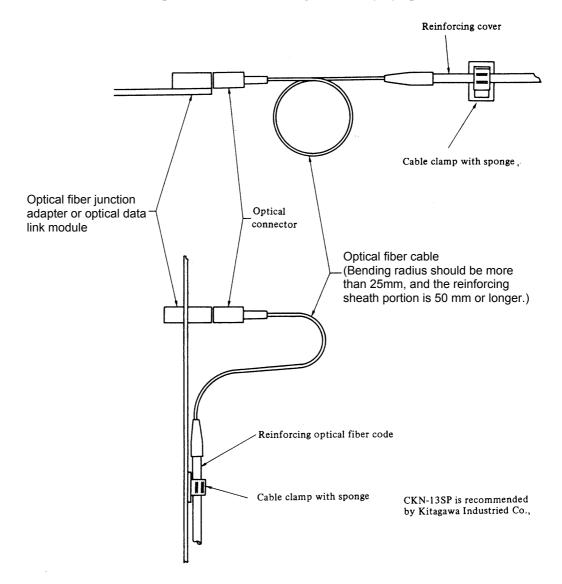
10.7.1 External View of Optical Fiber Cable


- (1) Standard length of an optical fiber cable is 10, 15, 20, 30, 50, 100, and 200 meters.
- (2) No machine tool builder is allowed to cut or joint optical fiber cables.
- (3) If it needs to relay on cabling, use optical fiber junction adapter. Up to the relay points are allowed on a transmission line.

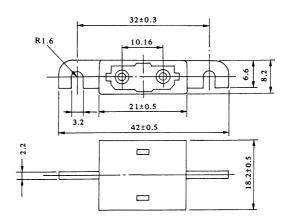
10.7.2 Notice of Optical Fiber Cable Handling

- (1) Even though reinforcing cover used on the optical fiber code has enough mechanical strength, be sure not to be damaged by heavy materials drop.
- (2) Detaching and attaching of optical connector should always be made by touching connector. Optical fiber code should not be touched when replacement.
- (3) Optical connector is automatically locked with upper side lock levels after being connected. It is impossible to pull out the connector without releasing the lock levers.
- (4) Optical connector cannot be connected oppositely. Be sure the connector direction when connection is done.
- (5) Optical connector should be processed as follows before laying of optical fiber cable.

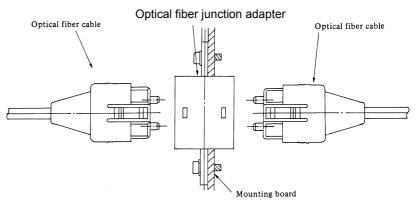
Fix a reinforcing cover to a wire with hook or tension member by a tape.


At laying hook the wire or pull the tension member taking enough care that optical connector does not receive pulling strength.

- (6) Reinforcing cover is fixed to cable lamp so that optical fiber cable could not weigh directly the connecting part of connector.
- (7) Notice that optical connector's chip is clear. The attached protect cap must be always put on when optical connector is not used. Remove dirty with a clear tissue or absorbent cotton (cotton with ethyl alcohol is applicable). No other organic solvent than ethyl alcohol cannot be used.


10.7.3 **Optical Fiber Cable Clamping Method**

When reinforcing cover is fixed at cable clamp with sponge, enough sag at optical fiber code as shown below is necessary so that connecting part of optical should not be weighed directly by optical fiber cable.



10.7.4 Relay Using an Optical Fiber Junction Adapter

(1) External view of an optical fiber junction adapter

(2) Example of the use of an optical fiber junction adapter

Specification: A02B-0094-K841

NOTE

Up to one relay points are permitted. When the high-speed response type optical I/O Link adapter is used, however, it is impossible to use the optical fiber junction adapter.

(3) Installing the optical fiber junction adapter

The optical fiber junction adapter should be installed within a cabinet, as a rule. If it is impossible to avoid installing it within a cabinet, protect the adapter and the optical cable portions (such as connectors and cords) not covered with reinforcement coating from the outside air by, for example, covering them with packing.

(4) Environmental resistance of the optical fiber junction adapter

- The optical fiber junction adapter is not waterproof. Even when optical cables are attached to both ends of the adapter, there are very small gaps in the linked portions, so water resistance can not be expected.
- When optical cables are attached to both ends of the junction adapter installed in a normal environment (such as within a cabinet), it is unlikely that dust will penetrate between the adapter and optical fiber to the degree that it may hamper normal optical linkage. If one or both ends of the adapter are left open, dust and dirt may accumulate even when the adapter is in a normal environment (such as within a cabinet). The dust and dirt on the adapter ends is likely to hamper normal optical linkage when the optical cables are attached. In such a case, clean the junction adapter and the optical connector using the optical fiber junction adapter cleaning method described below.
- Do not allow cutting fluid to splash over the adapter or those optical cable portions (such as connectors and cords) that are not covered with reinforcement coating. If the inside of the adapter and fiber end surfaces are contaminated with cutting fluid, a malfunction may occur.

(3) Cleaning

If the optical fiber junction adapter, optical-to-electrical conversion module, and optical cable are soiled, clean them according to the following procedures.

- Cleaning the optical fiber junction adapter and optical-to-electrical conversion module First, clean the entire housing by wiping it with a cloth moistened with, or by washing it in, ethyl alcohol or HCFC141B (alternative CFC; High Shower spray can DS-2168, manufactured by Sun Hayato). Similarly, wash the two sleeves in the adapter or wipe them with a cotton swab or the like.
- Cleaning optical cables

For the optical cables, it is important to clean the connectors at their ends. Any soiling on the optical fiber end surfaces will hamper optical transmission, resulting in a malfunction. Wipe the optical fiber end surfaces (that is, the ferrule end surfaces) thoroughly with a soft, clean cloth (like gauze) moistened with ethyl alcohol or HCFC141B, in the same way as described above. The use of cotton swabs may prove convenient. The fiber end surfaces of low-loss optical cables are lower than the ferrules. To remove any soiling from the fiber end surfaces completely, push the cotton swab or gauze into the depressions all the way through while rotating the ferrule. If the ferrules and optical connectors are contaminated with oily substances, and they may extend over a cleaned fiber end surface when it is attached to the optical-to-electrical conversion module, it is a good idea to wash them before wiping the optical fiber end surfaces, using the procedure stated above.

10.7.5 Maximum Transmission Distance by Optical Fiber Junction Cable

Maximum transmission distance by optical fiber junction cable is shown below:

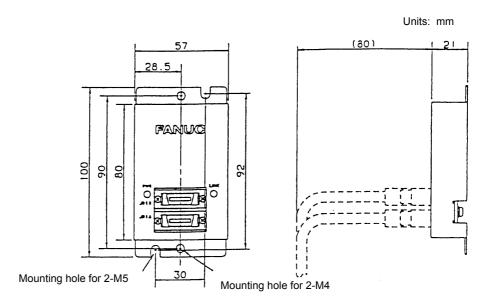
The maximum transmission distance varies depending on the number of relay points supported by optical fiber junction adapters. When the high-speed response type optical I/O Link adapter is in use, no optical fiber junction adapter can be used.

Optical I/O Link adapter	Relay points	Max. trans. distance			
Standard type	0	200m			
Standard type	1	100m (total)			
Lligh around reasoning time	0	100m			
High-speed response type	1	Not applicable			

I/O Link DUMMY UNIT

11.1 OVERVIEW

If a slave unit (such as the FS0, Power Mate, I/O Unit-MODEL A, or connection unit) is removed from the FANUC I/O Link ^(Note), the group number for those that followed the removed slave unit changes. So, it becomes necessary to change the PMC assignment. However, connecting a <u>FANUC I/O Link dummy unit</u> in place of the removed slave unit makes it unnecessary to change PMC assignment.


This chapter describes the electrical and structural specifications that apply to the FANUC I/O Link dummy unit when it is connected to the FANUC I/O Link.

Specification: A13B-0167-B001

NOTE

The FANUC I/O Link is a serial interface for connecting the CNC or cell controller to the I/O Unit-MODEL A, Power Mate, or other units for high-speed transfer of I/O signals (bit data).

11.2 EXTERNAL DIMENSIONS

11.3 LED INDICATORS

- (1) PWR: Lights when the FANUC I/O Link dummy unit is supplied with power.
- (2) LINK: Lights when the FANUC I/O Link is performing communication.

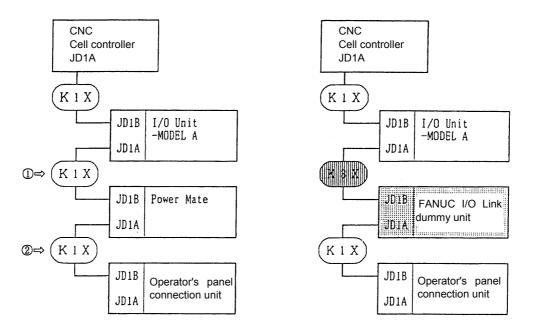
11.4 WEIGHT

(1) Main unit: Approximately 120 g

11.5 POWER REQUIREMENTS

- Supply voltage: 4.75 to 5.25 V (at reception terminal)
- (2) Required current: 180 mA (maximum)
- (3) Power dissipation: 0.9 W
- (4) Supply method: Via the I/O link cable

11.6 INSTALLATION CONDITIONS


(1)

This unit is not hermetically sealed. So, it must be installed in a cabinet that is hermetically sealed to the same level as that for the NC. The cabinet must be installed in a location where the following environmental requirements are satisfied.

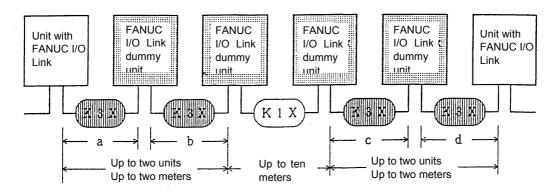
(1)	Ambient temperature	
	Operating:	0 to 45°C
	Storage and transportation:	-20 to 60°C
(2)	Humidity	
	Normal:	75% or less (relative)
	Short-period (within one month):	95% (maximum)
(3)	Vibration	
	Operating:	0.5 G or less

11.7 CONNECTION DIAGRAMS

11.7.1 When not Connecting FANUC I/O Link Dummy Units in Series

Fig. 11.7.1 Example of Using the FANUC I/O Link Dummy Unit (in Place of the Power Mate)

(1) Replacing a cable


The FANUC I/O Link dummy unit is supplied with power from the preceding or following group via a K3X cable. So, the K1X cable at <u>either</u> JD1A or JD1B of the dummy unit must be replaced with the K3X cable (① or ② in Fig. 11.7.1).

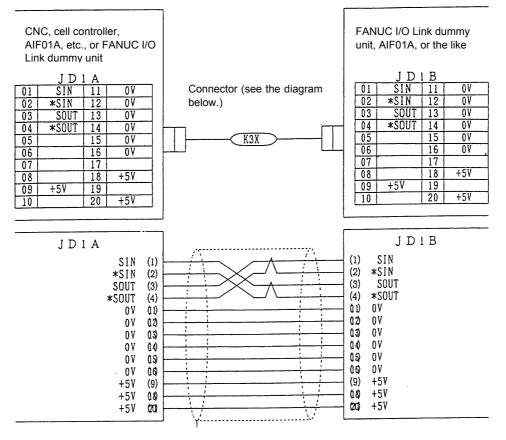
CAUTION Do not attach a K3X cable to JD1A and JD1B simultaneously.

(2) Cable length

K1X cable: 10 m (maximum) (for cabling within the same cabinet, up to 15 m) K3X cable: 2 m (maximum)

11.7.2 Connecting FANUC I/O Link Dummy Units in Series

 Number of FANUC I/O Link dummy units that can be used in succession
 Up to two FANUC I/O Link dummy units can be connected via a


K3X cable to a unit that supplies power to them. (See Fig. 11.7.2.)(2) Cable length

- K1X cable: 10 m (maximum) (for cabling within the same cabinet, up to 15 m)
 - K3X cable: 2 m (maximum) in total $(a + b \le 2 m \text{ and } c + d \le 2 m)$

11.7.3 Grounding

Ground the case of the FANUC I/O Link dummy unit.

11.7.4 K3X Cable

• Cable connector

Manufacturer		Housing	
	Soldering type	Crimping type	
Honda Tsushin	PCR-E20FS	PCR-E20FA	PCR-V20LA
Hirose Electric	FI-40-20S	FI-30-20S	FI-20-CV2
Fujitsu	-	FCN-247J020-G/E	FCN-240C020-Y/S

- Use twisted-pair wires for the SIN, *SIN, SOUT, and *SOUT signals.
- Recommended wires : A66L-0001-0284#10P (twisted-pair wires with common shielding)
- Maximum cable length : 2 m (when recommended wires are used)
- Do not connect a wire to an idle pin.
- Connect the cable shielding to the grounding plate of the cabinet via a metal cable clamp at JD1A. (See the applicable CNC or cell controller connection manual.)

12 TWO-CHANNEL I/O Link CONNECTOR ADAPTER

12.1 OVERVIEW

The FANUC Series 16*i*/18*i*/21*i*-MODEL B CNC has two FANUC I/O Link interface channels. These channels make it possible to increase the number of I/O points from 1024/1024 to 2048/2048.

This chapter explains how to connect a 2-channel I/O Link connector adapter required in using the I/O Link 2-channel function.

NOTE

Using this function on the 16*i*/18*i*/21*i*-MODEL B mentioned above requires specifying the PMC-SB6/-SB7. This function cannot be used with the PMC on the

loader control board.

12.2 CONNECTION FOR USE OF TWO FANUC I/O Link CHANNELS

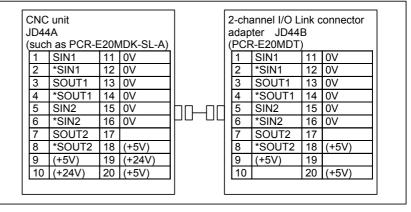

Two channels' worth of I/O Link signals are allocated to the I/O Link connector (JD44A) of the Series 16*i*/18*i*/21*i*-MODEL B CNC.

Three channels' worth of I/O Link signals are allocated to the I/O Link connector (JD51A) of the Series 30*i*/31*i*/32*i* CNC.

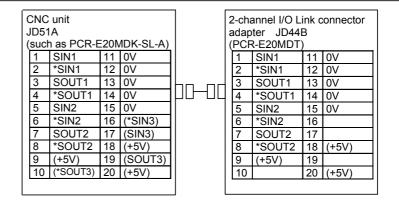
To use two I/O Link channels in the above CNC, branch out the I/O Link (JD44A/JD51A connector signals), using an I/O Link connector adapter.

(See Chapter 13 for explanations about how to use the I/O Link 4-channel function with the Series 30i/31i/32i.)

Connection


2-channel I/O Link connector adapter: A20B-1007-0680

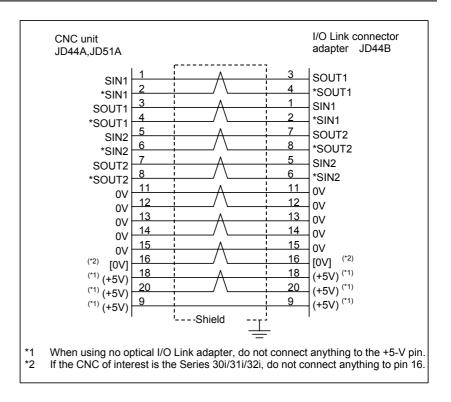
Restriction


When 2 I/O Link channels are used, the FANUC I/O Unit-MODEL B supports connection of up to 8 groups for the 2 channels.

12.3 CONNECTING THE CNC WITH TWO-CHANNEL I/O Link CONNECTOR ADAPTER

Connecting the Series 16*i*/18*i*/21*i*-MODEL B CNC

Connecting the Series 30*i*/31*i*/32*i* CNC

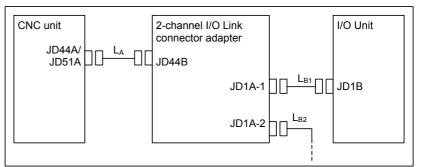


The +5-V pin is intended to perform optical fiber transmission using an optical I/O Link adapter. When using no optical I/O Link adapter, keep the +5-V pin unconnected. (See Section 10.6 for details.)

When the Series 30i/31i/32i CNC is used, pins 10, 16, 17, and 19 are reserved for I/O Link channel 3. When connecting these CNC units with a 2-channel I/O Link adapter, do not connect anything to these pins.

Do not connect anything to the +24-V pin.

12.4 CABLING

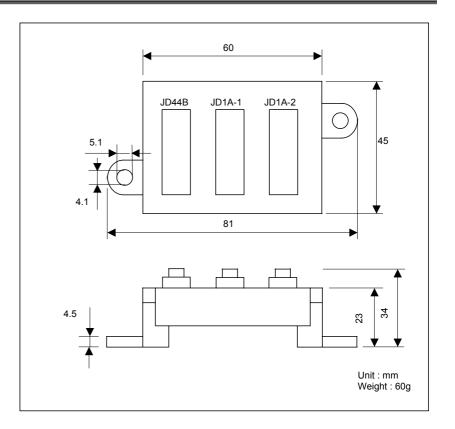


Recommended cable-end connector: PCR-E20FA (manufactured by HONDA TSUSHIN) FCN-247J020-G/E (manufactured by Fujitsu) 52622-2011 (manufactured by Molex) Recommended cable (wire): A66L-0001-0284#10P

12.5 CONNECTING TWO-CHANNEL I/O Link CONNECTOR ADAPTER TO I/O Units FOR THE FANUC I/O Link

The 2-channel I/O Link connector adapter can be connected to diverse I/O Units in the same manner as for the conventional FANUC I/O Link.

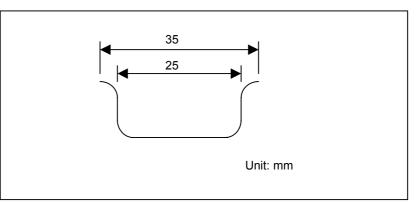
12.6 CABLE LENGTH



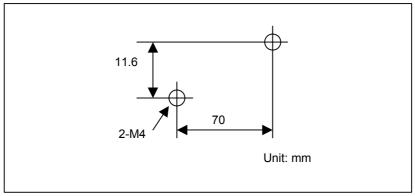
The sum $(L_A + L_B)$ of the cable length L_A between the CNC unit (JD44A) and 2-channel I/O Link connector adapter (JD44B) and the cable length LB (= $L_{B1} + L_{B2}$) between the I/O Link connector adapter (JD1A-1 or JD1A-2) and I/O Unit (JD1B) shall not be longer than 10 m. For cabling within the same cabinet, the sum can be up to 15 m.

12.7 INSTALLING TWO-CHANNEL I/O Link CONNECTOR ADAPTER

Install the 2-channel I/O Link connector adapter in a cabinet that can be sealed on the same level as for the CNC unit.


12.8 OUTSIDE DIMENSIONS OF TWO-CHANNEL I/O Link CONNECTOR ADAPTER

Allow a space of about 10 cm above the adapter so that cables can be laid and connected.


12.9 MOUNTING TWO-CHANNEL I/O Link CONNECTOR ADAPTER

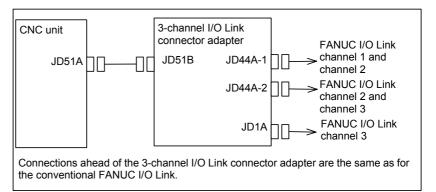
Mounting on the DIN rail

Recommended DIN rail

Using screws

Mounting hole dimension and layout diagram

13 THREE-CHANNEL I/O Link CONNECTOR ADAPTER

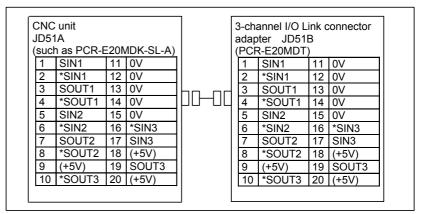

13.1 OVERVIEW

With the FANUC Series 30i/31i/32i CNC, it is possible to use up to 4 FANUC I/O Link interface channels. These channels make it possible to increase the number of I/O points from 1024/1024 to 4096/4096. This chapter explains how to connect a 3-channel I/O Link connector adapter required in using the FANUC I/O Link 4-channel function.

13.2 CONNECTION FOR USE OF FOUR FANUC I/O Link CHANNELS

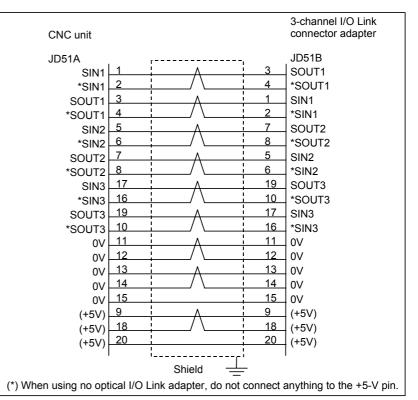
Three channels' worth of I/O Link signals are allocated to the I/O Link connector (JD51A) of the Series 30*i*/31*i*/32*i* CNC. To use the I/O Link 4-channel function, branch out the JD51A connector signals, using a 3-channel I/O Link connector adapter. (Channel 4 is allocated on the optional board.)

Connection



3-channel I/O Link connector adapter: A20B-1008-0360

Restriction


The FANUC I/O Unit-MODEL B supports connection of up to 8 groups for the 4 channels.

13.3 CONNECTING THE CNC WITH THREE-CHANNEL I/O Link CONNECTOR ADAPTER

The +5-V pin is intended to perform optical fiber transmission using an optical I/O Link adapter. When using no optical I/O Link adapter, keep the +5-V pin unconnected.

13.4 CABLING

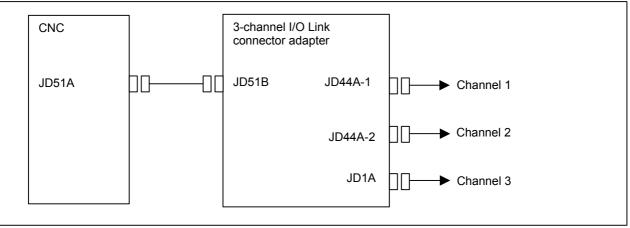
Recommended cable-end connector:

PCR-E20FA (manufactured by HONDA TSUSHIN) FCN-247J020-G/E (manufactured by Fujitsu) 52622-2011 (manufactured by Molex) Recommended cable (wire): A66L-0001-0284#10P

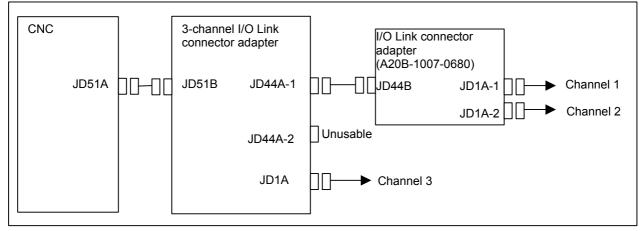
13.5 ALLOCATING THREE-CHANNEL I/O Link CONNECTOR ADAPTER SIGNALS

adapter JD44A-1			5011772					JD1A					
(PCR-E20MDT)			(PCR-E20MDT)				(PCR-E20MDT)						
1	SIN1	11	0V]]	1	SIN2	11	0V		1	SIN3	11	0V
2	*SIN1	12	0V		2	*SIN2	12	0V	1	2	*SIN3	12	0V
3	SOUT1	13	0V		3	SOUT2	13	0V		3	SOUT3	13	0V
4	*SOUT1	14	0V		4	*SOUT2	14	0V		4	*SOUT3	14	0V
5	SIN2	15	0V		5	SIN3	15	0V		5		15	0V
6	*SIN2	16	0V		6	*SIN3	16	0V		6		16	0V
7	SOUT2	17			7	SOUT3	17		1	7		17	
8	*SOUT2	18	(+5V)	1	8	*SOUT3	18	(+5V)	1	8		18	(+5V)
9	(+5V)	19		1	9	(+5V)	19		1	9	(+5V)	19	
10	· · · · /	20	(+5V)	1	10	/	20	(+5V)	1	10		20	(+5V)

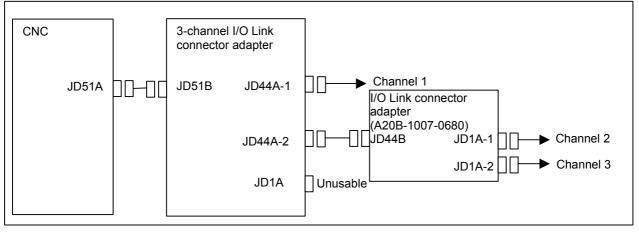
13.6 CONNECTING THREE-CHANNEL I/O Link CONNECTOR ADAPTER SIGNAL TO EACH CHANNEL

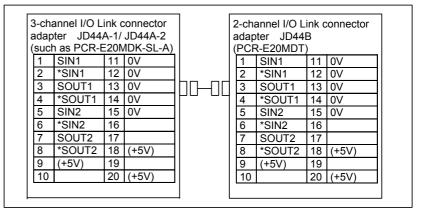

The 3-channel I/O Link connector adapter can be connected to each I/O Unit in the same manner as for the conventional I/O Link. However, note the following points:

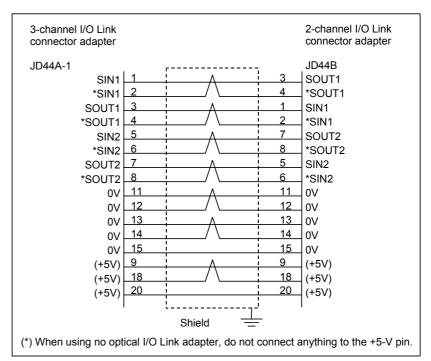
The signals for I/O Link channels 1 and 2 are allocated to the JD44A-1 connector. The signals for I/O Link channels 2 and 3 are allocated to the JD44A-2 connector.


The JD1A connector is dedicated to I/O Link channel 3.

- (1) To branch out the 3-channel signals, an ordinary I/O Link cable is connected to each of the JD44A-1, JD44A-2, and JD1A. In this case, the JD44A-1, JD44A-2, and JD1A correspond, respectively, to channels 1, 2, and 3.
- (2) To extend channels 1 and 2 together, the I/O Link connector adapter (A20B-1007-0680) is connected to the JD44A-1 to separate channels 1 and 2 from each other after the adapter. To use channel 3, connect it to the JD1A; the JD44A-2 cannot be used.
- (3) To extend channels 2 and 3 together, the I/O Link connector adapter (A20B-1007-0680) is connected to the JD44A-2 to separate channels 2 and 3 from each other after the adapter. To use channel 1, connect it to the JD44A-1; the JD1A cannot be used.


(1) When branching out the 3-channel signals

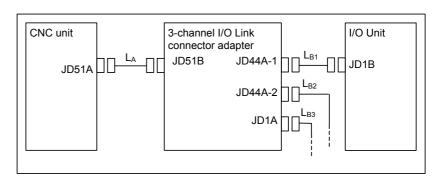

(2) When extending channels 1 and 2 together


(3) When extending channels 2 and 3 together

13.7 CONNECTING THREE-CHANNEL I/O Link CONNECTOR ADAPTER TO TWO-CHANNEL I/O Link CONNECTOR ADAPTER

The +5-V pin is intended to perform optical fiber transmission using an optical I/O Link adapter. When using no optical I/O Link adapter, keep the +5-V pin unconnected.

Recommended cable-end connector:

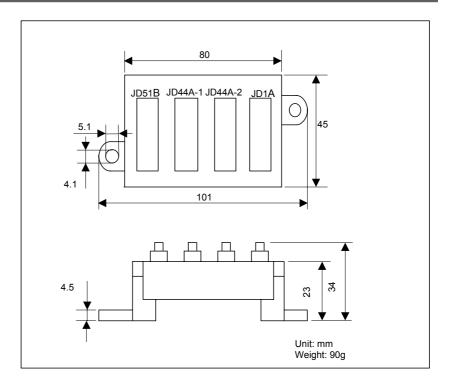

PCR-E20FA (manufactured by HONDA TSUSHIN) FCN-247J020-G/E (manufactured by Fujitsu) 52622-2011 (manufactured by Molex) Recommended cable (wire): A66L-0001-0284#10P

Cabling

13.8 CONNECTING THREE-CHANNEL I/O Link CONNECTOR ADAPTER TO I/O Units FOR THE FANUC I/O Link

The 3-channel I/O Link connector adapter can be connected to diverse I/O Units in the same manner as for the conventional FANUC I/O Link.

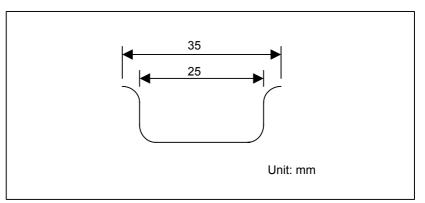
13.9 CABLE LENGTH



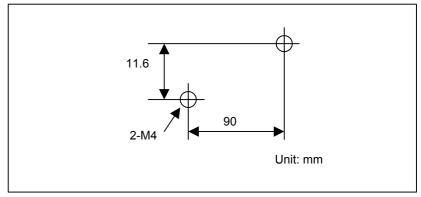
The sum $(L_A + L_B)$ of the cable length L_A between the CNC unit (JD51A) and I/O Link connector adapter (JD51B) and the cable length LB (= $L_{B1}+L_{B2}+L_{B3}$) between the I/O Link connector adapter (JD44A-1, JD44A-2, or JD1A) and I/O Unit (JD1B) shall not be longer than 10 m. For cabling within the same cabinet, the sum can be up to 15 m.

13.10 INSTALLING THREE-CHANNEL I/O Link CONNECTOR ADAPTER

Install the 3-channel I/O Link connector adapter in a cabinet that can be sealed on the same level as for the CNC unit.


13.11 OUTSIDE DIMENSIONS OF THREE-CHANNEL I/O Link CONNECTOR ADAPTER

Allow a space of about 10 cm above the adapter so that cables can be laid and connected.


13.12 MOUNTING THREE-CHANNEL I/O Link CONNECTOR ADAPTER

Mounting on the DIN rail

Recommended DIN rail

Using screws

Mounting hole dimension and layout diagram

14 SAFETY FOR USING AC

IF AC output module or AC input module is used, Section 14.1 is recommended for safety. When using it for a machine directed to the European market, carefully observe the descriptions in Section 14.1 [as per EN50178].

14.1 ENVIRONMENT FOR INSTALLATION

14.1.1 Installation Category (Overvoltage Category)

Install the unit in the environment of Installation Category II (Overvoltage Category II) or better. [DIN VDE0110]

The available impulse surge level to the ground that appears in the power source is 2.5kV maximum.

(100VAC system power source is needed in AC input module According to the standard, the available impulse surge level to the ground is 1.5kV for this power source (voltage of which is 150VAC or less). However, for this module, the available impulse surge level to the ground that appears in the power source is 2.5 kV.)

Generally, an isolation transformer used for the main power source is regarded as an effective surge filter.

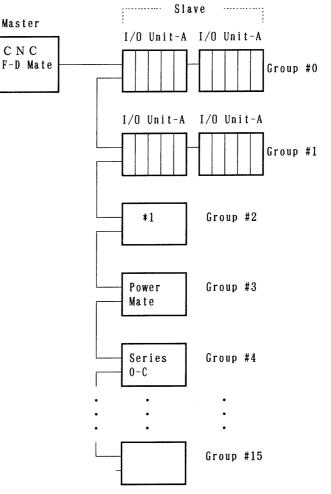
The class of the 16-point relay output module (AOR16G) is set to installation category (overvoltage category) I.

(Keep any impulse voltage to ground that may appear on the AC power to within 1.5 kV.)

The class for the 8-point relay output module (AOR08G), AC output module, and AC input module is set to installation category (overvoltage category) II.

14.1.2 Pollution Degree

Install the unit in the environment of pollution degree 2 or better. [EN50178]


In cabinet of IP-54 or better (described in Section 3.1), it can be considered as pollution degree 2 or better usually. The IP degree required is depended on the circumstances of machine tool, so select the adequate degree in accordance with such environment.

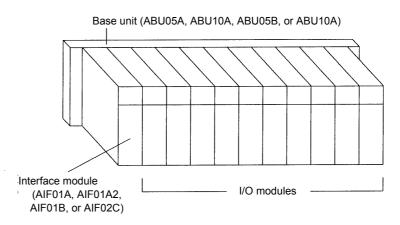
II. MAINTENANCE

OVERVIEW

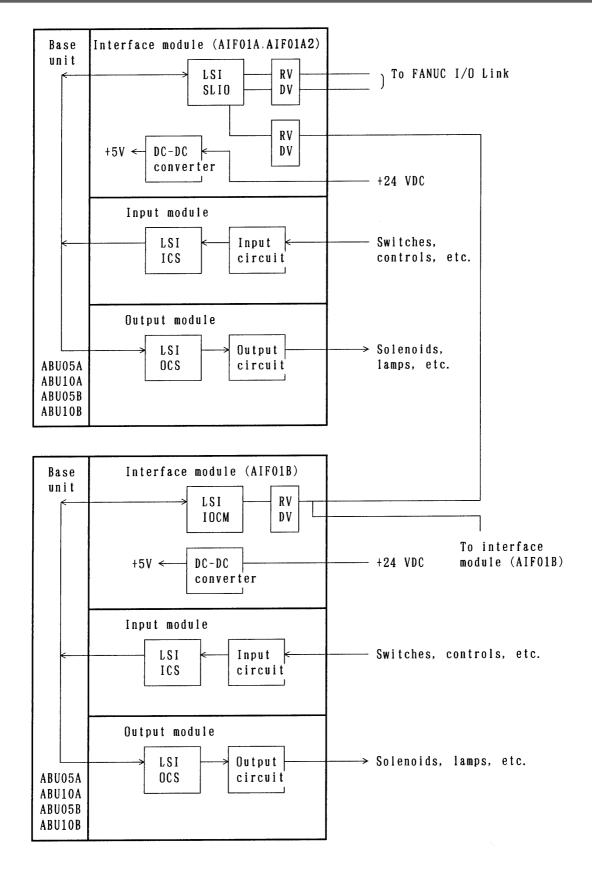
1.1 SYSTEM CONFIGURATION

I/O Unit-A is connected to a CNC and cell controller through a high-speed serial interface, I/O Link.

(*1) Operator's panel connection unit


(1) The I/O Link consists of a master and slaves. Master: Series0-C, Series15/16/18/20/21,

Series15*i*/16*i*/18*i*/20*i*/21*i*/30*i*/31*i*/32*i*/0*i*, Power Mate-D/H, Power Mate *i*-D/H, F-D Mate


- Slave: I/O Unit-A, I/O Unit-B, Power Mate, operator's panel connection unit, and Series 0-C, and so on
- (2) One I/O Link can connect to up 16 groups of slaves. If the master is not a CNC, one slave group can contain up to 2 of I/O Unit A (2 base units). If the master is the F-D Mate, however, one group can contain up to 4 I/O Units.

1.2 I/O Unit-A CONFIGURATION

An I/O Unit-A consists of a base unit, interface module, and I/O modules.

1.3 **BLOCK DIAGRAM**

1.4 I/O Unit-MODEL A CONFORMING TO UL/C-UL

The units conforming to the UL/C-UL standard have different drawing numbers.

The following table lists the units conforming to the UL/C-UL standard and those not.

	I/O Unit-MODEL A conforming to the UL/C-UL standard	I/O Unit-MODEL A not conforming to the UL/C-UL standard			
Unit drawing number	A03B-0819-Jxxx	A03B-0807-Jxxx			
Unit specification (interface, dimensions, and weight)	Same specification				
Plastic case	Fire retardancy: 94V-0 (material less likely to burn)	Fire retardancy: 94HB			
Unit nameplate	The nameplates for the base unit and interface module bear a UL mark.	The nameplates have no UL mark.			

- Refer to Section 1.5, "LIST OF UNITS", in Part II for individual unit drawings.
- It is possible to use units conforming to the UL/C-UL standard and those not conforming together.

1.5 LIST OF UNITS

1.5.1 Units Conforming to UL/C-UL Standard: Ordering Information A03B-0819-Jxxx

				Unit conforming to UL/C-UL standard			
		Name		Ordering information	Unit drawing number	Drawing number for printed circuit board in unit	
Base unit	10 slots	Horizontal type	ABU10A	A03B-0819-J001	A03B-0819-C001	A20B-9001-0040	
		Vertical type	ABU10B	A03B-0819-J004	A03B-0819-C004	A20B-2003-0100	
	5 slots	Horizontal type	ABU05A	A03B-0819-J002	A03B-0819-C002	A20B-9001-0020	
		Vertical type	ABU05B	A03B-0819-J003	A03B-0819-C003	A20B-2000-0510	
Interface mod	ule	Power supply connector: SORIAU JAPAN 3-pin (former Burndy)	AIF01A	A03B-0819-J011	A03B-0819-C011	A20B-8000-0410	
		Power supply connector: Tyco Electronics 3-pin	AIF01A2	A03B-0819-J014	A03B-0819-C014	A20B-8000-0411	
		Power supply connector: SORIAU JAPAN 3-pin (former Burndy)	AIF01B	A03B-0819-J012	A03B-0819-C012	A20B-8000-0420	
		Power supply connector: SORIAU JAPAN 3-pin (former Burndy)	AIF02C	A03B-0819-J013	A03B-0819-C013	A20B-8000-0710	
DC input module	Non-insulat ions	32 points, 20ms, HONDA 50-pin	AID32A1	A03B-0819-J101	A03B-0819-C101	A20B-8002-0450 or -9000-0970	
		32 points, 2ms, HONDA 50-pin	AID32B1	A03B-0819-J102	A03B-0819-C102	A20B-8002-0451 or -9000-0971	
		32 points, 20 ms and 2 ms intermixed, HONDA 50-pin	AID32H1	A03B-0819-J111	A03B-0819-C111	A20B-8002-0452 or -9000-0972	
	Insulations	16 points, NEG, 20ms, terminal block	AID16C	A03B-0819-J103	A03B-0819-C103	A20B-8002-0380 or -9000-0931	
		16 points, NEG, 2ms, terminal block	AID16K	A03B-0819-J113	A03B-0819-C113	A20B-8002-0381 or -9000-0932	
		16 points, POS, 20ms, terminal block	AID16D	A03B-0819-J104	A03B-0819-C104	A20B-8002-0370 or -9000-0901	
		16 points, POS, 2ms, terminal block	AID16 L	A03B-0819-J114	A03B-0819-C114	A20B-8002-0371 or -9000-0902	
		32 points, 20ms, HONDA 50-pin	AID32E1	A03B-0819-J105	A03B-0819-C105	A20B-8002-0150	
		32 points, 20ms, HIROSE 50-pin	AID32E2	A03B-0819-J110	A03B-0819-C110	A20B-8002-0160	
		32 points, 2ms, HONDA 50-pin	AID32F1	A03B-0819-J106	A03B-0819-C106	A20B-8002-0151	
		32 points, 2ms, HIROSE 50-pin	AID32F2	A03B-0819-J109	A03B-0819-C109	A20B-8002-0161	
AC input mod	ule	16 points, 100 to 115VAC terminal block	A03B-0819-J107	A03B-0819-C107	A20B-8000-0341		

				Unit conforming to UL/C-UL standard			
		Name	Ordering information	Unit drawing number	Drawing number for printed circuit board in unit		
DC output	Non-insulat	32 points, NEG, 0.3A	AOD32A1	A03B-0819-J162	A03B-0819-C162	A20B-8002-0460	
module	ions	HONDA 50-pin				or -9001-0110	
	Insulations	8 points, NEG, 2A, terminal block	AOD08C	A03B-0819-J151	A03B-0819-C151	A20B-8002-0420 or -9001-0210	
		8 points, POS, 2A, terminal block	AOD08D	A03B-0819-J152	A03B-0819-C152	A20B-8002-0410 or -9001-0220	
		8 points, POS, 2A, output protection, terminal block	AOD08DP	A03B-0819-J183	A03B-0819-C183	A20B-8002-0060	
		16 points, NEG, 0.5A, terminal block	AOD16C	A03B-0819-J153	A03B-0819-C153	A20B-8002-0400 or -9000-0941	
		16 points, POS, 0.5A, terminal block	AOD16D	A03B-0819-J154	A03B-0819-C154	A20B-8002-0390 or -9000-0921	
		16 points, POS, 2A HONDA 40-pin	AOD16D2	A03B-0819-J171	A03B-0819-C171	A20B-8002-0570	
		16 points, POS, 2A Weidmüller 24-pin connector		A03B-0819-J185	A03B-0819-C185	A20B-8002-0520	
		16 points, POS, 0.3A, output protection, terminal block	AOD16DP	A03B-0819-J182	A03B-0819-C182	A20B-8002-0070	
		32 points, NEG, 0.3A HONDA 50-pin connector	AOD32C1	A03B-0819-J155	A03B-0819-C155	A20B-8002-0430 or -9001-0070	
		32 points, NEG, 0.3A HIROSE 50-pin connector	AOD32C2	A03B-0819-J172	A03B-0819-C172	A20B-8002-0440 or -9001-0530	
		32 points, POS, 0.3A HONDA 50-pin connector	AOD32D1	A03B-0819-J156	A03B-0819-C156	A20B-8000-0440	
		32 points, POS, 0.3A HIROSE 50-pin connector	AOD32D2	A03B-0819-J167	A03B-0819-C167	A20B-8000-0510	
AC output mod	lule	5 points, 2A, 100 to 230VAC terminal block	AOA05E	A03B-0819-J157	A03B-0819-C157	A20B-8000-0470	
		8 points, 1A, 100 to 230VAC terminal block	AOA08E	A03B-0819-J158	A03B-0819-C158	A20B-8000-0480	
		12 points, 0.5A, 100 to 115VAC, terminal block	AOA12F	A03B-0819-J159	A03B-0819-C159	A20B-8000-0321	
Relay output m	odule	8 points, 4A, terminal block	AOR08G	A03B-0819-J160	A03B-0819-C160	A20B-8002-0470 or -9001-0200	
		16 points, 2A, terminal block	AOR16G	A03B-0819-J161	A03B-0819-C161	A20B-8000-0101	
		16 points, 2A, HIROSE 50-pin			A03B-0819-C165	A20B-8000-0500	
DC input/outpu module	it hybrid	DI: 24 points DO: 16 points, NEG HONDA 50-pin	AIO40A	A03B-0819-J200	A03B-0819-C200	A20B-9001-0240	
Analog input m	odule	12bit, terminal block	AAD04A	A03B-0819-J051	A03B-0819-C051	A20B-8000-0450	
<u>J</u> -		16bit, terminal block	AAD04B	A03B-0819-J063	A03B-0819-C063	A20B-8002-0590	
Analog output	module	12bit, terminal block	ADA02A	A03B-0819-J052	A03B-0819-C052	A20B-8000-0460	
		14bit, terminal block	ADA02B	A03B-0819-J060	A03B-0819-C060	A20B-8001-0980	
High-speed co	unter module		ACT01A	A03B-0819-J053	A03B-0819-C053	A20B-8000-0540	
Temperature ir		Pt/JPt	ATI04A	A03B-0819-J056	A03B-0819-C056	A74L-0001-0083#PT	
		J/K	ATI04B	A03B-0819-J057	A03B-0819-C057	A74L-0001-0083#JK	
		Pt/JPt	ATB01A	A03B-0819-J350	A03B-0819-C350	A20B-1005-0920	
		J/K	ATB01B	A03B-0819-J351	A03B-0819-C351	A20B-1005-0930	

1.5.2 Other Units (not Conforming to UL/C-UL)

Name	Ordering information	Drawing number for printed circuit
Optical I/O Link adapter	A13B-0154-B001	A20B-1004-0240
High-speed response type optical I/O Link adapter	A13B-0154-B002	A20B-1004-0241
Optical fiber junction adapter	A02B-0094-K841	-
I/O Link dummy unit	A13B-0167-B001	A20B-8000-0940
2-channel I/O Link connector adapter	A20B-1007-0680	A20B-1007-0680
3-channel I/O Link connector adapter	A20B-1008-0360	A20B-1008-0360

1.5.3 Early Units (Units not Conforming to UL/C-UL: Ordering Information A03B-0807-Jxxx)

The modules listed below are those produced before the factory was UL-approved.

The module's basic performance does not differ between A03B-0807-Jxxx and A03B-0819-Jxxx.

The units with the new ordering information A03B-0819-Jxxx are housed in cases made of material less likely to burn.

				Early unit			
		Name	Early ordering information	Early-unit drawing number	Drawing number for printed circuit board in early unit		
Base unit	10 slots	Horizontal type	ABU10A	A03B-0807-J001	A03B-0807-C001	A20B-9001-0040	
		Vertical type	ABU10B	A03B-0807-J004	A03B-0807-C004	A20B-2003-0100 or -2000-0550	
	5 slots	Horizontal type	ABU05A	A03B-0807-J002	A03B-0807-C002	A20B-9001-0020	
		Vertical type	ABU05B	A03B-0807-J003	A03B-0807-C003	A20B-2000-0510	
Interface m	nodule		AIF01A	A03B-0807-J011	A03B-0807-C011	A20B-8000-0410	
			AIF01B	A03B-0807-J012	A03B-0807-C012	A20B-8000-0420	
			AIF02C	A03B-0807-J013	A03B-0807-C013	A20B-8000-0710	
DC input	Non-insulations	32 points, 20ms, HONDA 50-pin	AID32A1	A03B-0807-J101	A03B-0807-C101	A20B-9000-0970	
module		32 points, 2ms, HONDA 50-pin	AID32B1	A03B-0807-J102	A03B-0807-C102	A20B-9000-0971	
		32 points, 20 ms and 2 ms intermixed, HONDA 50-pin	AID32H1	A03B-0807-J111	A03B-0807-C111	A20B-9000-0972	
	Insulations	16 points, NEG, 20ms, terminal block	AID16C	A03B-0807-J103	A03B-0807-C103	A20B-9000-0931	
		16 points, NEG, 2ms, terminal block	AID16K	A03B-0807-J113	A03B-0807-C113	A20B-9000-0932	
		16 points, POS, 20ms, terminal block	AID16D	A03B-0807-J104	A03B-0807-C104	A20B-9000-0901	
		16 points, POS, 2ms, terminal block	AID16 L	A03B-0807-J114	A03B-0807-C114	A20B-9000-0902	
		32 points, 20ms, HONDA 50-pin	AID32E1	A03B-0807-J105	A03B-0807-C105	A20B-8002-0150 or -9001-0010	
		32 points, 20ms, HIROSE 50-pin	AID32E2	A03B-0807-J110	A03B-0807-C110	A20B-8002-0160 or -9001-0280	
		32 points, 2ms, HONDA 50-pin	AID32F1	A03B-0807-J106	A03B-0807-C106	A20B-8002-0151 or -9001-0011	
		32 points, 2ms, HIROSE 50-pin	AID32F2	A03B-0807-J109	A03B-0807-C109	A20B-8002-0161 or -9001-0281	
AC input module		16 points, 100 to 115VAC terminal block	AIA16G	A03B-0807-J107	A03B-0807-C107	A20B-8000-0341	

			Early unit			
		Name		Early ordering information	Early-unit drawing number	Drawing number for printed circuit board in early unit
DC output	Non-insulations	32 points, NEG, 0.3A, HONDA 50-pin	AOD32A1	A03B-0807-J162	A03B-0807-C162	A20B-9001-0110
module	Insulations	8 points, NEG, 2A, terminal block	AOD08C	A03B-0807-J151	A03B-0807-C151	A20B-9001-0210 or -9000-0951
		8 points, POS, 2A, terminal block	AOD08D	A03B-0807-J152	A03B-0807-C152	A20B-9001-0220 or -9000-0911
		16 points, NEG, 0.5A, terminal block	AOD16C	A03B-0807-J153	A03B-0807-C153	A20B-9000-0941
		16 points, POS, 0.5A, terminal block	AOD16D	A03B-0807-J154	A03B-0807-C154	A20B-9000-0921
		16 points, POS, 2A, HIROSE 40-pin			A03B-0807-C171	A20B-8002-0570 or -9001-0490
		16 points, POS, 0.3A, output protection, terminal block	AOD16DP	A03B-0807-J182	A03B-0807-C182	A20B-8002-0070
		32 points, NEG, 0.3A, HONDA 50-pin	AOD32C1	A03B-0807-J155	A03B-0807-C155	A20B-9001-0070
		32 points, NEG, 0.3A, HIROSE 50-pin	AOD32C2	A03B-0807-J172	A03B-0807-C172	A20B-9001-0530
		32 points, POS, 0.3A, HONDA 50-pin	AOD32D1	A03B-0807-J156	A03B-0807-C156	A20B-8000-0440
		32 points, POS, 0.3A, HIROSE 50-pin		A03B-0807-J167	A03B-0807-C167	A20B-8000-0510
AC output r	nodule	5 points, 2 A , 100 to 230VAC terminal block		A03B-0807-J157	A03B-0807-C157	A20B-8000-0470 or -8000-0251
		8 points, 1 A , 100 to 230VAC terminal block	AOA08E	A03B-0807-J158	A03B-0807-C158	A20B-8000-0480 or -8000-0381
		12 points, 0.5 A , 100 to 115VAC terminal block	AOA12F	A03B-0807-J159	A03B-0807-C159	A20B-8000-0321
Relay outpu	ut module	8 points, 4 A, terminal block	AOR08G	A03B-0807-J160	A03B-0807-C160	A20B-9001-0200 or -9000-0961
		16 points, 2A, terminal block	AOR16G	A03B-0807-J161	A03B-0807-C161	A20B-8000-0101
		16 points, 2A, HIROSE 50-pin	AOR16H2	A03B-0807-J165	A03B-0807-C165	A20B-8000-0500
Analog inpu	ut module	12bit, terminal block	AAD04A	A03B-0807-J051	A03B-0807-C051	A20B-8000-0450
Analog outp	out module	12bit, terminal block	ADA02A	A03B-0807-J052	A03B-0807-C052	A20B-8000-0460
		14bit, terminal block	ADA02B	A03B-0807-J060	A03B-0807-C060	A20B-8001-0980
High-speed	counter module		ACT01A	A03B-0807-J053	A03B-0807-C053	A20B-8000-0540
Temperatur	e input module	Pt/JPt	ATI04A	A03B-0807-J056	A03B-0807-C056	A74L-0001-0083#PT
		J/K	ATI04B	A03B-0807-J057	A03B-0807-C057	A74L-0001-0083#JK
		Pt/JPt	ATB01A	A03B-0807-J350	A03B-0807-C350	A20B-1005-0920
		J/K	ATB01B	A03B-0807-J351	A03B-0807-C351	A20B-1005-0930

2 INDICATION

The interface modules and the I/O modules with up to 16 input/output points have LEDs to indicate their states.

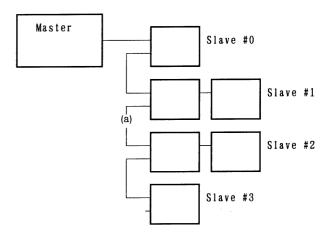
2.1 INTERFACE MODULE (AIF01A, AIF01A2) LED INDICATORS

Marking	Name	Description					
PWR	Power-on		On: The interface module is supplied with power of 24 VDC.				
LINK	Link	No	On: The I/O Link is operating properly. Normally, this LED lights several to ten-odd seconds after the master is turned on.				
BA1 BA0	Base address	These LEDs indicate which base unit the inter-face module is transferring data with. If a failure occurs (the LINK LED is turned on, then off), BA0 or BA1, whichever is operating, is turned on.					
			BA1	BA0	Base number		
			0	0	Base #0	O _{∶Off}	
			0	•	Base #1	• : On	
		● ○ Base #2					
			•	•	Base #3		

Failures, their causes, and required actions

- (1) PWR is off.
 - ① Power (24 VDC) is not supplied or the supply voltage is abnormal.
 - \Rightarrow Supply power of 24 VDC \pm 10%.
 - ② A The fuse in the interface module has blown.
 - \Rightarrow Eliminate the cause that made the fuse to blow, then replace the fuse with a spare. (See Chapter 3.) The following may cause the fuse to blow:
 - A sum of power requirements for all input modules exceeds the rating. (Refer to Section 4.4 in Part I.)
 - A voltage of +24 VDC, supplied from input module AID32A1, AID32B1 or AID32H1 to the outside, is short-circuited to the cabinet or the like.
 - The interface module or any of the I/O modules is defective.

- ③ An I/O module is defective.
 - \Rightarrow Remove the I/O modules sequentially to pinpoint the defective one. Then, replace it with a spare.
- ④ An interface module is defective.
 - \Rightarrow Replace it with a spare.
- (2) LINK has never been turned on since power is supplied.
 - ① If PWR is off, go to item 1).
 - ② The attempted power turn-on sequence was incorrect.
 - ⇒ The slaves (I/O Unit-A, Power Mate, Series 0, etc.) must be supplied with power at the same time or before the master (CNC or F-D Mate) is supplied with power. (Refer to Section 4.2 in Part I.)


If an attempt is made to supply power to a slave on an interface module after the master is turned on, LINK on the interface module is not turned on provided that the interface module corresponds to that slave or to any slave ahead of that slave (one on the far side with respect to the master).

- ③ I/O Link cables are broken or short-circuited.
 - \Rightarrow With reference to Note below, check the cables, and take an appropriate action.
- ④ Any device on the I/O Link is defective.
 - \Rightarrow With reference to Note below, find a defective device, and take an appropriate action. If an I/O Unit seems to be defective, replace interface module with a spare.

NOTE

How to pinpoint a failure in the I/O Link in event of items 2 to 4.

Check the LEDs on the master to find out which group contains slaves whose I/O Link is established with the master. (Refer to the maintenance manual for the master.)

For example, if the master is linked to slaves (slave #0 and #1) that belong to separate groups, the timing of turning on slave #2 is bad, the cable is broken or short-circuited at point (a), slave #2 is defective.

If the master is not linked to any slave, the master may be defective.

- (3) LINK is turned on once, then off.
 - ① One of the devices on the I/O Link is turned off.
 - \Rightarrow Turn off all devices, then turn them on.
 - ^② The DI/DO assignment for the master is invalid.
 - ⇒ When I/O Unit bases 1 to 3 (units under control of interface module AIF01B) are not connected, if DI/DO units are assigned to these bases, LINK is turned on, but turned off immediately.

Correct the DI/DO assignment.

- ③ The I/O Link cable is broken or short-circuited.
 - \Rightarrow Check the cable, and take an appropriate action.
- ④ Any device on the I/O Link is defective.
 - \Rightarrow With reference to the maintenance manual for the master, find a defective device, and take an appropriate action. If an I/O Unit seems defective, replace the interface module (AIF01A, AIF01A2, or AIF01B) installed in the base unit indicated by BA1 or BA0.

2.2 INTERFACE MODULE (AIF01B) LED INDICATORS

O PWR	O LINK
	AIF01B

Marking	Name	Description
PWR	Power-on	On: The interface module is supplied with power of 24 VDC.
LINK		On: The I/O Link is operating properly. Normally, this LED lights several to ten-odd seconds after the master is turned on.

Failures, their causes, and required actions

- (1) PWR is off.
 - ① Power (24 VDC) is not supplied or the supply voltage is abnormal.
 - \Rightarrow Supply power of 24 VDC ±10%.
 - ^② The fuse in the interface module has blown.
 - \Rightarrow Eliminate the cause that made the fuse to blow, then replace the fuse with a spare. (See Chapter 3.) The following may cause the fuse to blow:
 - A sum of power requirements for all input modules exceeds the rating. (Refer to Section 4.4 in Part I.)
 - A voltage of +24 VDC, supplied from input module AID32A1, AID32B1 or AID32H1 to the outside, is short-circuited to the cabinet or the like.
 - The interface module or any of the I/O modules is defective.
 - ③ An I/O module is defective.
 - \Rightarrow Remove the I/O modules sequentially to pinpoint the defective one. Then, replace it with a spare.
 - ④ An interface module is defective.
 - \Rightarrow Replace it with a spare.
- (2) LINK has never been turned on since power is supplied.
 - ① If PWR is off, go to item 1).
 - If LINK on the AIF01A or AIF01A2 in the same group is off, go to Section 2.1.
 - ③ The signal cable between I/O Units in the same group is broken or short-circuited.
 - \Rightarrow Check the cable, and take an appropriate action.
 - ④ An interface module is defective.
 - \Rightarrow Replace it with a spare.
- (3) LINK is turned on once, then turned off.
 - \bigcirc See section 2.1.

2.3 INTERFACE MODULE (AIF02C) LED INDICATORS

The LED indicator panel of the AIF02C is shown below. Each of its components are described in the following paragraphs.

PWR	Γ	-I NK	7		- ER	
	1	2	D	2	1	0
М		16	8	4	2	1
M/S				No		

2.3.1 PWR Indicator

This LED lights when the power is switched on.

2.3.2 LNK Indicators

- (1) LNK-1 : Lights when the I/O link for the I/O Unit-A is operating normally.
- (2) LNK-2 : Lights when the I/O link for the I/O Unit-B is operating normally.
- (3) LNK-D : Lights when the distributed link with the I/O Unit-B is operating normally. (The indicator dims if only a few base units are connected.)

2.3.3 ER Indicators

An ER indicator lights if an error occurs on the distributed link. See the tables on the following page for details.

2.3.4 LED Indicators

(1) When the unit No. (1 to 16) is off (o-on and \times -off)

M/S	ER2	ER1	ER0	Error	Description	Major cause of error
0	×	×	0	Interface unit peripheral error	The interface unit is abnormal.	Interface unit failure
0	×	0	×	Interface unit RAM parity error	The interface unit is abnormal.	Interface unit failure
0	0	×	×	I/O link error reception	An error has occurred in a unit connected to the I/O link.	Failure in a unit connected to the I/O link
0	0	×	0	I/O link framing error	The I/O link communication end signal is abnormal.	-
0	0	0	×	I/O link CRC error	I/O link communication data is abnormal.	-
0	0	0		Interface unit watchdog timer error	Communication from the I/O link host has stopped.	-

M/S	ER2	ER1	ER0	Error	Description	Major cause of error
×	×	×	0	Basic unit peripheral error	The basic unit is abnormal.	Basic unit failure
0	×	0	×	Basic unit number error	A unit with an invalid unit	-
					number has responded to the	
					interface unit.	
×	×	0	0	Basic unit reception data count	The number of communication	Two or more units have the
				error	bytes has exceeded four.	same unit number, or the unit of
						interest is not provided with a
						terminating resistor.
×O	0	×	х	Basic unit framing error	The communication end signal	Two or more units have the
(*1)					is abnormal.	same unit number, or the unit of
						interest is not provided with a
						terminating resistor.
×O	0	×	0	Basic unit DMI error	The communication waveform	Two or more units have the
(*1)					has been distorted.	same unit number, or the unit of
						interest is not provided with a
						terminating resistor.
×О	0	0	×	Basic unit CRC error	The communication data is	Two or more units have the
(*1)					abnormal.	same unit number, or the unit of
						interest is not provided with a
						terminating resistor.
×	0	0	0	Basic unit watchdog timer error	Communication with the	-
					interface unit has stopped.	

(2) When the unit No. (1 to 16) is \underline{on} (o-on and \times -off)

NOTE (*1)

If M/S lights, it means that the interface module (AIF02C) detected the error. If it does not light, it means that the basic unit of the I/O Unit-B detected the error.

2.3.5 M/S Indicator

If an error occurs on a distributed link, the M/S indicator indicates whether the error was detected in the interface module or basic error side.

On: The error has been detected on the interface module side. Off: The error has been detected on the basic unit side.

2.3.6 No. Indicators

If an error occurs on a distributed link, the No. indicators indicate the basic unit No. where the error is detected. The sum of the values for which a lamp lights corresponds to the basic unit No.

Example)

		No.			Unit No.	
16	8	4	2	1	Onit No.	
×	×	×	×	0	1	O-On
×	×	0	×	0	5	O-On ≻-Off
×	0	×	0	×	10	
0	×	0	×	×	20	

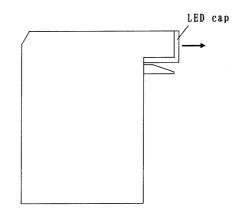
2.4 LED INDICATORS ON THE INPUT/OUTPUT MODULES (HAVING 16 OR FEWER INPUT/OUTPUT POINTS)

A01234567 F B01234567

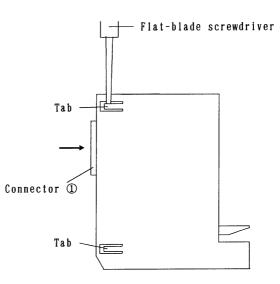
Label	Name	Description
A0 to 7	Input/output	On : The corresponding input or output is on.
B0 to 7	indicator	
F	Fuse alarm	On : A fuse incorporated in the output module has blown.
		module has blown.

3 FUSES

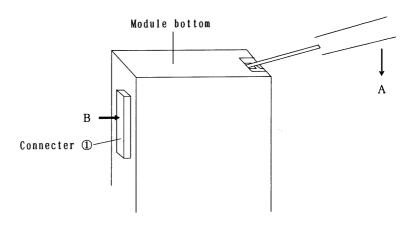
The modules listed below have built-in fuses. If a fuse blows, remove the cause, then replace the fuse with a spare.


Module	Indication	Rating	Fuse specification
Interface module AIF01A	PWR is off	3.2A	A60L-0001-0290#LM32
Interface module AIF01A2	PWR is off	3.2A	A60L-0001-0290#LM32
Interface module AIF01B	PWR is off.	3.2A	A60L-0001-0290#LM32
Interface module AIF02C	PWR is off.	3.2A	A60L-0001-0290#LM32
Output module with 8 DC points AOD08C	F is on.	5A	A60L-0001-0260#5R00
Output module with 8 DC points AOD08D	F is on.	5A	A60L-0001-0260#5R00
Output module with 16 DC points AOD08D3	F is on.	5A	A60L-0001-0046#5.0
Output module with 5 AC points AOA05E	F is on.	3.15A	A60L-0001-0276#3.15
Output module with 8 AC points AOA08E	F is on.	3.15A	A60L-0001-0276#3.15
Output module with 12 AC points AOA12F	F is on.	3.15A	A60L-0001-0276#3.15

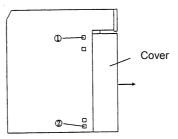
The fuses are on the PC boards in the modules.



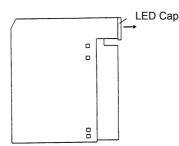
4.1 HOW TO REMOVE TERMINAL BOARD-TYPE I/O MODULE PC BOARDS


- ① Remove the terminal board. (Refer to 4.5 in Part I.)
- ② Pull the LED cap in the direction of the arrow to remove it.

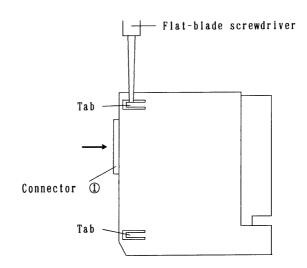
③ While pressing connector ① in the direction of the arrow, raise the tabs (two) on the module case with a flat-blade screwdriver.



④ Put the tip of a flat-blade screwdriver into the gap between the module case and terminal board connector, as shown below. While pressing the screwdriver in the direction of arrow A, push connector ① in the direction of arrow B, and the PC board will come out.



4.2 HOW TO REMOVE INTERFACE AND CONNECTOR-TYPE I/O MODULE PC BOARDS


While pulling the cover in the direction of the arrow, press points
 and ② (on each side) with a flat-blade screwdriver to remove the cover.

② Pull the LED cap in the direction of the arrow to remove it.

③ While pressing connector ① in the direction of the arrow, raise the tabs (two for a connector type I/O module and 4 for an interface module) with a flat-screwdriver, then push connector ① in the direction of the arrow, and e PC board will come out.

INDEX

<Symbol>

+5-V Output from JA9 Connector	.124

<A>

AAD04A	
ADA02A	
ADA02B	
AAD04B	
AIA16G	
AID16C	
AID16D	
AID16K	
AID16L	
AID32A1 (Non-insulation type)	37
AID32B1 (Non-insulation type)	
AID32E1	44
AID32E2	45
AID32F1	46
AID32F2	47
AID32H1	39
AIO40A	69
AIO40A Module (Hybrid Module with 24 Input and 1	6
Output Points)	35
ALLOCATION OF I/O POINTS	5
ALLOCATING THREE-CHANNEL I/O Link	
CONNECTOR ADAPTER SIGNALS	196
ANALOG INPUT MODULE	81
ANALOG OUTPUT MODULE	90
AOA05E	63
AOA08E	64
AOA12F	65
AOD08C	50
AOD08D	51
AOD08DP	52
AOD16C	54
AOD16D	55
AOD16D2	56
AOD16D3	57
AOD16DP	58
AOD32A1 (Non-insulation type)	49
AOD32C1	
AOD32C2	

	AOD32D161
	AOD32D2
	AOR08G
	AOR16G
	AOR16H2
<e< td=""><td></td></e<>	
	BLOCK DIAGRAM
<0	>
	C49 signal (for mode A)118
	C49 signal (for mode B)118
	CABLE LENGTH
	CABLING
	CAUTIONS FOR USING OPTICAL I/O Link
	ADAPTERS
	Comparison Function
	COMPLETE CONNECTION OF TEMPERATURE
	INPUT MODULE
	CONFIGURATION
	Configuration of Mode A 125
	Configuring I/O Links Using Optical I/O Link
	Adapters
	Connecting FANUC I/O Link Dummy Units in Series.184
	CONNECTING INPUT POWER SOURCE18
	CONNECTING THE CNC WITH TWO-CHANNEL
	I/O Link CONNECTOR ADAPTER188
	CONNECTING THREE-CHANNEL I/O Link
	CONNECTOR ADAPTER SIGNAL TO EACH
	CHANNEL197
	CONNECTING THREE-CHANNEL I/O Link
	CONNECTOR ADAPTER TO I/O Units FOR THE
	FANUC I/O Link
	CONNECTING THREE-CHANNEL I/O Link
	CONNECTOR ADAPTER TO TWO-CHANNEL I/O
	Link CONNECTOR ADAPTER199
	CONNECTING THREE-CHANNEL I/O Link
	CONNECTOR ADAPTER TO TWO-CHANNEL I/O
	Link CONNECTOR ADAPTER199
	CONNECTING TWO-CHANNEL I/O Link
	CONNECTOR ADAPTER TO I/O Units FOR THE
	FANUC I/O Link

CONNECTING WITH I/O MODULES
CONNECTION
Connection
Connection between the Analog Output Module and
Load96
Connection Diagram117
CONNECTION DIAGRAMS
CONNECTION FOR USE OF FOUR FANUC I/O
Link CHANNELS194
CONNECTION FOR USE OF TWO FANUC I/O
Link CHANNELS
CONNECTION OF OPTICAL I/O Link 168
Connection to Analog Output Module
CONNECTION WITH MACHINE (POWER
MAGNETICS CABINET)121
CONNECTION WITH PULSE GENERATOR119
Connector Signal List117
Connector Signal Lists
CORRESPONDENCE BETWEEN I/O SIGNALS AND
ADDRESSES IN A MODULE
Correspondence between Input Signals and Addresses
in a Module
Correspondence between Output Signals and Addresses
in a Module92
Correspondence between Output Signals and Addresses
in the Module
Counter Presetting and Counting126

<D>

DC Input Signals (ME and CSP)	124
DESIGNING CONDITION FOR A CABINET	10
DETAILS OF I/O Unit CONNECTORS (HONDA	
TSUSHIN/HIROSE ELECTRIC) AND TERMINAL	
BLOCK (WEIDMÜLLER)	74
Details of Input Signals	
(Temperature Module \rightarrow PMC)	151
Details of Output Signals	
$(PMC \rightarrow Temperature Module)$	148
Details of PMC Interface Signals	114
DIGITAL INPUT/OUTPUT MODULES	30

<E>

Early Units (Units not Conforming to UL/C-UL:	
Ordering Information A03B-0807-Jxxx)	214
ENVIRONMENT FOR INSTALLATION	9, 204

B-61813E/04

Environmental conditions outside the cubillet	
ER Indicators	221
Example of Mode A Ladder	132
Example of Mode B Ladder	137
EXAMPLE OF STARTING UP ACT01A	131
External Contact Input	105
External Contact Output	105
EXTERNAL DIMENSION OF OPTICAL I/O Link	167
EXTERNAL DIMENSIONS	181
External View of Optical Fiber Cable	174

<F>

FANUC I/O Link	3
FUSES	224

<G>

GENERAL CONNECTION DIAGRAM	17
GROUNDING	19
Grounding	

<H>

HIGH-SPEED COUNTER MODULE	.97
HOW TO REMOVE INTERFACE AND	
CONNECTOR-TYPE I/O MODULE PC BOARDS?	228
HOW TO REMOVE TERMINAL BOARD-TYPE I/O	
MODULE PC BOARDS	226

</>

I/O Link DUMMY UNIT	180
I/O SIGNALS CONVENTIONS	123
I/O Unit CONFIGURATION	7
I/O Unit-A CONFIGURATION	209
I/O Unit-MODEL A CONFORMING TO UL/C-UL	211
INDICATION	216
INSTALLATION	8
Installation Category (Overvoltage Category)	204
INSTALLATION CONDITIONS	182
INSTALLATION CONDITIONS OF OPTICAL	
I/O Link ADAPTER	169
INSTALLING THREE-CHANNEL I/O Link	
CONNECTOR ADAPTER	200
INSTALLING TWO-CHANNEL I/O Link	
CONNECTOR ADAPTER	190
INTERFACE MODULE (AIF01A, AIF01A2)	
LED INDICATORS	217
INTERFACE MODULE (AIF01A, AIF01A2, AIF01	B) 21

INTERFACE MODULE (AIF01B) LED	
INDICATORS	220
INTERFACE MODULE (AIF02C) CONNECTION.	24
INTERFACE MODULE (AIF02C) LED	
INDICATORS	221

<K>

<L>

LED indicators	107
LED INDICATORS	
LED Indicators	
LED INDICATORS ON THE INPUT/OUTPUT	
MODULES (HAVING 16 OR FEWER INPUT/	
OUTPUT POINTS)	
LIST OF MODULES	
LIST OF UNITS	
LNK Indicators	

<M>

.222
10/
. 106
. 179
.158
. 148
. 109
. 131
. 111
. 136
34
34
77
79
75
80
15
.202
. 192

INDEX

<N>

No. Indicators	
Notice of Optical Fiber Cable Handling	175

<0>

OPTICAL FIBER CABLE174
Optical Fiber Cable Clamping Method176
OPTICAL I/O Link ADAPTER166
Other Units (not Conforming to UL/C-UL)
OUTER DIMENSION OF I/O Unit11
OUTLINE OF HIGH-SPEED COUNTER MODULE 98
OUTSIDE DIMENSIONS OF THREE-CHANNEL I/O
Link CONNECTOR ADAPTER201
OUTSIDE DIMENSIONS OF TWO-CHANNEL I/O
Link CONNECTOR ADAPTER191

<P>

PMC I/O Area	147
PMC INTERFACE	109, 147
Pollution Degree	
POWER REQUIREMENTS	
POWER SOURCE OF OPTICAL I/O Link ADAF	TER169
Pulse Counter	
Pulse Interface	
PWR Indicator	

<R>

Reading Data	130
Relay Using an Optical Fiber Junction Adapter	177
REMOVING PC BOARDS	225
REQUIRED CURRENT	20

<S>

SAFETY FOR USING AC	
Setting Data129	
Setting with the DIP Switch	
Solid State Relay Output Signals (OUT0 to OUT7) 123	
Specification	
Specification94	
SPECIFICATION FOR EACH MODULE	
Specifications	
Specifications	
SPECIFICATIONS OF HIGH-SPEED COUNTER	
MODULE	
SUPPLEMENT	
SYSTEM CONFIGURATION	

INDEX

<T>

TEMPERATURE INPUT MODULE	144
Temperature Input Module Connection Diagram	154
TEMPERATURE INPUT MODULE	
SPECIFICATION	146
Terminal Board Unit Connection Diagram	156
TERMINAL BOARD UNIT DIMENSIONS	165
THREE-CHANNEL I/O Link CONNECTOR	
ADAPTER	193
TIMING CHARTS	157
TOTAL CONNECTION OF HIGH-SPEED	
COUNTER MODULE	117
TWO-CHANNEL I/O Link CONNECTOR	
ADAPTER	186
Units Conforming to UL/C-UL Standard: Ordering	
Information A03B-0819-Jxxx	212

<U>

Use in Mode A	
Use in Mode B	
Use of Phase A and B Pulses	119
Use of Positive/Negative Pulses	

<W>

WEIGHT
WEIGHT OF OPTICAL I/O Link 167
When not Connecting FANUC I/O Link Dummy Units
in Series
When Using Series 16i/18i/21i-MODEL B as Master 171
When Using Series 30 <i>i</i> /31 <i>i</i> /32 <i>i</i> -MODEL B as Master 172

~	1
гd	
Q	
S	
Ř	
L L	
<u>.</u>	
<u>.</u>	
N	
Å	
Ľ	

FANUC I/O Unit-MODEL A CONNECTION AND MAINTENANCE MANUAL (B-61813E)

	May, 2005	- Total revision			
03	Feb., 2000	 Addition of "I/O Link dummy unit" Addition of Inter face module (AIF02C) Addition of Input module (AID16K, AID16L) Addition of High-resolution type analog output module (ADA02B) Addition of "Temperature input module" Modification of "High speed counter module" 			
6	Apr., 1992	 Addition of high speed counter module Addition of Optical fiber Cable 			
6	Dec., 1990				
Edition	Date	Contents	Edition	Date	Contents