FANUC Series 0i-MODEL B FANUC Series 0i Mate-MODEL B

CONNECTION MANUAL (HARDWARE)

B-63833EN/03

- $\cdot\,$ No part of this manual may be reproduced in any form.
- · All specifications and designs are subject to change without notice.

In this manual we have tried as much as possible to describe all the various matters.

However, we cannot describe all the matters which must not be done, or which cannot be done, because there are so many possibilities. Therefore, matters which are not especially described as possible in this manual should be regarded as "impossible".

DEFINITION OF WARNING, CAUTION, AND NOTE

This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

WARNING

Applied when there is a danger of the user being injured or when there is a damage of both the user being injured and the equipment being damaged if the approved procedure is not observed.

CAUTION

Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE

The Note is used to indicate supplementary information other than Warning and Caution.

Q Read this manual carefully, and store it in a safe place.

PREFACE

This manual describes the electrical and structural specifications required for connecting the FANUC Series 0i/0i Mate CNC control unit to a machine tool. The manual outlines the components commonly used for FANUC CNC control units, as shown in the configuration diagram in Chapter 2, and supplies additional information on using these components with the Series 0i/0i Mate. Refer to individual manuals for the detailed specifications of each model.

Applicable models

The models covered by this manual, and their abbreviations are:

Product name	Abbrev	viation
FANUC Series 0 <i>i</i> -TB	0 <i>i</i> –TB	Series 0 <i>i</i>
FANUC Series 0 <i>i</i> –MB 0 <i>i</i> –MB		Certes of
FANUC Series 0 <i>i</i> Mate–TB 0 <i>i</i> Mate–TB Series 0 <i>i</i> Mate–		Series 0 <i>i</i> Mate
FANUC Series 0 <i>i</i> Mate–MB	0 <i>i</i> Mate–MB	Series Of Male

Configuration of the manual

This manual consists of Chapters 1 to 14 and Appendixes.

manual	
Chapter title	Description
Chapter 1 CONFIGURATION	Outlines connections for the Series 0 <i>i</i> /0 <i>i</i> Mate and guides the reader concerning additional details.
Chapter 2 TOTAL CONNECTION DIAGRAM	This chapter shows the total connection diagram.
Chapter 3 INSTALLATION	 This chapter describes the installation conditions for the Series 0<i>i</i>/0<i>i</i> Mate. 1) Required power supply 2) Heat generated 3) Connector arrangement on the control unit 4) Noise prevention
Chapter 4 CONNECTING THE POWER SUPPLY	This chapter describes how to connect the power supply.
Chapter 5 CONNECTING PERIPHERAL UNITS	 This chapter describes how to connect the following peripheral devices: 1) Display devices (CRT and LCD display) 2) MDI units 3) I/O devices (via RS232C) 4) Manual pulse generators
Chapter 6 CONNECTING THE SPINDLE UNIT	This chapter describes how to connect the spindle servo unit, the spindle motor.
Chapter 7 SERVO INTERFACE	This chapter describes how to connect the servo unit and the servo unit.
Chapter 8 CONNECTING THE MACHINE INTERFACE I/O	This chapter describes the addresses and connector pins for signals transferred between the Series 0 <i>i</i> /0 <i>i</i> Mate and the machine. Describes the built–in I/O board.
Chapter 9 CONNECTION TO FANUC I/O Link	This chapter describes the use of FANUC I/O Link to expand the machine interface I/O.
Chapter 10 EMERGENCY STOP SIGNAL	This chapter describes the handling of emergency stop signals. The user must read this chapter before attempting to operate the CNC.
Chapter 11 HIGH–SPEED SERIAL BUS (HSSB)	This chapter describes the high–speed serial bus (HSSB) supported by the Series 0 <i>i</i> .
Chapter 12 FANUC DNC2	This chapter describes connections for the FANUC DNC2.
Chapter 13 OTHER NETWORK CONNECTION	This chapter lists manuals related to the Ethernet, DeviceNet, and other networks
Chapter 14 CNC DISPLAY UNIT WITH PC FUNCTIONS	This chapter describes the connection between the Series 0 <i>i</i> and the CNC display unit with PC functions.
Appendix	 A External dimensions of units B 20-pin interface connectors and cables C Connection cables D Optical fiber cable E Attaching a CRT protecting cover F Machine operator's panel

Related manuals of Series 0*i*–B/0*i* Mate–B

The following table lists the manuals related to Series 0i-B, Series 0i Mate-B.

This manual is indicated by an asterisk(*).

Manual name	Specification number	
FANUC Series 0 <i>i</i> -MODEL B/0 <i>i</i> Mate-MODEL B DESCRIPTIONS	B-63832EN	
FANUC Series 0 <i>i</i> -PB DESCRIPTIONS	B-63972EN	
FANUC Series 0 <i>i</i> -MODEL B/0 <i>i</i> Mate-MODEL B CONNECTION MANUAL (HARDWARE)	B-63833EN	*
FANUC Series 0 <i>i</i> -MODEL B/0 <i>i</i> Mate-MODEL B CONNECTION MANUAL (FUNCTION)	B-63833EN-1	
FANUC Series 0 <i>i</i> –PB CONNECTION MANUAL (FUNCTION)	B-63973EN	
FANUC Series 0 <i>i</i> -TB OPERATOR'S MANUAL	B-63834EN	
FANUC Series 0 <i>i</i> -MB OPERATOR'S MANUAL	B-63844EN	
FANUC Series 0 <i>i</i> Mate-TB OPERATOR'S MANUAL	B-63854EN	
FANUC Series 0 <i>i</i> Mate–MB OPERATOR'S MANUAL	B-63864EN	
FANUC Series 0 <i>i</i> -PB OPERATOR'S MANUAL	B-63974EN	
FANUC Series 0 <i>i</i> –MODEL B/0 <i>i</i> Mate–MODEL B MAINTENANCE MANUAL	B-63835EN	
FANUC Series 0 <i>i</i> -MODEL B/0 <i>i</i> Mate-MODEL B PARAMETER MANUAL	B-63840EN	
FANUC Series 0 <i>i</i> -PB PARAMETER MANUAL	B-63980EN	
PROGRAMMING MANUAL		
Macro Compiler/Macro Executor PROGRAMMING MANUAL	B-61803E-1	
FANUC MACRO COMPILER (For Personal Computer) PROGRAMMING MANUAL	B-66102E	
PMC		
PMC Ladder Language PROGRAMMING MANUAL	B-61863E	
PMC C Language PROGRAMMING MANUA	B-61863E-1	
Network		
PROFIBUS-DP Board OPERATOR'S MANUAL	B-62924EN	
Ethernet Board/DATA SERVER Board OPERATOR'S MANUAL	B-63354EN	
AST Ethernet Board/FAST DATA SERVER OPERATOR'S MANUAL	B-63644EN	
DeviceNet Board OPERATOR'S MANUAL	B-63404EN	

Manual name	Specification number	
OPEN CNC		
FANUC OPEN CNC OPERATOR'S MANUAL Basic Operation Package 1 (For Windows 95/NT)	B-62994EN	
FANUC OPEN CNC OPERATOR'S MANUAL (DNC Operation Management Package)	B-63214EN	

Related manuals of SERVO MOTOR αi series

The following table lists the manuals related to SERVO MOTOR αi series

Manual name	Specification number
FANUC AC SERVO MOTOR αis/αi series DESCRIPTIONS	B-65262EN
FANUC AC SERVO MOTOR β is series DESCRIPTIONS	B-65302EN
FANUC AC SERVO MOTOR αis/αi/βis series PARAMETER MANUAL	B-65270EN
FANUC AC SPINDLE MOTOR αi series DESCRIPTIONS	B-65272EN
FANUC AC SPINDLE MOTOR β <i>i</i> s series DESCRIPTIONS	B-65312EN
FANUC AC SPINDLE MOTOR $\alpha i/\beta i$ series PARAMETER MANUAL	B-65270EN
FANUC SERVO AMPLIFIER α <i>i</i> series DESCRIPTIONS	B-65282EN
FANUC SERVO AMPLIFIER βi series DESCRIPTIONS	B-65322EN
FANUC AC SERVO MOTOR αis/αi series FANUC AC SPINDLE MOTOR αi series FANUC SERVO AMPLIFIER αi series MAINTENANCE MANUAL	B65285EN
FANUC AC SERVO MOTOR β <i>i</i> s series FANUC AC SPINDLE MOTOR β <i>i</i> series FANUC SERVO AMPLIFIER β <i>i</i> series MAINTENANCE MANUAL	B–65325EN

Table of Contents

DE	EFIN	IITION	OF WARNING, CAUTION, AND NOTE	s–1
PF	REF	ACE		p–1
1.	CO 1.1 1.2	NAMI	JRATION E OF EACH PART OF CONTROL UNIT ERAL OF HARDWARE	1 2 4
2.	то	TAL C	ONNECTION DIAGRAM	5
3.	INS	STALL/	ATION	9
	3.1	ENVI	RONMENT FOR INSTALLATION	10
		3.1.1	Environmental Requirements Outside the Control Unit	10
	3.2	POWF	ER SUPPLY	11
		3.2.1	Power Supply for CNC Control Units	11
	3.3	DESIC	GN AND INSTALLATION CONDITIONS OF THE MACHINE TOOL NETIC CABINET	12
	3.4		MAL DESIGN OF THE CABINET	14
		3.4.1	Temperature Rise Within the Cabinet	14
		3.4.2	Cooling by Heat Exchanger	14
		3.4.3	Heat Loss of Each Unit	15
	3.5	ACTIO	ON AGAINST NOISE	16
		3.5.1	Separating Signal Lines	16
		3.5.2	Ground	18
		3.5.3	Connecting the Signal Ground (SG) of the Control Unit	19
		3.5.4	Noise Suppressor	23
		3.5.5	Cable Clamp and Shield Processing	24
	3.6	CONT	"ROL UNIT	27
		3.6.1	Installing the Control Unit	27
	3.7	CABL	E LEAD–IN DIAGRAM	28
	3.8	CONN	JECTOR LAYOUT DIAGRAM	30
4.	РО	WER S		34
	4.1	GENE	RAL	35
	4.2		ING ON AND OFF THE POWER TO THE CONTROL UNIT	36
		4.2.1	Power Supply for the Control Unit	36
		4.2.2	External 24 VDC Power Supply and Circuit Configurations	37
		4.2.3	Procedure for Turning On the Power	41
		4.2.4	Procedure for Turning Off the Power	42
	4.3		E FOR POWER SUPPLY TO CONTROL UNIT	43
	4.4	BATT	ERY	44
		4.4.1	Battery for Memory Backup (3VDC)	44
		4.4.2	Batteries for CNC Display Unit with PC Functions (3VDC)	46
		4.4.3	Battery for Separate Absolute Pulse Coders (6VDC)	47
		4.4.4	Battery for Absolute Pulse Coder Built into the Motor (6VDC)	48
5.			TION TO CNC PERIPHERALS	49
	5.1	CONN	NECTION TO THE DISPLAY UNIT/MDI UNIT	50
		5.1.1 5.1.2	Outline	50 52

		5.1.3	Various LCD Units Interface	53				
		5.1.4	Connection to the Standard MDI Unit	54				
		5.1.5	Connection to the MDI Unit (When a LCD Unit is Used)	55				
	5.2	VARIE	D MDI KEY SWITCH	56				
	5.3		ECTING I/O DEVICES	64				
	0.0	5.3.1	General	64				
		5.3.2	Connecting I/O Devices	65				
		5.3.3	RS–232–C Serial Port	66				
		5.3.4	RS–232–C Interface Specification	67				
		5.3.5	FANUC Handy File Connection	75				
	5.4		ECTING THE MANUAL PULSE GENERATOR	76				
	5.1	5.4.1	General	76				
		5.4.1 5.4.2	Connection to Manual Pulse Generators	70				
		5.4.2 5.4.3	Cable Length When Manual Pulse Generator is Used	78				
		5.4.4	Manual Handle Allocation Function	78				
	5.5		ECTING THE HIGH–SPEED SKIP (HDI)	80				
	5.5							
		5.5.1	General	80				
		5.5.2 5.5.3	Connection to the High-speed Skip (HDI)	81 82				
		5.5.5	Input Signal Rules for the High–speed Skip (HDI)	82				
6	SP			83				
0.								
	6.1	SERIA	L SPINDLE	84				
		6.1.1	Connection of One to Two Serial Spindles	84				
	6.2	ANAL	OG SPINDLE INTERFACE	86				
	6.3	POSIT	ION CODER INTERFACE	87				
7.	SE	SERVO INTERFACE						
	7.1	CONN	ECTION TO THE SERVO AMPLIFIERS	89				
		7.1.1						
		710	General	90				
		7.1.2	General	90 90				
		7.1.2 7.1.3						
			Interface to the Servo Amplifiers	90				
		7.1.3	Interface to the Servo Amplifiers	90 91				
		7.1.3 7.1.4	Interface to the Servo Amplifiers Separate Detector Interface Separate Detector Interface Unit Specification Connection of Power Supply Linear Scale Interface (Parallel Interface)	90 91 93				
		7.1.3 7.1.4 7.1.5	Interface to the Servo Amplifiers Separate Detector Interface Separate Detector Interface Unit Specification Connection of Power Supply Linear Scale Interface (Parallel Interface) Stand–alone Type Pulse Coder Interface (Parallel Interface)	90 91 93 93 94 95				
		7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8	Interface to the Servo Amplifiers Separate Detector Interface Separate Detector Interface Unit Specification Connection of Power Supply Linear Scale Interface (Parallel Interface) Stand–alone Type Pulse Coder Interface (Parallel Interface) Input Signal Requirements	90 91 93 93 94 95 99				
		7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9	Interface to the Servo AmplifiersSeparate Detector InterfaceSeparate Detector Interface Unit SpecificationConnection of Power SupplyLinear Scale Interface (Parallel Interface)Stand–alone Type Pulse Coder Interface (Parallel Interface)Input Signal RequirementsConnection of Battery for Separate Absolute Detector	90 91 93 93 94 95 99 101				
		7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10	Interface to the Servo AmplifiersSeparate Detector InterfaceSeparate Detector Interface Unit SpecificationConnection of Power SupplyLinear Scale Interface (Parallel Interface)Stand–alone Type Pulse Coder Interface (Parallel Interface)Input Signal RequirementsConnection of Battery for Separate Absolute DetectorConnector Locations	90 91 93 93 94 95 99 101 103				
		7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11	Interface to the Servo Amplifiers	90 91 93 93 94 95 99 101 103 104				
		7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10	Interface to the Servo AmplifiersSeparate Detector InterfaceSeparate Detector Interface Unit SpecificationConnection of Power SupplyLinear Scale Interface (Parallel Interface)Stand–alone Type Pulse Coder Interface (Parallel Interface)Input Signal RequirementsConnection of Battery for Separate Absolute DetectorConnector Locations	90 91 93 93 94 95 99 101 103				
0	~~~	7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12	Interface to the Servo AmplifiersSeparate Detector InterfaceSeparate Detector Interface Unit SpecificationConnection of Power SupplyLinear Scale Interface (Parallel Interface)Stand–alone Type Pulse Coder Interface (Parallel Interface)Input Signal RequirementsConnection of Battery for Separate Absolute DetectorConnector LocationsInstallationNotes on Installing a Separate Detector Interface Unit	90 91 93 93 94 95 99 101 103 104				
8.		7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12	Interface to the Servo Amplifiers Separate Detector Interface Separate Detector Interface Unit Specification Connection of Power Supply Linear Scale Interface (Parallel Interface) Stand–alone Type Pulse Coder Interface (Parallel Interface) Input Signal Requirements Connection of Battery for Separate Absolute Detector Connector Locations Installation Notes on Installing a Separate Detector Interface Unit	90 91 93 93 94 95 99 101 103 104 105 107				
8.	CO 8.1	7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12	Interface to the Servo AmplifiersSeparate Detector InterfaceSeparate Detector Interface Unit SpecificationConnection of Power SupplyLinear Scale Interface (Parallel Interface)Stand–alone Type Pulse Coder Interface (Parallel Interface)Input Signal RequirementsConnection of Battery for Separate Absolute DetectorConnector LocationsInstallationNotes on Installing a Separate Detector Interface Unit	90 91 93 93 94 95 99 101 103 104				
8.		7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12	Interface to the Servo Amplifiers Separate Detector Interface Separate Detector Interface Unit Specification Connection of Power Supply Linear Scale Interface (Parallel Interface) Stand–alone Type Pulse Coder Interface (Parallel Interface) Input Signal Requirements Connection of Battery for Separate Absolute Detector Connector Locations Installation Notes on Installing a Separate Detector Interface Unit	90 91 93 93 94 95 99 101 103 104 105 107				
8.	8.1	7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12	Interface to the Servo Amplifiers Separate Detector Interface Separate Detector Interface Unit Specification Connection of Power Supply Linear Scale Interface (Parallel Interface) Stand–alone Type Pulse Coder Interface (Parallel Interface) Input Signal Requirements Connection of Battery for Separate Absolute Detector Connector Locations Installation Notes on Installing a Separate Detector Interface Unit Notes on Installing a Separate Detector Interface Unit	90 91 93 93 94 95 99 101 103 104 105 107 108				
8.	8.1	7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 PNNECT GENEI CAUT	Interface to the Servo Amplifiers	90 91 93 93 94 95 99 101 103 104 105 107 108 109				
8.	8.1	7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 DNNECT GENE CAUT 8.2.1 8.2.2	Interface to the Servo Amplifiers . Separate Detector Interface . Separate Detector Interface Unit Specification . Connection of Power Supply . Linear Scale Interface (Parallel Interface) . Stand–alone Type Pulse Coder Interface (Parallel Interface) . Input Signal Requirements . Connection of Battery for Separate Absolute Detector . Connector Locations . Installation . Notes on Installing a Separate Detector Interface Unit . FING MACHINE INTERFACE I/O . RAL . IONS . DI Signals and Receivers . DO Signals and Drivers .	90 91 93 93 94 95 99 101 103 104 105 107 108 109 109				
8.	8.1 8.2	7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 DNNECT GENEI CAUT 8.2.1 8.2.2 BUILT	Interface to the Servo Amplifiers	90 91 93 93 94 95 99 101 103 104 105 107 108 109 109 109				
8.	8.1 8.2	7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 DNNECT GENE CAUT 8.2.1 8.2.2	Interface to the Servo Amplifiers	90 91 93 94 95 99 101 103 104 105 107 108 109 109				
8.	8.1 8.2	7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 PNNECT GENEI CAUT 8.2.1 8.2.2 BUILT 8.3.1	Interface to the Servo Amplifiers	90 91 93 93 94 95 99 101 103 104 105 107 108 109 109 109 109				
	8.18.28.3	7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 DNNECT GENEL CAUT 8.2.1 8.2.2 BUILT 8.3.1 8.3.2 8.3.3	Interface to the Servo Amplifiers	90 91 93 93 94 95 99 101 103 104 105 107 108 109 109 109 109 110 111				

B-63833EN/03

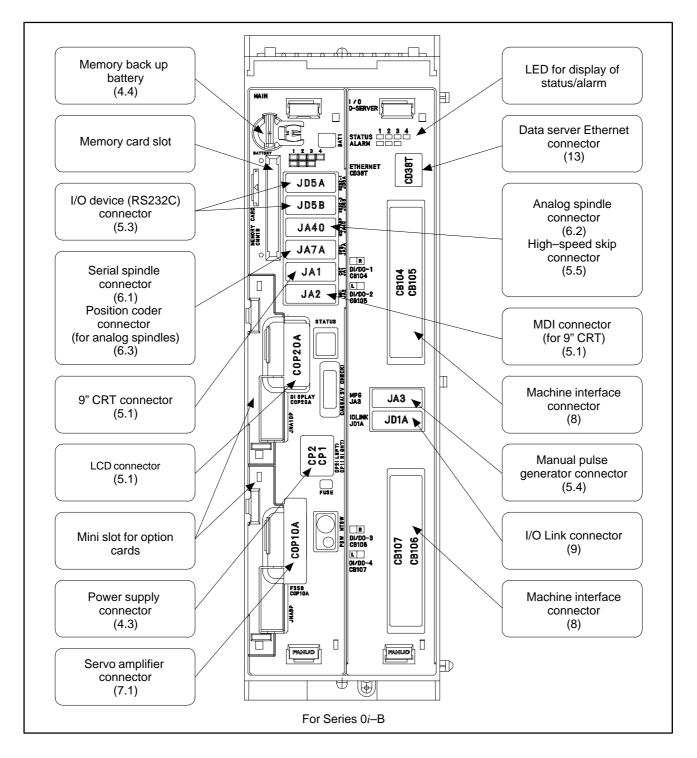
9.1	GENERAL		127	
9.2	CONNECTION			128
	9.2.1	Connee	ction of FANUC I/O Link by Electric Cable	133
	9.2.2 Power Supply Precautions			
			CAN BE CONNECTED USING FANUC I/O LINK	134
9.4	CONN	IECTIO	N TO MACHINE OPERATOR'S PANEL	135
	9.4.1	Overvi	ew	135
	9.4.2		Connection Diagram	136
	9.4.3		Die seelenseet	137
		9.4.3.1	Pin assignment	137
		9.4.3.2	Power supply connection	139
		9.4.3.3	I/O link connection	140
		9.4.3.4	Emergency stop signal connection	141
		9.4.3.5	Power ON/OFF control signal connection	141
		9.4.3.6	DI (input signal) connection	142
		9.4.3.7	DO (output signal) connection	144
		9.4.3.8	Manual pulse generator connection	145
		9.4.3.9	When a pendant-type manual pulse generator	146
		9.4.3.10	Connector (on the cable side) specifications	147
	9.4.4	DI/DO	Address	148
		9.4.4.1	Keyboard of main panel	148
		9.4.4.2	Override signals	149
	9.4.5		Mapping	150
	9.4.6		ctor Locations of Main Panel B	150
	9.4.7	Specifi 9.4.7.1	Environmentel acquirement	151 151
			Environmental requirement	
		9.4.7.2	Orderspecification	151
		9.4.7.3	Main panel B, B1 specification	152
		9.4.7.4	Sub panel A, B1 specification	152
		9.4.7.5	Power supply specification	152
		9.4.7.6	General-purpose DI signal definition	153
		9.4.7.7	General-purpose DO signal definition	153
	9.4.8		mbol Indication on Machine Operator's Panel	154
		9.4.8.1	Meaning of key symbols	154
		9.4.8.2	Detachable key top	156
	9.4.9			157
9.5			N TO THE SMALL MACHINE OPERATOR'S PANEL	160
	9.5.1		ew	160
	9.5.2 9.5.3		1 Connection Diagram ction of Each Section	160 161
	7.5.5	9.5.3.1	Power connection	161
		9.5.3.2	Emergency stop switch	162
		9.5.3.2	I/O Link connection	162
	9.5.4	9.5.3.4	Manual pulse generator connection nal Connection (Rotary Switch Connection)	163 166
	9.5.4 9.5.5	-	dress	160 167
			Keyboard of the operator's panel	167
		9.5.5.2	Override signals	168
	9.5.6		dress Allocation	169
	-			

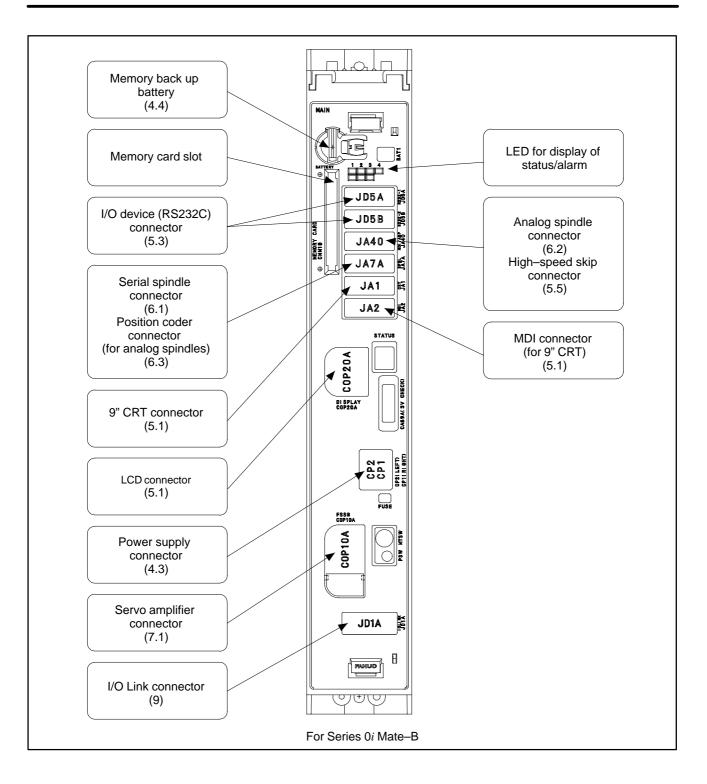
9.5.7	External Dimensions
	9.5.7.1 Outline drawing and panel-cut drawing of the small machine operator's panel
	9.5.7.2 Layout of the key sheet
9.5.8	Connector Layout of the Small Machine Operator's Panel
9.5.9	Specifications
	9.5.9.1 Environmental requirement
	9.5.9.2 Orderspecification
	9.5.9.3 Operator's panel specification
0.5.10	9.5.9.4 Power supply specification
9.5.10	
	9.5.10.1 Meaning of key symbols
	9.5.10.2 Customization of the key sheet
9.5.11	Others
9.5.12	Maintenance Parts
9.6 CON	NECTION OF CONNECTOR PANEL I/O MODULE
9.6.1	Configuration
9.6.2	Connection Diagram
9.6.3	Module Specifications
9.6.4	DI/DO Connector Pin Assignment
9.6.5	DI (Input Signal) Connection
9.6.6	DO (Output Signal) Connection
9.6.7	DI/DO Signal Specifications
9.6.8	2A Output Connector Pin Allocation
9.6.9	2A DO (Output Signal) Connection
9.6.10	2A Output DO Signal Specifications
9.6.11	Analog Input Connector Pin Allocation
9.6.12	Analog Input Signal Connections
9.6.13	Analog Input Signal Specifications
9.6.14	Analog Input Specifications
9.6.15	Manual Pulse Generator Connection
9.6.16	Cable Length for Manual Pulse Generator
9.6.17	Connection of Basic and Expansion Modules
9.6.18	Module Installation
9.6.19	Other Notes
9.6.20	
.7 CON	NECTION OF OPERATOR'S PANEL I/O MODULE (FOR MATRIX INPUT)
9.7.1	Overall Connection Diagram
9.7.2	Power Connection
9.7.3	DI/DO Connector Pin Arrangement
9.7.4	DI (General-purpose Input Signal) Connection
9.7.5	DI (Matrix Input Signal) Connection
9.7.6	DO (Output Signal) Connection
9.7.7	Manual Pulse Generator Connection
9.7.8	External View
9.7.9	Specifications
9.7.10	Other Notes
	NECTION OF OPERATOR'S PANEL I/O MODULE AND VER MAGNETICS CABINET I/O MODULE
9.8.1	Overall Connection Diagram
9.8.2	Power Connection
9.8.3	DI/DO Connector Pin Arrangement
9.8.4	DI (General-purpose Input Signal) Connection
9.8.5	DO (Output Signal) Connection
9.8.6	Manual Pulse Generator Connection
9.8.7	External View

	9.8.8 9.8.9	Specifications	241 243
9.9		ECTION OF SOURCE OUTPUT TYPE CONNECTION UNIT	243 247
9.9	9.9.1	Input Signal Specifications for Source Output Type Connection Unit	247
	9.9.1 9.9.2	Output Signal Specifications for Source Output Type Connection Unit	248 249
	9.9.3	Connector Pin Layout for Source Output Type Connection Unit	253
	9.9.4	Dimensions of Source Output Type Connection Unit	256
9.10	CONNI	ECTING THE FANUC SERVO UNIT β SERIES WITH I/O LINK $\ldots \ldots \ldots \ldots$	257
	9.10.1	Overview	257
	9.10.2	Connection	258
	9.10.3 9.10.4	Maximum Number of Units that can be Connected Address Assignment by Ladder Address Assignment by Ladder Address Assignment by Ladder	259 259
	9.10.4		257
10.EM	IERGEN	ICY STOP SIGNAL	260
44 110			262
		ED SERIAL BUS (HSSB)	
11.1		/IEW	264
11.2	CAUTI	ONS	265
11.3	CONNI	ECTION DIAGRAM	266
11.4	PERSO	NAL COMPUTER SPECIFICATION	267
11.5	INSTAI	LLATION ENVIRONMENT	268
11.6	HAND	LING PRECAUTIONS	268
11.7	PROCE	DURE FOR INSTALLING PERSONAL COMPUTER INTERFACE BOARDS	269
11.8		MMENDED CABLES	273
		IC2 INTERFACE	
12.FA 12.1	GENE	RAL	275
	GENE		275
12.1 12.2	GENER DNC2	RAL	275 276
12.1 12.2	GENER DNC2	RAL	275 276
12.1 12.2 13.CC	GENER DNC2	RAL	275 276 277
12.1 12.2 13.CC	GENER DNC2 DNNECT	RAL INTERFACE (RS-232-C) ION TO OTHER NETWORKS	275 276 277
12.1 12.2 13.CO 14.CN 14.1	GENER DNC2 DNNECT C DISP OVERV	RAL	275 276 277 277 278 279
12.1 12.2 13.CO 14.CN 14.1 14.2	GENER DNC2 I ONNECT C DISP OVERV CAUTI	RAL INTERFACE (RS-232-C) ION TO OTHER NETWORKS LAY UNIT WITH PC FUNCTIONS IEW ONS	275 276 277 278 279 279
12.1 12.2 13.CC 14.CN 14.1 14.2 14.3	GENER DNC2 DNNECT COVERV CAUTI CONNI	RAL INTERFACE (RS–232–C) ION TO OTHER NETWORKS LAY UNIT WITH PC FUNCTIONS /IEW ONS	275 276 277 277 278 279 279 280
12.1 12.2 13.CO 14.CN 14.1 14.2	GENER DNC2 D ONNECT OVERV CAUTI CONNI GENER	RAL INTERFACE (RS–232–C) TION TO OTHER NETWORKS LAY UNIT WITH PC FUNCTIONS /IEW ONS ECTION RAL CONNECTION DIAGRAMS	275 276 277 277 278 279 279 280 281
12.1 12.2 13.CC 14.CN 14.1 14.2 14.3	GENER DNC2 ONNECT CONSP OVERV CAUTI CONNI GENER 14.4.1	RAL INTERFACE (RS-232-C) CION TO OTHER NETWORKS LAY UNIT WITH PC FUNCTIONS /IEW ONS ECTION RAL CONNECTION DIAGRAMS CNC Display Unit with PC Functions Having Neither Soft Keys nor a Touch Panel	275 276 277 277 278 279 279 280 281 281
12.1 12.2 13.CC 14.CN 14.1 14.2 14.3	GENER DNC2 D ONNECT OVERV CAUTI CONNI GENER	RAL INTERFACE (RS-232-C) CION TO OTHER NETWORKS LAY UNIT WITH PC FUNCTIONS /IEW ONS SCTION RAL CONNECTION DIAGRAMS CNC Display Unit with PC Functions Having Neither Soft Keys nor a Touch Panel CNC Display Unit with PC Functions Having Soft Keys but No Touch Panel	275 276 277 277 278 279 279 280 281
12.1 12.2 13.CC 14.CN 14.1 14.2 14.3	GENER DNC2 ONNECT CDISP OVERV CAUTI CONNI GENER 14.4.1 14.4.2	RAL INTERFACE (RS-232-C) CION TO OTHER NETWORKS LAY UNIT WITH PC FUNCTIONS /IEW ONS ECTION RAL CONNECTION DIAGRAMS CNC Display Unit with PC Functions Having Neither Soft Keys nor a Touch Panel	275 276 277 278 279 279 280 281 281 281 283
12.1 12.2 13.CC 14.CN 14.1 14.2 14.3	GENER DNC2 DNC2 ONNECT CDISP OVERV CAUTI CONNI GENER 14.4.1 14.4.2 14.4.3 14.4.4	RAL INTERFACE (RS-232-C) CION TO OTHER NETWORKS LAY UNIT WITH PC FUNCTIONS /IEW ONS ECTION RAL CONNECTION DIAGRAMS CNC Display Unit with PC Functions Having Neither Soft Keys nor a Touch Panel CNC Display Unit with PC Functions Having Soft Keys but No Touch Panel CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key	275 276 277 278 279 279 280 281 281 283 284
12.1 12.2 13.CC 14.CN 14.1 14.2 14.3 14.4	GENER DNC2 DNC2 ONNECT CDISP OVERV CAUTI CONNI GENER 14.4.1 14.4.2 14.4.3 14.4.4	RAL INTERFACE (RS-232-C) CION TO OTHER NETWORKS LAY UNIT WITH PC FUNCTIONS /IEW ONS ECTION RAL CONNECTION DIAGRAMS CNC Display Unit with PC Functions Having Neither Soft Keys nor a Touch Panel CNC Display Unit with PC Functions Having Soft Keys but No Touch Panel CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key	275 276 277 277 278 279 279 280 281 281 281 283 284 285
12.1 12.2 13.CC 14.CN 14.1 14.2 14.3 14.4	GENER DNC2 1 ONNECT OVERV CAUTI CONNI GENER 14.4.1 14.4.2 14.4.3 14.4.4 SPECIH 14.5.1 14.5.2	RAL INTERFACE (RS-232-C) TION TO OTHER NETWORKS LAY UNIT WITH PC FUNCTIONS /IEW ONS ECTION RAL CONNECTION DIAGRAMS CNC Display Unit with PC Functions Having Neither Soft Keys nor a Touch Panel CNC Display Unit with PC Functions Having Soft Keys but No Touch Panel CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key CNC Display Unit with PC Functions Having a Touch Panel and Soft Key CNC Display Unit with PC Functions Having a Touch Panel and Soft Key CNC Display Unit with PC Functions Having a Touch Panel and Soft Key CNC Display Unit with PC Functions Having a Touch Panel and Soft Key FICATIONS Installation Environmental Conditions Power Supply Specification	275 276 277 278 279 279 280 281 283 284 285 286 286 286 287
12.1 12.2 13.CC 14.CN 14.1 14.2 14.3 14.4	GENER DNC2 DNC2 ONNECT CDISP OVERV CAUTI CONNI GENER 14.4.1 14.4.2 14.4.3 14.4.4 SPECIR 14.5.1 14.5.2 14.5.3	RAL INTERFACE (RS-232-C) TION TO OTHER NETWORKS LAY UNIT WITH PC FUNCTIONS /IEW ONS ECTION RAL CONNECTION DIAGRAMS CNC Display Unit with PC Functions Having Neither Soft Keys nor a Touch Panel CNC Display Unit with PC Functions Having Soft Keys but No Touch Panel CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key CNC Display Unit with PC Functions Having a Touch Panel and Soft Key TCATIONS Installation Environmental Conditions Power Supply Specification Shutdown	275 276 277 278 279 279 280 281 281 283 284 285 286 286 286 287 288
12.1 12.2 13.CC 14.CN 14.1 14.2 14.3 14.4	GENER DNC2 1 ONNECT OVERV CAUTI CONNI GENER 14.4.1 14.4.2 14.4.3 14.4.4 SPECIR 14.5.1 14.5.2 14.5.3 INSTAI	RAL INTERFACE (RS-232-C) TON TO OTHER NETWORKS LAY UNIT WITH PC FUNCTIONS /IEW ONS ECTION RAL CONNECTION DIAGRAMS CNC Display Unit with PC Functions Having Neither Soft Keys nor a Touch Panel CNC Display Unit with PC Functions Having Soft Keys but No Touch Panel CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key CNC Display Unit with PC Functions Having a Touch Panel and Soft Key TCATIONS Installation Environmental Conditions Power Supply Specification Shutdown LLATION SPACE	275 276 277 278 279 280 281 281 283 284 285 286 286 286 286 288 288 289
12.1 12.2 13.CC 14.CN 14.1 14.2 14.3 14.4	GENER DNC2 D ONNECT OVERV CAUTI CONNI GENER 14.4.1 14.4.2 14.4.3 14.4.4 SPECIR 14.5.1 14.5.2 14.5.3 INSTAI 14.6.1	AL INTERFACE (RS–232–C) ION TO OTHER NETWORKS LAY UNIT WITH PC FUNCTIONS IEW ONS ECTION AL CONNECTION DIAGRAMS CNC Display Unit with PC Functions Having Neither Soft Keys nor a Touch Panel CNC Display Unit with PC Functions Having Soft Keys but No Touch Panel CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key CNC Display Unit with PC Functions Having a Touch Panel and Soft Key CNC Display Unit with PC Functions Having a Touch Panel and Soft Key CNC Display Unit with PC Functions Having a Touch Panel and Soft Key CNC Display Unit with PC Functions Having a Touch Panel and Soft Key LATIONS Installation Environmental Conditions Power Supply Specification Shutdown LLATION SPACE Basic Unit 10.4" LCD Type	275 276 277 278 279 279 280 281 281 283 284 285 286 286 286 286 287 288 289 289
12.1 12.2 13.CC 14.CN 14.1 14.2 14.3 14.4	GENER DNC2 1 ONNECT OVERV CAUTI CONNI GENER 14.4.1 14.4.2 14.4.3 14.4.4 SPECIR 14.5.1 14.5.2 14.5.3 INSTAI	RAL INTERFACE (RS-232-C) TON TO OTHER NETWORKS LAY UNIT WITH PC FUNCTIONS /IEW ONS ECTION RAL CONNECTION DIAGRAMS CNC Display Unit with PC Functions Having Neither Soft Keys nor a Touch Panel CNC Display Unit with PC Functions Having Soft Keys but No Touch Panel CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key CNC Display Unit with PC Functions Having a Touch Panel and Soft Key TCATIONS Installation Environmental Conditions Power Supply Specification Shutdown LLATION SPACE	275 276 277 278 279 280 281 281 283 284 285 286 286 286 286 288 288 289

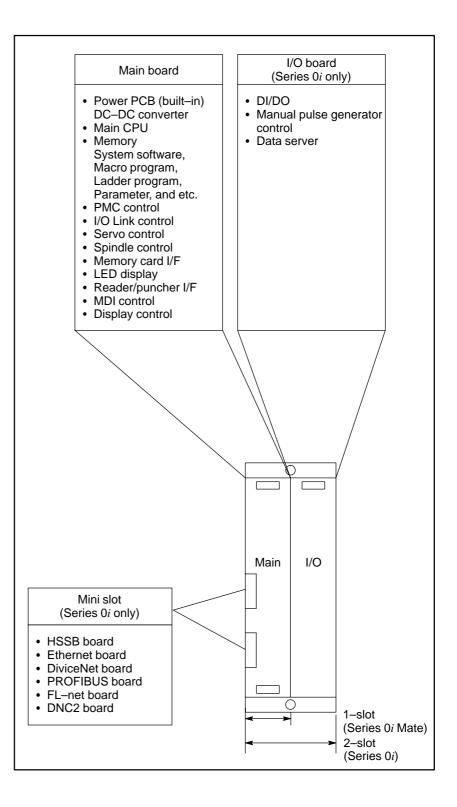
14.7	PERI	PHERAL EQUIPMENT AND CONNECTION	292
	14.7.1	Connector Layout Diagram	292
	14.7.2	Main Power Supply Input	293
	14.7.3	Floppy Disk Drive (Signal and Power Supply)	294
		14.7.3.1 Operating environment	296
		14.7.3.2 Handling precautions	296
	14.7.4	High-speed Serial Bus (HSSB)	297
	14.7.5	Full Keyboard	298
	14.7.6	Mouse	300
	14.7.7	Centronics Parallel Port	301
	14.7.8	Serial Port 2 + USB	302
	14.7.9	Serial Port 1	304
	14.7.10	Soft Keys	305
	14.7.11	PCMCIA Card	306
	14.7.12	Hard Disk Unit	307
14.8	PCI E	XPANSION BOARD	308
	14.8.1	Installation Method	308

APPENDIX

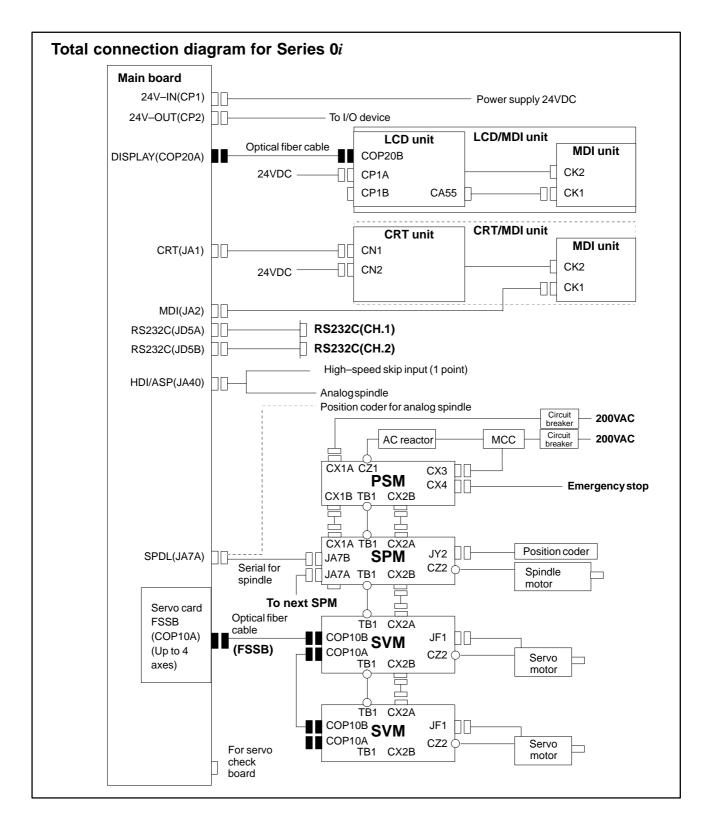

Α.	EXT	ERNAL DIMENSIONS OF EACH UNIT	313
В.	2 0 –l	PIN INTERFACE CONNECTORS AND CABLES	374
	B.1	OVERVIEW	375
	B.2	BOARD-MOUNTED CONNECTORS	375
	B.3	CABLE CONNECTORS	376
	B.4	RECOMMENDED CONNECTORS, APPLICABLE HOUSINGS, AND CABLES	378
C.	CON	NNECTION CABLE (SUPPLIED FROM US)	389
D.	OPT		393
E.	ATT	ACHING A CRT PROTECTIVE COVER	405
F.	MEN	MORY CARD INTERFACE	407


1.1 NAME OF EACH PART OF CONTROL UNIT

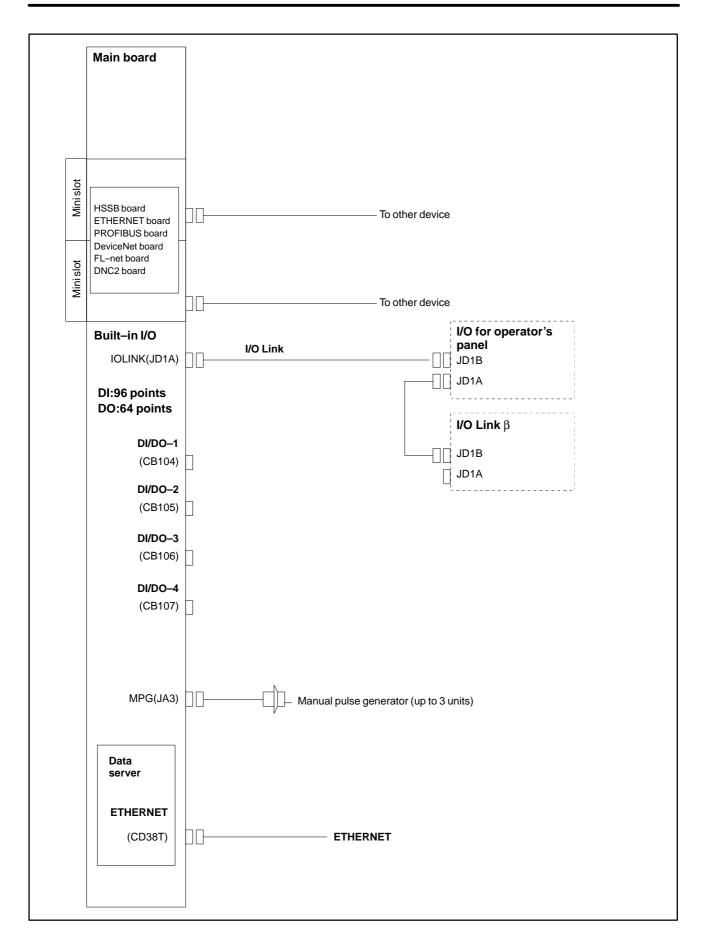
The following figure shows the configuration of FANUC Series 0i/0i Mate control unit.

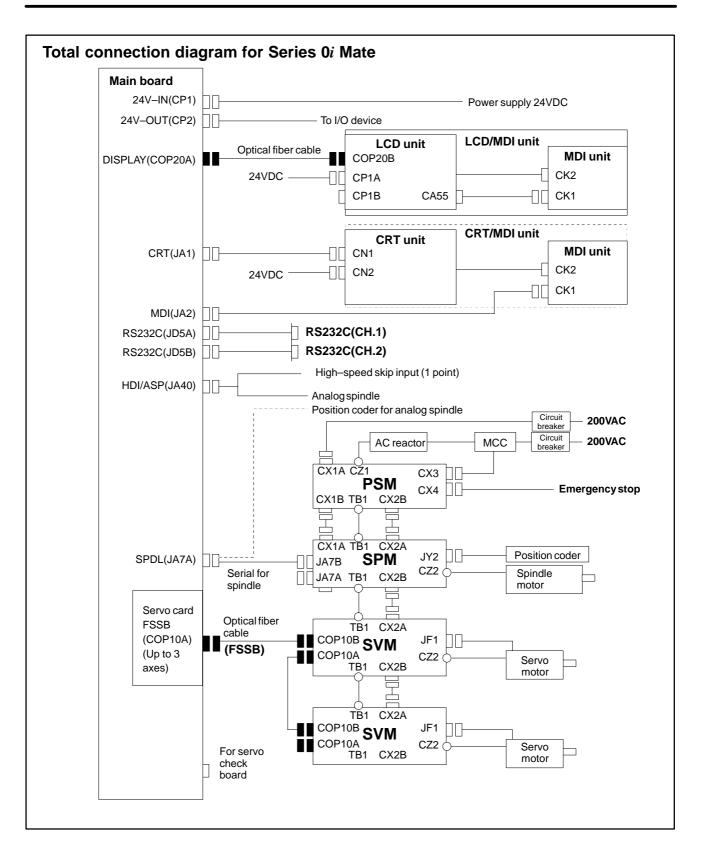

This manual describes how to connect the units illustrated in this diagram. The numbers in parentheses shown in the diagram are section references for this manual.

— 2 —

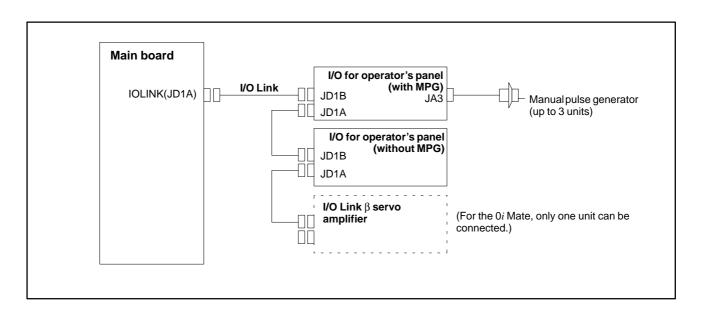


1.2 GENERAL OF HARDWARE




— 4 —

2 TOTAL CONNECTION DIAGRAM



2. TOTAL CONNECTION DIAGRAM

2. TOTAL CONNECTION DIAGRAM

3.1 ENVIRONMENT FOR INSTALLATION

3.1.1 Environmental Requirements Outside the Control Unit

The peripheral units and the control unit have been designed on the assumption that they are housed in closed cabinets. In this manual "cabinet" refers to the following:

- Cabinet manufactured by the machine tool builder for housing the control unit or peripheral units;
- Operation pendant, manufactured by the machine tool builder, for housing the control unit or operator's panel.
- Equivalent to the above.

The environmental conditions when installing these cabinets shall conform to the following table. Section 3.3 describes the installation and design conditions of a cabinet satisfying these conditions.

Ambient	Operating	0°C to 55°C	
Temperature	Storage, Transport	–20°C to 60°C	
	Normal	75%RH or less, no condensation	
Humidity	Short period (less than 1 month)	95%RH or less, no condensation	
Vibration	Operating	0.5 G or less	
VIDIATION	Non-operating	1.0 G or less	
Meters above	Operating	Up to 1000 m	
sea level	Non-operating	Up to 12000 m	
Environment	Normal machine shop environment (The environment must be considered if the cabinets are in a location where the density of dust, coolant, and/or organic solvent is relatively high.)		

3.2 POWER SUPPLY

3.2.1 Power Supply for CNC Control Units

The following units related to the CNC control unit require input power of 24 VDC $\pm 10\%$.

Table 3.2.1	Power supply
-------------	--------------

 \bigcirc indicates "Applicable."

	Unit	Series 0 <i>i</i>	Series 0 <i>i</i> Mate	Power supply
Control unit	1-slot	_	0	1.6A
	2–slot (without data server) (including the power supply for three MPGs)	0	_	2.4A
	2–slot (with data server) (including the power supply for three MPGs)	0	_	2.9A
Option card	Ethernet card	0	—	0.5A
for mini slot	HSSB card	0	—	0.2A
	DNC2 card	0	—	0.3A
	FL-net card	0	—	0.3A
	DeviceNet card	0	—	0.2A
	PROFIBUS card	0	—	0.3A
9"CRT/MDI ur	9"CRT/MDI unit		0	0.8A
7.2"LCD/MDI	unit	0	0	0.5A
8.4"LCD/MDI	unit	0	—	0.6A
8.4"LCD unit	8.4"LCD unit		—	0.6A
10.4"LCD unit	10.4"LCD unit			0.7A
MDI unit (sma	MDI unit (small)			0A
MDI unit (full k	key)	0	—	0A
I/O module for operator's panel (with MPG interface) (including the power supply for three MPGs)		0	0	0.4A
I/O module for operator's panel (without MPG interface)		0	0	0.35A
I/O module for connector panel (basic)		0		0.25A
I/O module for connector panel (addition)		0		0.15A
Machine operator's panel unit		0	0	0.4A
Separate detector interface unit		0	0	0.9A

NOTE

1 Boards in option slots and mini slots are not included.

2 When an RS–232–C unit (with power supplied form the NC) is connected to the RS–232–C port, +1 A is further required.

3 Use memory cards that consume no more than 2 W.

3.3 DESIGN AND INSTALLATION CONDITIONS OF THE MACHINE TOOL MAGNETIC CABINET

When a cabinet is designed, it must satisfy the environmental conditions described in Sec. 3.1. In addition, the magnetic interference on the CRT screen, noise resistance, and maintenance requirements must be considered. The cabinet design must meet the following conditions :

(1) The cabinet must be fully closed.

The cabinet must be designed to prevent the entry of airborne dust, coolant, and organic solvent.

Cabinets that let in air may be desined for the servo amplifier and servo transformer provided that they :

- Use an air filter on the air inlet ;
- Place the ventilating fan so that it does not blow air directly toward the unit;
- Control the air flow so that no dust or coolant enters the air outlet
- (2) The cabinet must be designed to maintain a difference in temperature of 10°C or less between the air in the cabinet and the outside air when the temperature in the cabinet increases.

See Sec. 3.4 for the details on thermal design of the cabinet.

(3) A closed cabinet must be equipped with a fan to circulate the air within.

The fan must be adjusted so that the air moves at 0.5 m/sec along the surface of each installed unit.

CAUTION

If the air blows directly from the fan to the unit, dust easily abheres to the unit. This may cause the unit to fail.

- (4) For the air to move easily, a clearance of 100 mm is required between each unit and the wall of the cabinet.
- (5) Packing materials must be used for the cable port and the door in oreder to seal the cabinet.

Because the CRT unit uses a voltage of approximatery 11 kV, airborne dust gathers easily. If the cabinet is insufficiently sealed, dust passes through the gap and abheres to the unit. This may cause the insulation of the unit to deteriorate.

- (6) The CRT unit and other display units must be installed in a location where coolant cannot be poured directly on it. The unit does have a dust-proof front panel.
- (7) Noise must be minimized.

As the machine and the CNC unit are reduced in size, the parts that generate noise may be placed near noise–sensitive parts in the magnetics cabinet.

The CNC unit is built to protect it from external noise. Cabinet design to minimize noise generation and to prevent it from being transmitted to the CNC unit is necessary. See Sec. 3.5 for details of noise elimination/management.

(8) The units must be installed or arranged in the cabinet so that they are easy to inspect and maintain.

(9) The CRT screen can be distorted by magnetic interference.

Arranging magnetic sources must be done with care.

If magnetic sources (such as transformers, fan motors, electromagnetic contactors, solenoids, and relays) are located near the CRT display, they frequently distort the display screen. To prevent this, the CRT display and the magnetic sources generatly must be kept 300 mm apart. If the CRT display and the magnetic sources are not 300 mm apart, the screen distortion may be suppressed by changing the direction in which the magnetic sources are installed.

The magnetic intensity is not constant, and it is often increased by magnetic interference from multiple magnetic sources interacting with each other. As a result, simply keeping the CRT and the magnetic sources 300 mm apart may not be enough to prevent the distortion. If they cannot be kept apart, or if the CRT screen remains distorted despite the distance, cover the screen with a magnetic shield.

3.4 THERMAL DESIGN OF THE CABINET	The purpose of the thermal design of the cabinet is to limit the difference in temperature between the air in the cabinet and the outside air to 10°C or less when the temperature in the cabinet increases. The internal air temperature of the cabinet increases when the units and parts installed in the cabinet generate heat. Since the generated heat is radiated from the surface of the cabinet, the temperature of the air in the cabinet and the outside air balance at certain heat levels. If the amount of heat generated is constant, the larger the surface area of the cabinet, the less the internal temperature rises. The thermal design of the cabinet refers to calculating the heat generated in the cabinet, evaluating the surface area of the cabinet, and enlarging that surface area by installing heat exchangers in the cabinet, if necessary. Such a design method is described in the following subsections.
3.4.1 Temperature Rise Within the Cabinet	The cooling capacity of a cabinet made of sheet metal is generally 6 W/°C per 1m ² surface area, that is, when the 6W heat source is contained in a cabinet having a surface area of 1 m ² , the temperature of the air in the cabinet rises by 1°C. In this case the surface area of the cabinet refers to the area useful in cooling, that is, the area obtained by subtracting the area of the cabinet touching the floor from the total surface area of the cabinet. There are two preconditions : The air in the cabinet must be circuited by the fun, and the temperature of the air in the cabinet must be almost constant. The following expression must then be satisfied to limit the difference in temperature between the air in the cabinet rises:
	Internal heat loss P [W] $\leq 6 [W/m^2 \cdot {}^{\circ}C] \times \text{surface area S } [m^2] \times 10 [{}^{\circ}C]$ of rise in temperature
	For example, a cabinet having a surface area of 4m ² has a cooling capacity of 24W/°C. To limit the internal temperature increase to 10°C under these conditions, the internal heat must not exceed 240W. If the actual internal heat is 320W, however, the temperature in the cabinet rises by 13°C or more. When this happens, the cooling capacity of the cabinet must be improved using the heat exchanger described next.
242	If the temperature rise cannot be limited to 10°C by the cooling canacity

3.4.2 Cooling by Heat Exchanger If the temperature rise cannot be limited to 10° C by the cooling capacity of the cabinet, a heat exchanger must be added. The heat exchanger forcibly applies the air from both the inside and outside of the cabinet to the cooling fin to obtain effective cooling. The heat exchanger enlarges the surface area.

3.4.3 Heat Loss of Each Unit

 \bigcirc indicates "Applicable."

	Unit	Series 0 <i>i</i>	Series 0 <i>i</i> Mate	Heat loss
Control unit	1-slot	—	0	30W
	2-slot (without data server)	0	—	50W
	2-slot (with data server)	0	—	60W
Option card for mini slot	Ethernet card	0	—	10W
	HSSB card	0	—	3W
	DNC2 card	0	—	6W
	FL-net card	0	—	6W
	DeviceNet card	0	—	5W
	PROFIBUS card	0	—	6W
9"CRT/MDI unit		0	0	20W
7.2"LCD/MDI unit		0	0	12W
8.4"LCD/MDI unit		0	—	15W
8.4"LCD unit		0	—	15W
10.4"LCD unit		0	—	16W
MDI unit (small)		0	—	0W
MDI unit (full	key)	0	—	0W
I/O module for operator's panel (with MPG interface)		0	0	12W
I/O module for operator's panel (without MPG interface)		0	0	12W
I/O module for connector panel (basic)		0	—	8W
I/O module for connector panel (addition)		0		5W
Machine operator's panel unit		0	0	10W
Separate detector interface unit		0	0	9W

Heat from the MDI unit is negligible.

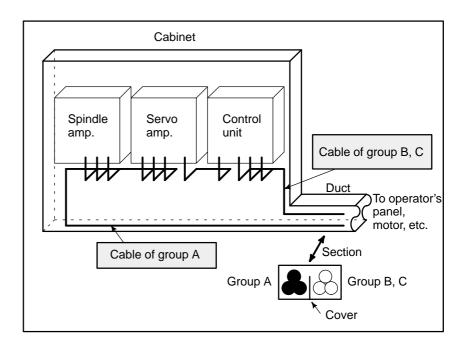
3.5 ACTION AGAINST The CNC has been steadily reduced in size using surface-mount and custom LSI technologies for electronic components. The CNC also is designed to be protected from external noise. However, it is difficult to measure the level and frequency of noise quantitatively, and noise has many uncertain factors. It is important to prevent both noise from being generated and generated noise from being introduced into the CNC. This precaution improves the stability of the CNC machine tool system. The CNC component units are often installed close to the parts generating noise in the power magnetics cabinet. Possible noise sources into the

CNC are capacitive coupling, electromagnetic induction, and ground loops. When designing the power magnetics cabinet, guard against noise in the

when designing the power magnetics cabinet, guard against noise in the machine as described in the following section.

3.5.1 Separating Signal Lines

The cables used for the CNC machine tool are classified as listed in the following table:


Process the cables in each group as described in the action column.

Group	Signal line	Action	
A	Primary AC power line	Bind the cables in group A sepa rately (Note 1) from groups E	
	Secondary AC power line	and C, or cover group A with an electromagnetic shield (Note 2).	
	AC/DC power lines (containing the power lines for the servo and spindle motors)	See Subsec. 3.5.4 and connect spark killers or diodes with the solenoid and relay.	
	AC/DC solenoid		
	AC/DC relay		
В	DC solenoid (24VDC)	Connect diodes with DC sole- noid and relay.	
	DC relay (24VDC)	Bind the cables in group B sepa- rately from group A, or cover group B with an electromagnetic shield.	
	DI/DO cable between the CNC		
	and power magnetics cabinet	Separate group B as far from Group C as possible.	
	DI/DO cable between the CNC and machine	It is more desirable to cover group B with the shield.	

Group	Signal line	Action
	Cable for position and velocity feedback	Bind the cables in group C sepa- rately from group A, or cover group C with an electromagnet-
	Cable between the CNC and spindle amplifier	ic shield. Separate group C as far from
	Cable for the position coder	Group B as possible. Be sure to perfrom shield pro-
С	Cable for the manual pulse gener- ator	cessing in Subsec. 3.5.5.
	Cable between the CNC and the CRT/MDI	
	RS-232-C and RS-422 interface cable	
	Cable for the battery	
	Other cables to be covered with the shield	

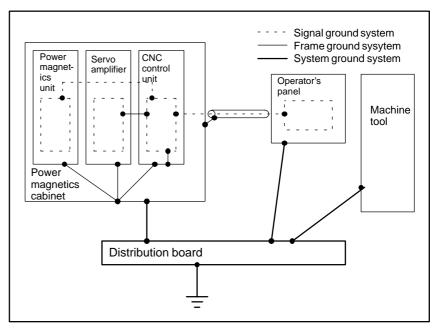
NOTE

- 1 The groups must be 10 cm or more apart from one another when binding the cables in each group.
- 2 The electromagnetic shield refers to shielding between groups with grounded steel plates.

3.5.2 Ground

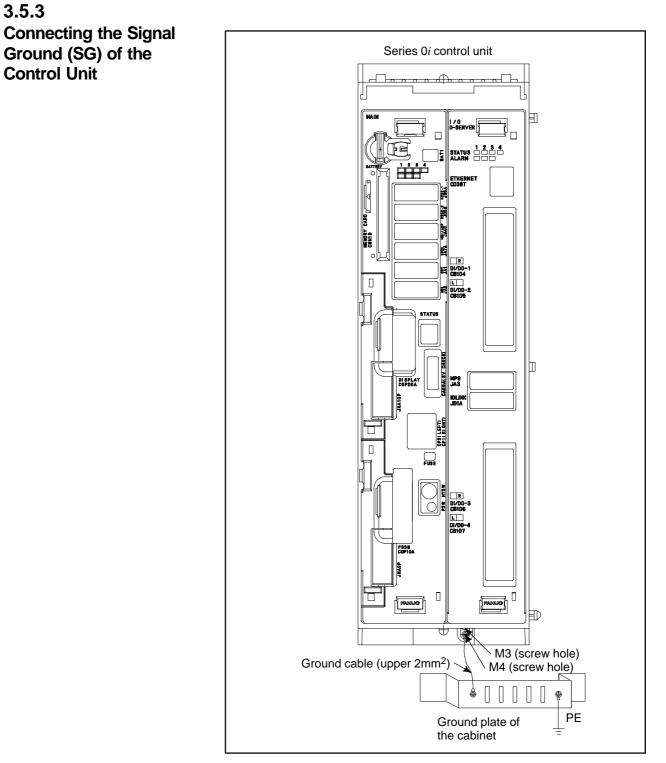
The following ground systems are provided for the CNC machine tool:

(1) Signal ground system (SG)

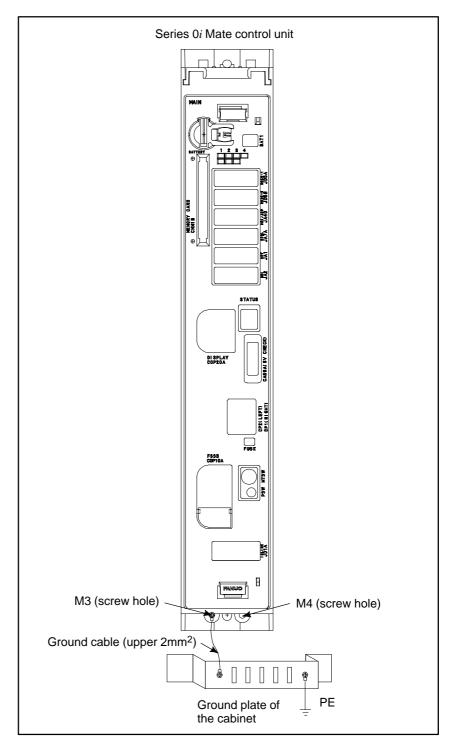

The signal ground (SG) supplies the reference voltage (0 V) of the electrical signal system.

(2) Frame ground system (FG)

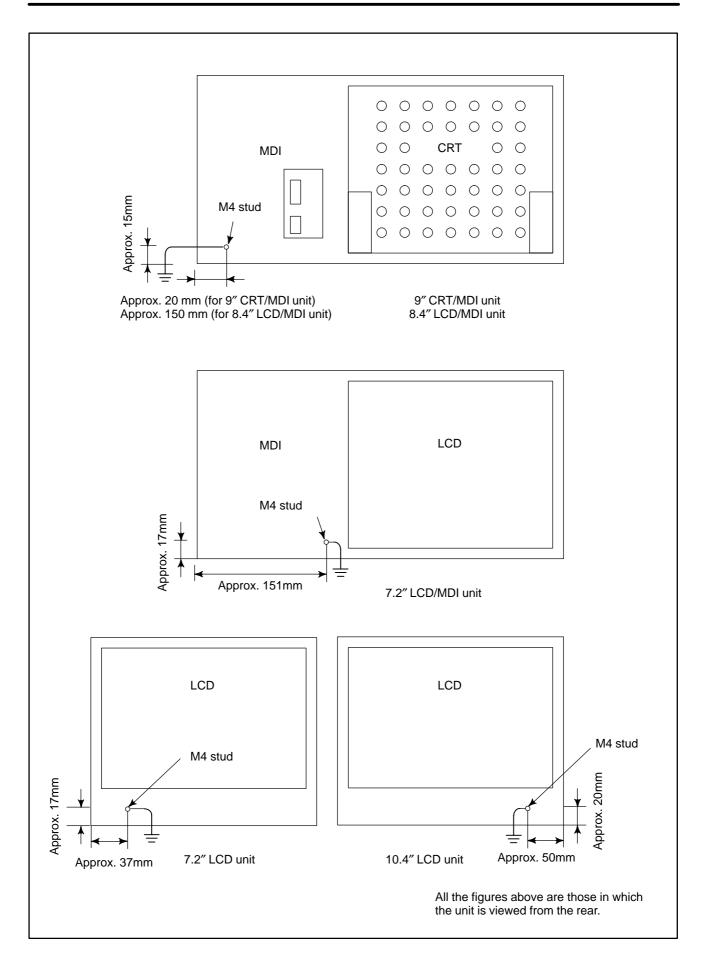
The frame ground system (FG) is used for safety, and suppressing external and internal noises. In the frame ground system, the frames, cases of the units, panels, and shields for the interface cables between the units are connected.

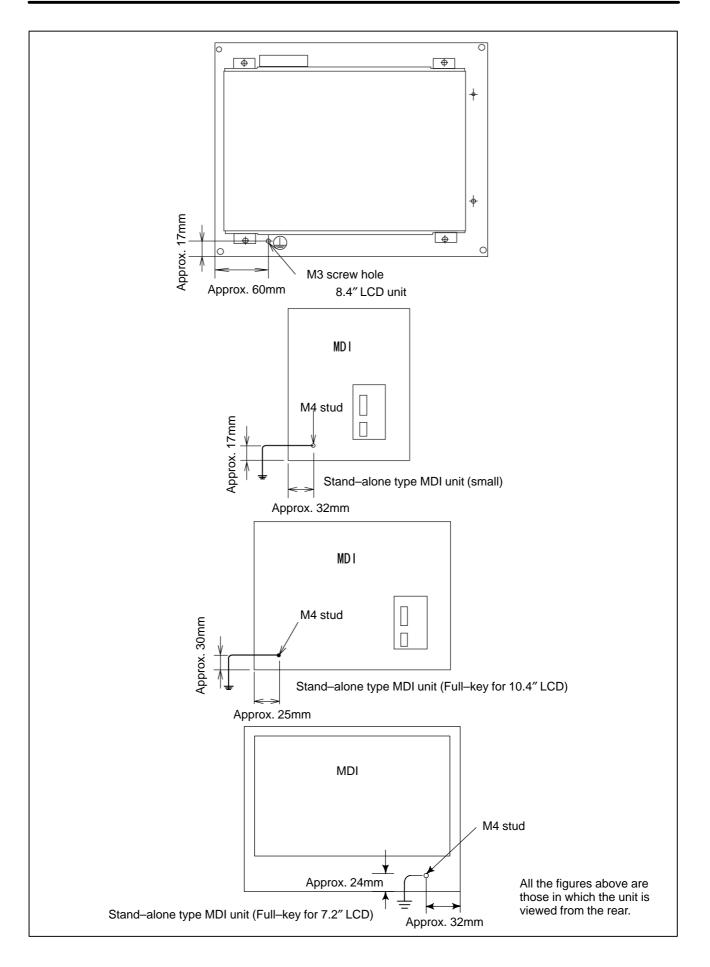

(3) System ground system

The system ground system is used to connect the frame ground systems connected between devices or units with the ground.



Notes on connecting the ground systems


- Connect the signal ground (0V) with the frame ground (FG) at only one place in the CNC control unit.
- The grounding resistance of the system ground shall be 100 ohms or less (class 3 grounding).
- The system ground cable must have enough cross-sectional area to safely carry the accidental current flow into the system ground when an accident such as a short circuit occurs. (Generally, it must have the cross-sectional area of the AC power cable or more.)
- Use the cable containing the AC power wire and the system ground wire so that power is supplied with the ground wire connected.



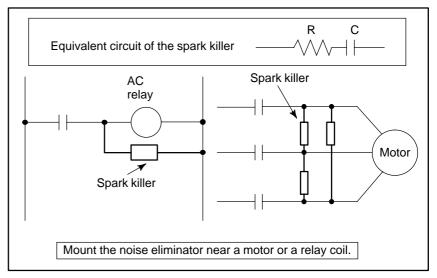
Connect the 0 V line of the electronic circuit in the control unit with the ground plate of the cabinet via the signal ground (SG) terminal. The SG terminal is located below the main board of the control unit.

Connect the 0 V line of the electronic circuit in the control unit with the ground plate of the cabinet via the signal ground (SG) terminal. The SG terminal is located below the main board of the control unit.

Notes on selecting the

spark killer

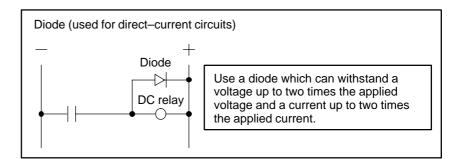
3.5.4The AC/DC solenoid and relay are used in the power magnetics cabinet.**Noise Suppressor**A high pulse voltage is caused by coil inductance when these devices are turned on or off.


This pulse voltage induced through the cable causes the electronic circuits to be disturbed.

• Use a spark killer consisting of a resistor and capacitor in series. This type of spark killer is called a CR spark killer.(Use it under AC)

(A varistor is useful in clamping the peak voltage of the pulse voltage, but cannot suppress the sudden rise of the pulse voltage. FANUC therefore recommends a CR spark killer.)

- The reference capacitance and resistance of the spark killer shall conform to the following based on the current (I (A)) and DC resistance of the stationary coil:
 - 1) Resistance (R) : Equivalent DC resistance of the coil


2) Capacitance (C) :
$$\frac{l^2}{10}$$
 to $\frac{l^2}{20}$ (μ F)

I : Current at stationary state of the coil

NOTE

Use a CR-type noise eliminator. Varistor-type noise eliminators clamp the peak pulse voltage but cannot suppress a sharp rising edge.

The CNC cables that require shielding should be clamped by the method shown below. This cable clamp treatment is for both cable support and proper grounding of the shield. To insure stable CNC system operation, follow this cable clamp method.

Partially peel out the sheath and expose the shield. Push and clamp by the plate metal fittings for clamp at the part. The ground plate must be made by the machine tool builder, and set as follows :

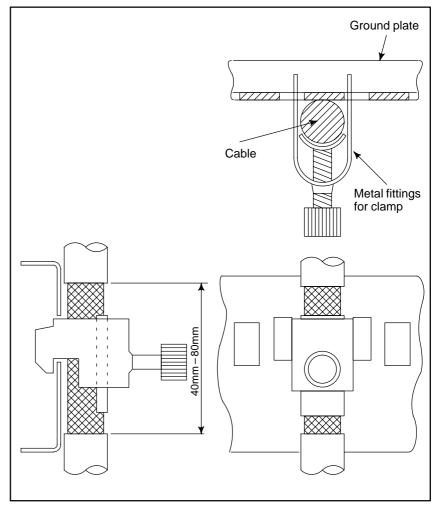


Fig.3.5.5(a) Cable clamp (1)

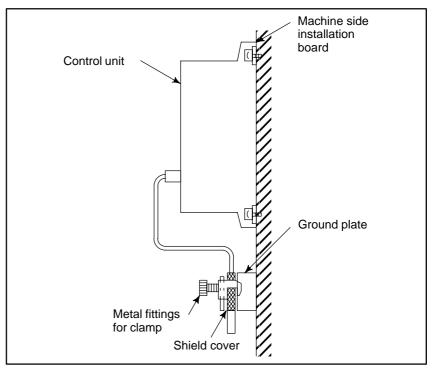


Fig.3.5.5(b) Cable clamp (2)

Prepare ground plate like the following figure.

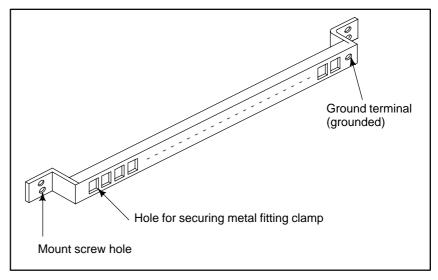


Fig.3.5.5(c) Ground plate

For the ground plate, use a metal plate of 2 mm or thicker, which surface is plated with nickel.

— 25 —

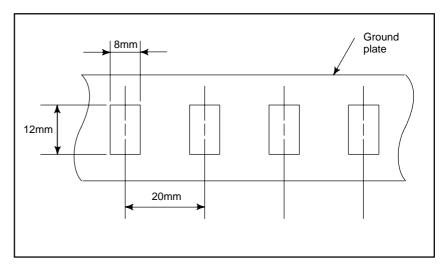
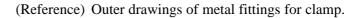



Fig.3.5.5(d) Ground plate holes

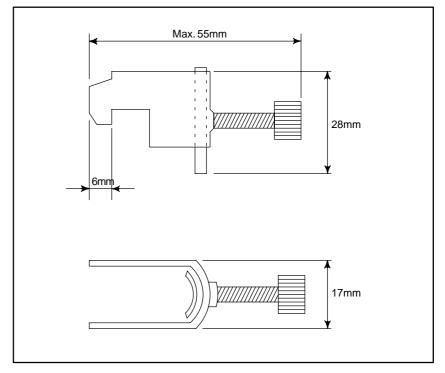


Fig.3.5.5(e) Outer drawings of metal fittings for clamp

Ordering specification for metal fittings for clamp A02B-0124-K001 (8 pieces)

3.6 CONTROL UNIT

3.6.1 Installing the Control Unit

The control unit is equipped with a fan motor.

Air is fed into the bottom of the unit and output from the fan motor mounted on the top of the unit.

The spaces shown in Fig. 3.6.1 (areas (A) and (B)) are always required to ensure smooth air flow.

Also, adequate service access space is required in front of and at the top of the unit so that printed circuit boards and the fan motor can be replaced easily if necessary.

There is a spare connector located at the far end (at middle height) on the right side of the control unit. This connector is used for controller testing and other purposes. Therefore, space (area (C)) for handling the connector is required.

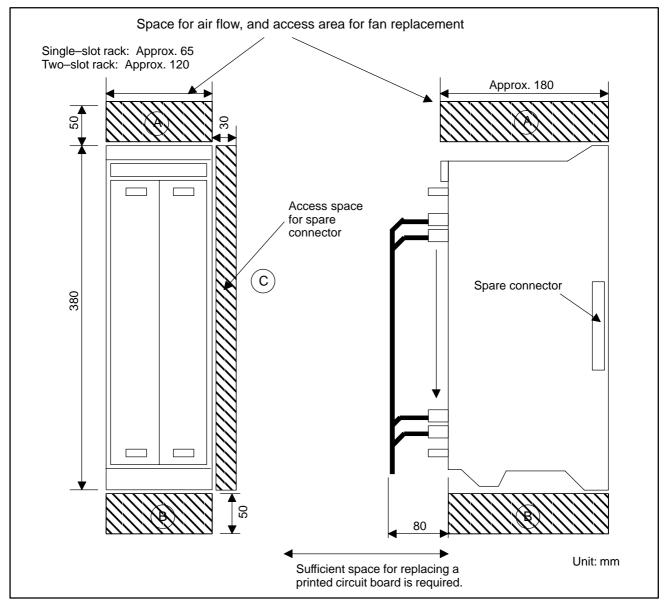


Fig. 3.6.1

3.7 CABLE LEAD-IN DIAGRAM

Fig. 3.7 (a) shows the grid of connector location. Control board may not have all connectors as shown in Fig. 3.7 (a). For actual connector layout of each board, please see the connector layout diagrams in Fig. 3.8 (a) or later.

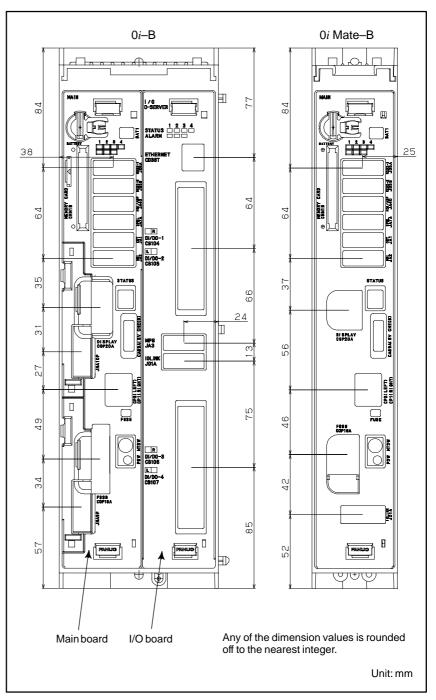


Fig.3.7 (a) Grid of connector location

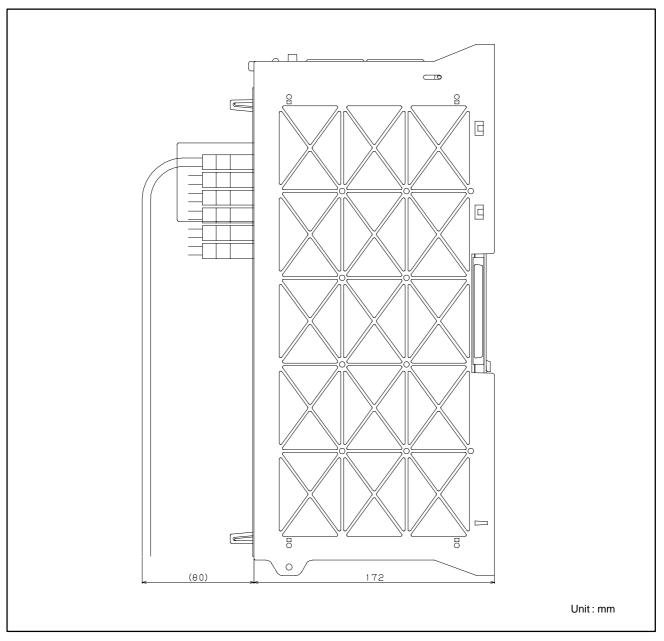


Fig.3.7 (b) Cable installation

3.8 CONNECTOR LAYOUT DIAGRAM

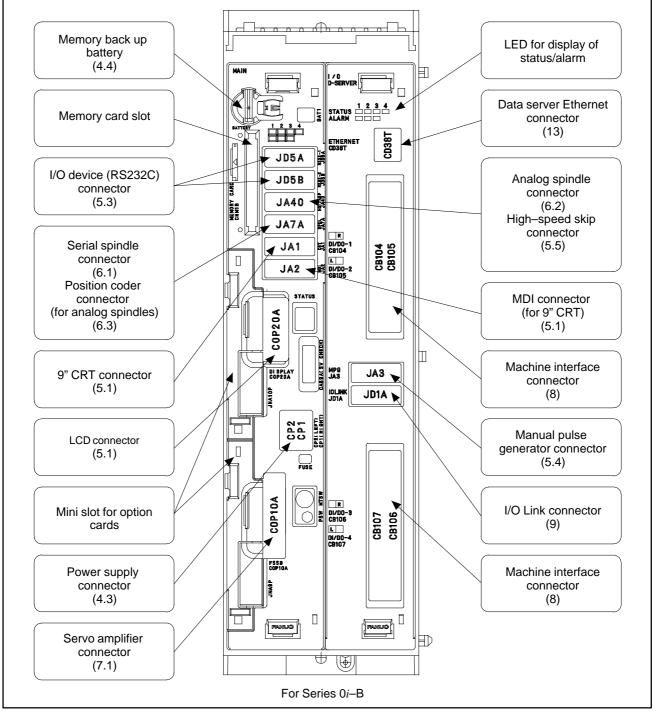


Fig.3.8 (a)

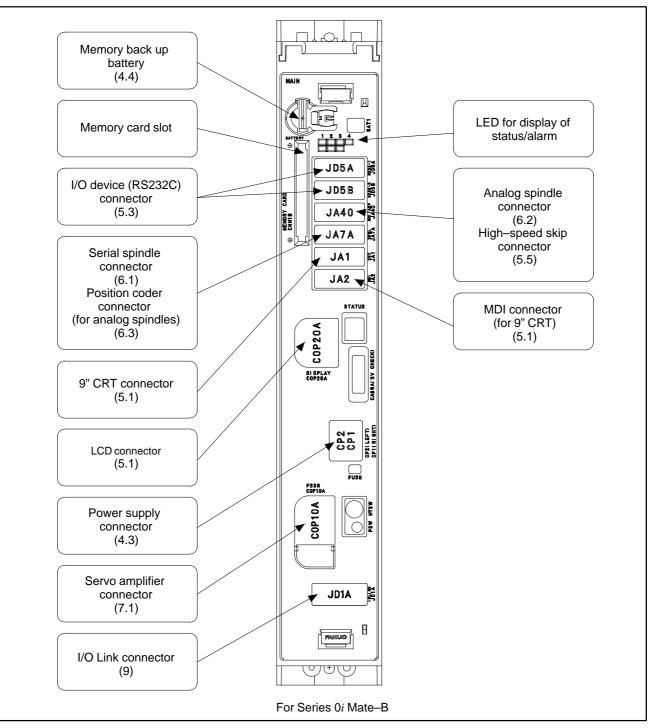


Fig.3.8 (b)

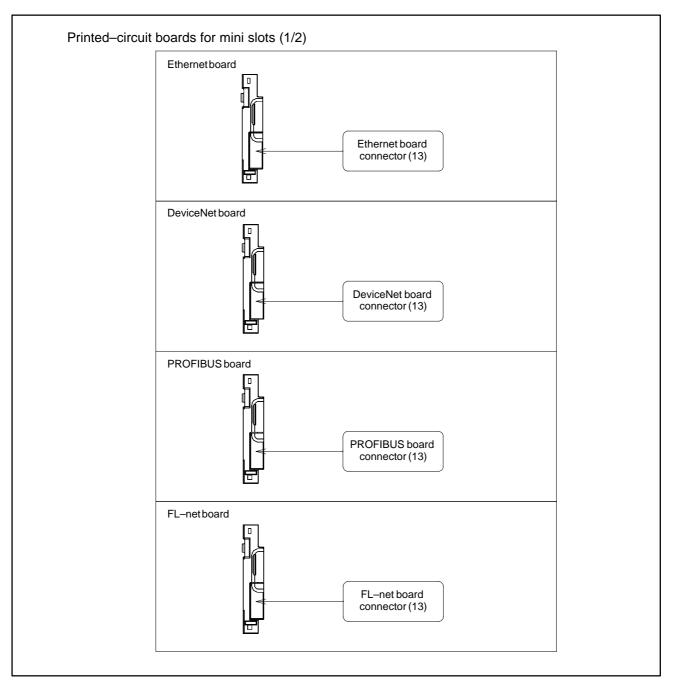


Fig.3.8 (c)

NOTE

The numbers in parentheses () in the figures are keyed to the item numbers of the descriptions in this manual. The numbers in brackets [] in the figures are connector numbers.

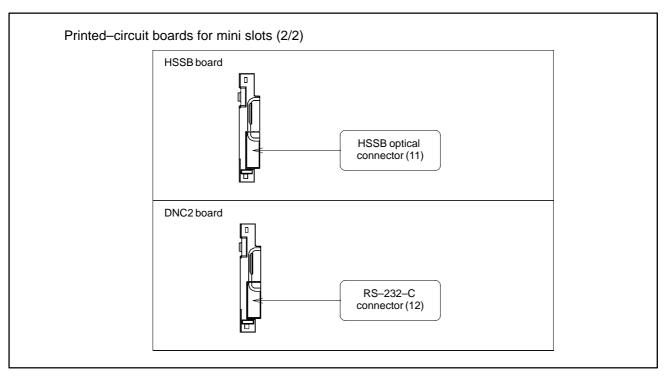


Fig.3.8 (d)

NOTE

The numbers in parentheses () in the figures are keyed to the item numbers of the descriptions in this manual. The numbers in brackets [] in the figures are connector numbers.

4.1 GENERAL

This section explains the connection of power supply for Series 0i/Series 0i Mate control unit.

4.2 TURNING ON AND OFF THE POWER TO THE CONTROL UNIT

4.2.1 Power Supply for the Control Unit

Supply power (24VDC) to the control unit of Series 0*i*/Series 0*i* Mate from an external sources.

Provide ON/OFF circuit A for turning the AC power on and off on the input side of the 24VDC power supply as shown in Fig. 4.2.1 (a). Avoid turning the DC power on and off (ON/OFF circuit B).

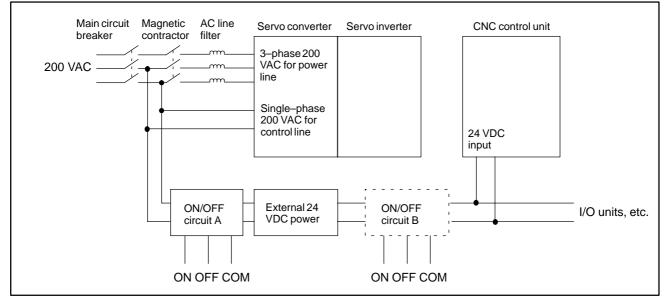


Fig. 4.2.1 (a)

ON/OFF circuit B (example)

For example, "ON/OFF circuit" is as follows : (Fig. 4.2.1 (b)) Select the circuit devices, in consideration of its capacity.

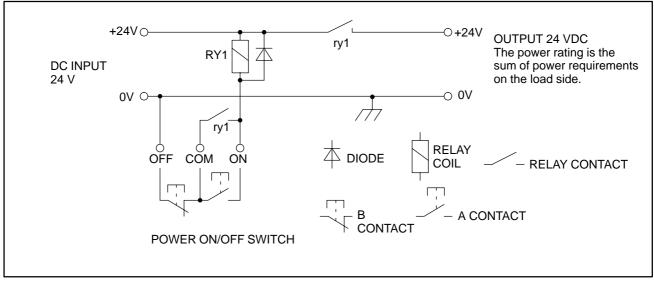
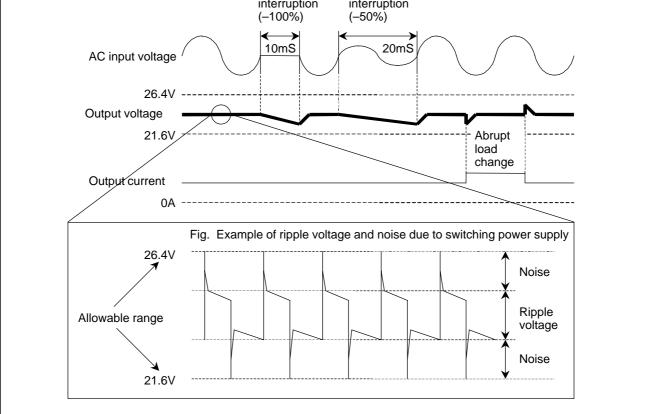



Fig. 4.2.1 (b)

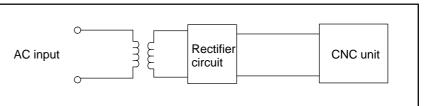
4.2.2 External 24 VDC Power Supply and Circuit Configurations	Specifications of recommended external 24 VDC power supply (regulated power supply): (The power supply must satisfy UL1950.) Output voltage: +24 V (10% (21.6 V to 26.4 V) (including ripple voltage and noise. See the figure below.)
	Output current: The continuous load current must be larger than the current consumption of the CNC. (At the maximum temperature inside the power magnetics cabinet in which the power supply is located)
	Load fluctuations (including rush current): The output voltage must not go out of the above range due to load fluctuations by external DO and other factors.
	Instantaneous input interruption retention time: 10 mS (for -100%) 20 mS (for $-50%$)
	Instantaneous Instantaneous interruption interruption (-100%) (-50%)

Fig 4.2.2 (a) Timing chart

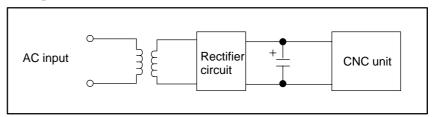
Notes to take when the vertical axis exists

When the vertical axis exists, select the DC power supply that has a long voltage hold time to decrease the amount of vertical axis falling during power–off (including a power failure).

If the operating voltage drops to less than or equal to 21.6V, the CNC releases servo activation. Therefore, when the hold time for 24 VDC during AC power–off is too short, servo activation is released before the breaks are applied because some peripheral circuit detects power–off. This may increase the amount of vertical axis falling.


Generally, a power supply with sufficient power capacity tends to increase the hold time during power–off.

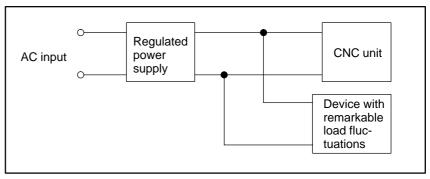
Circuit configurations Forbidden


The following circuit configurations are not recommended.

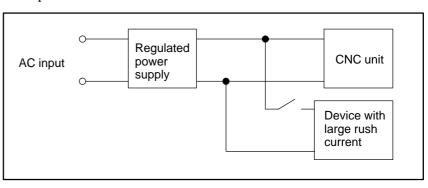
1 Circuit examples that cannot retain the output voltage at an instantaneous interruption (the voltage reduces to 21.6 V or below)

Example 1

Example 2

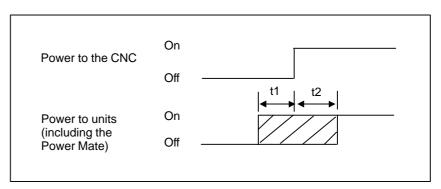


NOTE


The rectifier circuit means a circuit using diodes for full–wave rectification.

2 Circuit examples that exceed the output voltage specifications (21.6 V to 26.4 V) due to an abrupt load change

Example 1


For a circuit configuration in example 2, connect another regulated power supply to be specifically used for the device with remarkable load fluctuations so that the CNC and other units are not affected.

Recommended

If you find instructions to "turn the power on simultaneously when or before turning the power to the CNC on" for a unit such as a 24 VDC power supply, turn the power to the unit simultaneously when turning on the power to the CNC on from now on. To turn the power to such a unit simultaneously when turning the power to the CNC on, connecting the unit on the same line as for the CNC as shown in Fig. 4.2.2 (b) is recommended.

Turning the power to units on simultaneously when turning the power to the CNC:

When the following power–on timing condition is satisfied, the power to units is assumed to be turned on simultaneously when the power to the CNC is turned on.

- t1 : 200 ms Means that the power to units (including the Power Mate) is turned on within 200 ms before the power to the CNC is turned on.
- t2 : 500 ms Means that the power to units (including the Power Mate) is turned on within 500 ms after the power to the CNC is turned on.

For instructions to "turn the power off simultaneously when or after turning the power to the CNC off" for a unit such as a 24 VDC power supply, the power–off sequence is not changed unlike the above power–on sequence. (Turning the power off simultaneously when turning the power to the CNC on means that the power may be turned off within 500 ms before the power to the CNC is turned off.)

The following circuit configuration is recommended.

The power to the CNC and other units (A unit with I/O Link, FANUC Servo Unit (Series with an I/O link (β amplifier with an I/O link), and so on in the sample configuration below)) is assumed to be turned on at the same time. (The power to any unit is not assumed to be turned on during operation or before the power to the CNC is turned on. No unit is assumed to be connected between the 24 VDC output of the regulated power supply and input of on/off circuit B.)

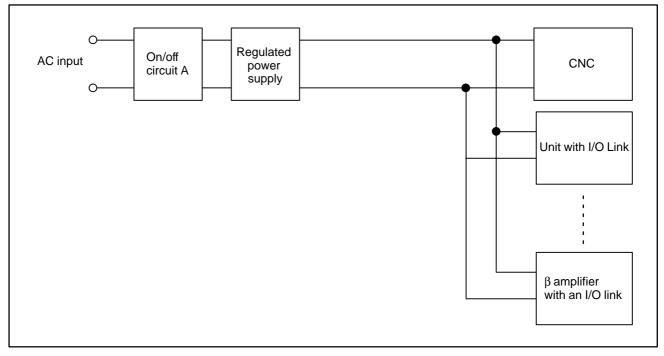


Fig 4.2.2 (b)

4.2.3 Procedure for Turning On the Power

Turn on the power to each unit in the following order or all at the same time.

- 1. Power to the overall machine (200 VAC)
- Servo amplifier control power supply (200 VAC)
 Power to the slave I/O units connected via the I/O link, power to the display unit (24VDC), the CNC control unit, power to the separate detector (scale), and power to the separate detector interface unit (24VDC)

"Turning on the power to all the units at the same time" means completing the power–on operations in 1 and 2 above within 500 ms of performing power–on in 3.

As for a CNC display unit with PC functions, no specific power turn–on sequence for the CNC control unit is required.

- If the power only to the control unit of the CNC is turned on without turning the power to the CNC display unit with PC functions on, the control unit of the CNC does not start up normally.
- If the power only to the CNC display unit with PC functions is turned on without turning the power to the control unit of the CNC on conversely, the units do not start up normally.

Do not disconnect the battery for memory backup (3 VDC) or the battery for the separate absolute pulse coders (6 VDC) regardless of whether the power to the control unit is on or off. If batteries are disconnected when the power to the control unit is turned off, current data stored in the control unit for the pulse coders, parameters, programs etc, are lost.

Make sure that the power to the control unit is on when replacing batteries.

See Section 4.4.1 for how to replace the batteries for memory backup.

CAUTION

The maintenance rotary switch must be always set to 0 (set to 0 at shipping from factory).

Changing this setting may cause the contents of memory to be lost.

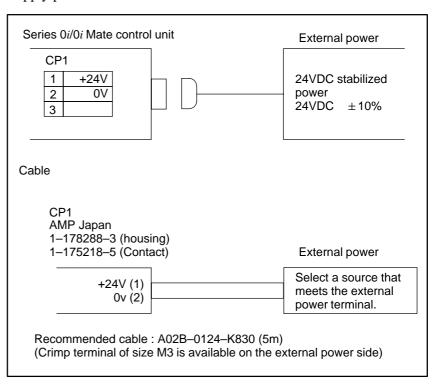
4.2.4 Procedure for Turning Off the Power

Turn off the power to each unit in the following order or all at the same time.

- 1. Power to the slave I/O units connected via the I/O link, power to the display unit (24VDC), the CNC control unit (24 VDC), and power to the concrete detector interface unit (24 VDC)
- and power to the separate detector interface unit (24 VDC)
- 2. Servo amplifier control power supply (200 VAC) and power to the separate detector (scale)
- 3. Power to the overall machine (200 VAC)

"Turning off the power to all units at the same time" means completing the power–off operations in 2 and 3 above within 500 ms before the power–off operation described in 1 above. If the power to the units indicated in 2 or 3 is turned off other than within 500 ms of the power in 1 being turned off, alarm information is left in the NC.

The power-off sequence for an CNC display unit with PC functions is undefined.


CAUTION

When the CNC display unit with PC functions is used, the OS must be shut down before the power to the control unit is turned off. Be careful not to turn off the power while the hard disk is being accessed or before the OS has terminated; otherwise, the hardware contents may be destroyed.

Motors cannot be controlled when the power is turned off or momentarily interrupted. Take appropriate action on the machine side when necessary. For example, when the tool is moved along a gravity axis, apply brakes to prevent the axis from falling. Apply a brake that clamps the motor when the servo is not operating or the motor is not rotating. Release the clamp only when the motor is rotating. When the servo axis cannot be controlled when the power is turned off or momentarily interrupted, clamp the servo motor. In this case, the axis may fall before the relay for clamping starts operating. The designer should make sure if the distance results in trouble.

4.3 CABLE FOR POWER SUPPLY TO CONTROL UNIT

Supply power to the control unit from external resouce.

4.4 BATTERY

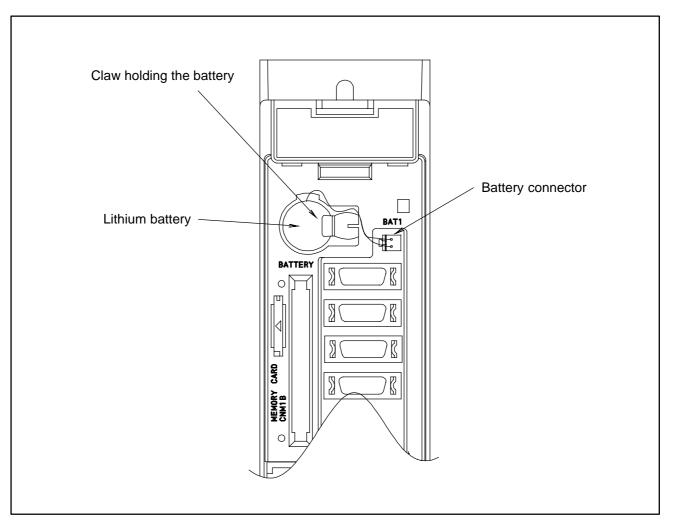
4.4.1 Battery for Memory Backup (3VDC)

Part programs, offset data, and system parameters are stored in CMOS memory in the control unit. The power to the CMOS memory is backed up by a lithium battery mounted on the front panel of the control unit. The above data is not lost even when the main battery goes dead. The backup battery is mounted on the control unit at shipping. This battery can maintain the contents of memory for about a year.

When the voltage of the battery becomes low, alarm message "BAT" blinks on the CNC display and the battery alarm signal is output to the PMC. When this alarm is displayed, replace the battery as soon as possible. In general, the battery can be replaced within two or three weeks, however, this depends on the system configuration.

If the voltage of the battery becomes any lower, memory can no longer be backed up. Turning on the power to the control unit in this state causes system alarm 935 (ECC error) to occur because the contents of memory are lost. Clear the entire memory and reenter data after replacing the battery. The power to the control unit must be turned on when the battery is replaced. If the battery is disconnected when the power is turned off, the contents of memory are lost.

Observe the following precautions for lithium batteries:


WARNING

If an unspecified battery is used, it may explode. Replace the battery only with the specified battery (A02B–0200–K102.)

Dispose of batteries used in accordance with the applicable laws of your country or the applicable laws or regulations of your local self–governing body. Before disposal, insulate the terminals with tape or something similar to prevent them from being short–circuited.

Replacing the battery

- 1 Use a litium battery (ordering drawing number : A02B-0200-K102)
- 2 Turn on the Series 0i/0i Mate for about 30 seconds and then turn it off again.
- 3 Turn off the Series 0i/0i Mate.

- 4 Remove the battery from the front panel of the control unit. First detach the connector, then remove the battery from the battery case.
- 5 Replace the battery and then reconnect the connector.

CAUTION

Steps 3 to 5 must performed within 10 minutes. Note that all data in memory is lost when the battery is kept removed for extended time.

— 45 —

4.4.2 Batteries for CNC Display Unit with PC Functions (3VDC)

If the voltage of a battery drops, the screen on the LCD flashes. (If a fan alarm is issued, the screen on the LCD also flashes.) If this status occurs, replace the battery as soon as possible (within 1 week). FANUC recommends that each battery be replaced periodically (once a year) regardless of whether a battery alarm is issued.

The BIOS settings are usually preserved as long as the battery is replaced according to the following procedure. If they are lost, the following message is displayed when the power is turned on:

251: System CMOS checksum bad – Default configuration used. After this, the default BIOS settings are loaded, and the unit restarts automatically. Before starting machining, check that the current BIOS settings of the CNC display unit with PC functions in use have been changed from the default BIOS settings, and resume your settings as required.

- (1) After keeping the CNC display unit with PC functions powered for at least 5 seconds, turn it off, and enable work to be done from the rear, for example, by removing the battery section from the panel.
- (2) Remove the connector from the lithium battery, and take the battery out from the battery holder.
- (3) Attach the connector (BAT1) to a new battery within 5 minutes, and put the battery in the battery holder.
- (4) Put the CNC display unit with PC functions back into the previous place.
- (5) Turn the power on, and check that no BIOS parameter is lost (no error is detected at start–up).

NOTE

Be sure to install a new battery within 5 minutes after the old one is removed from the connector.

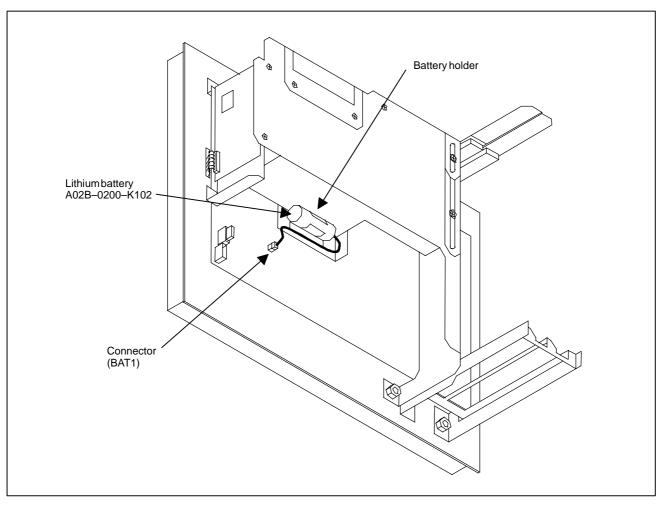


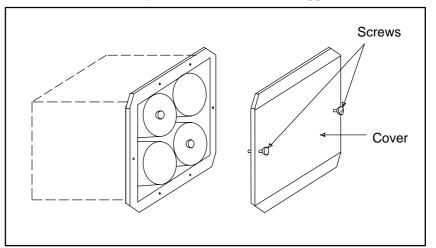
Fig.4.4.2 Battery replacement

4.4.3 Battery for Separate Absolute Pulse Coders (6VDC)

One battery unit can maintain current position data for six absolute pulse coders for a year.

When the voltage of the battery becomes low, APC alarms 3n6 to 3n8 (n: axis number) are displayed on the LCD display. When APC alarm 3n7 is displayed, replace the battery as soon as possible. In general, the battery should be replaced within one or two weeks, however, this depends on the number of pulse coders used.

If the voltage of the battery becomes any lower, the current positions for the pulse coders can no longer be maintained. Turning on the power to the control unit in this state causes APC alarm 3n0 (reference position return request alarm) to occur. Return the tool to the reference position after replacing the battery.


Therefore, FANUC recommends that the battery be replaced once a year regardless of whether APC alarms are generated.

See Section 7.1.3 for details of connecting the battery to separate absolute pulse coders.

Replacing batteries

Obtain four commercially available alkaline batteries (size D).

- (1) Turn on the power to the machine (Series 0i/0i Mate).
- (2) Loosen the screws of the battery case, and remove the cover.
- (3) Replace the dry batteries in the case.
 - Note the polarity of the batteries as shown in the figure below (orient two batteries one way and the other two in the opposite direction).

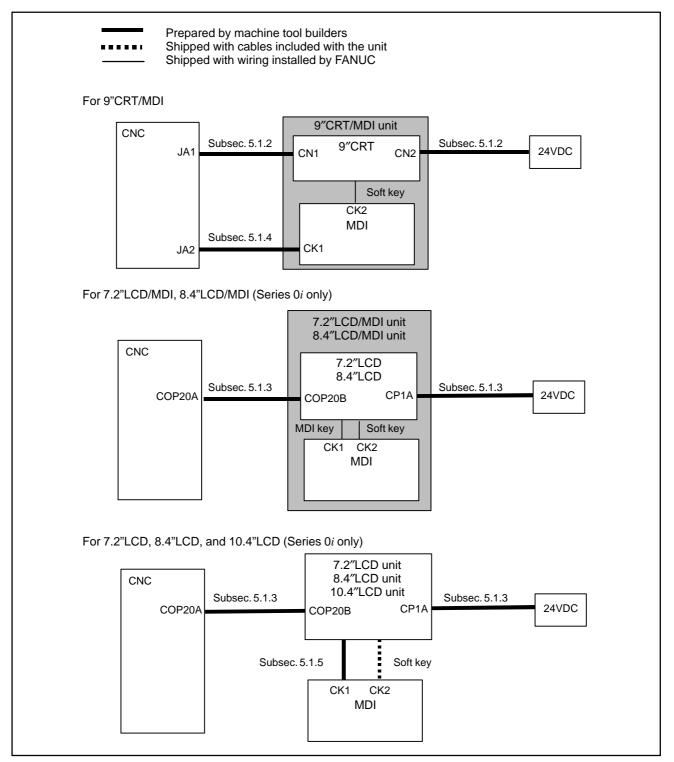
(4) After installing the new batteries, replace the cover.

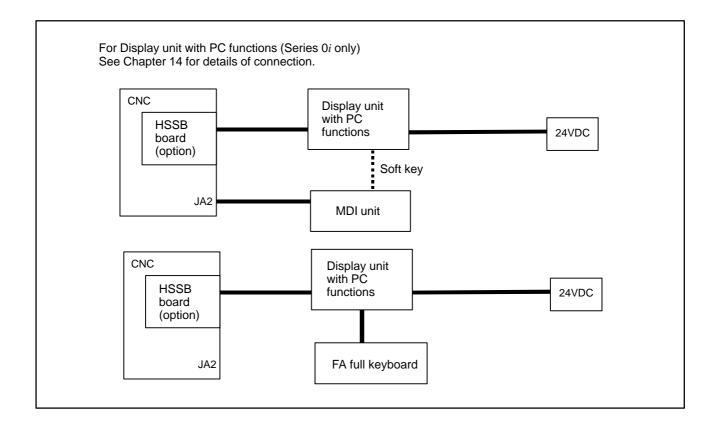
(5) Turn off the power to the machine (Series 0i/0i Mate).

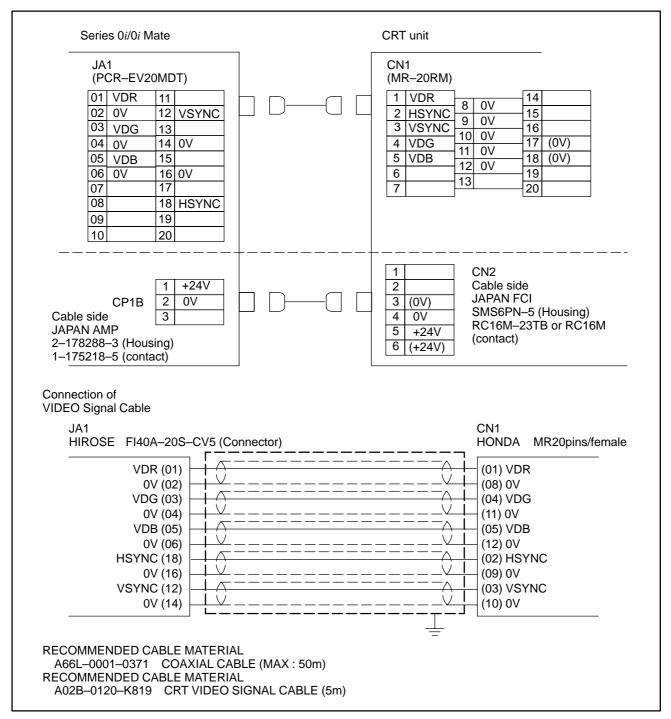
WARNING

If the batteries are installed incorrectly, an explosion may occur. Never use batteries other than the specified type (Size D alkaline batteries).

CAUTION

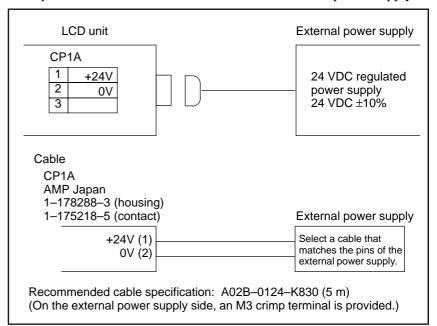

Replace batteries while the power to the Series 0i/0i Mate is on. Note that, if batteries are replaced while no power is supplied to the CNC, the recorded absolute position is lost.


4.4.4 Battery for Absolute Pulse Coder Built into the Motor (6VDC) The battery for the absolute pulse coder built into the motor is installed in the servo amplifier. For how to connect and replace the battery, refer to the each servo motor manual.

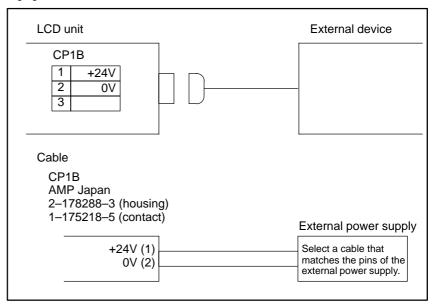

5.1 CONNECTION TO THE DISPLAY UNIT/ MDI UNIT

5.1.1 Outline The following display units can be connected to the Series 0i/0i Mate.

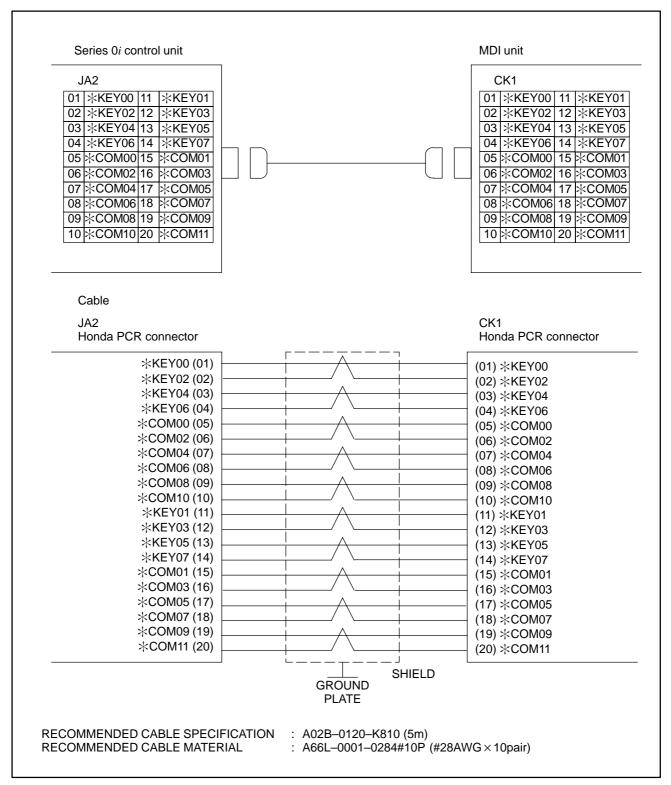
5.1.2 9" CRT Display Unit Interface

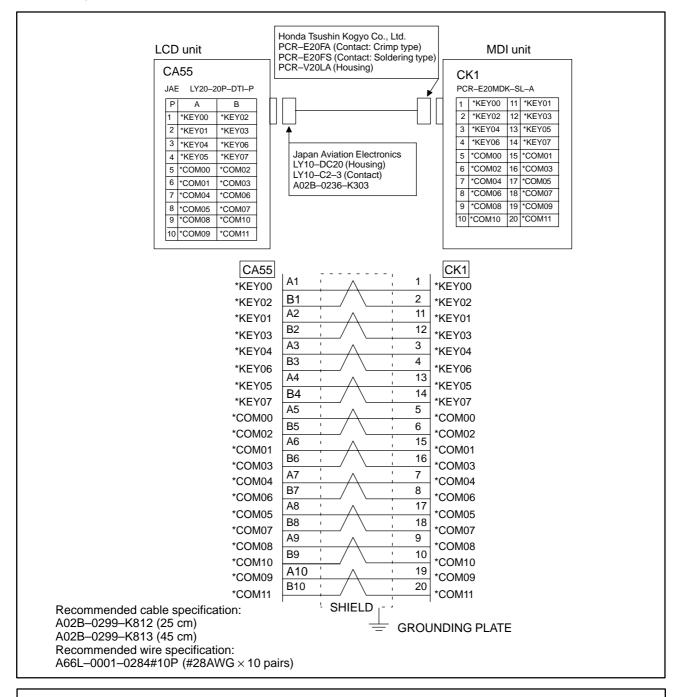


5.1.3 Various LCD Units Interface


- Connection between the **CNC** control unit and LCD unit
- Connection of a power supply to the LCD unit

An optical fiber cable is used to make the connection between the CNC control unit and LCD unit. For details of the optical fiber cable, see Appendix D.

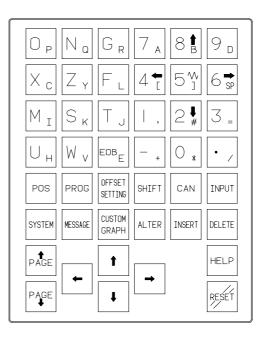

Feed power to the LCD unit from an external 24 VDC power supply.

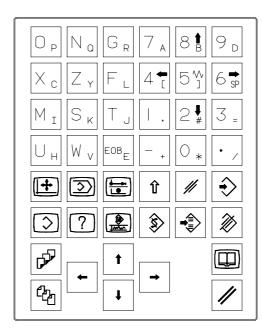

Part of the 24 VDC power input to CP1A can be taken out from CP1B by branching. CP1B should be connected as shown below. In this case, the rating of the external 24 VDC power supplied to CP1A must be the sum of the power consumed within the control unit and that supplied to external equipment via CP1B. Up to 1.4 A can be supplied to the external equipment.

5.1.4 Connection to the Standard MDI Unit

5.1.5 Connection to the MDI Unit (When a LCD Unit is Used)

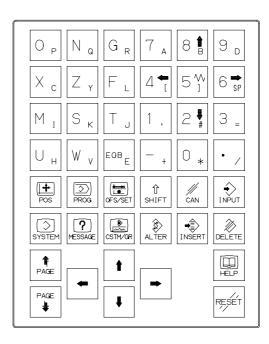
NOTE

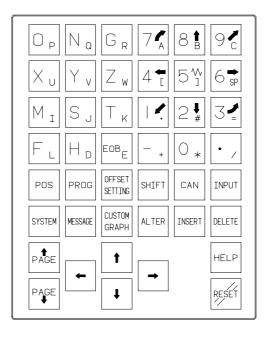

For MDI cable connector mating on the CA55 side, a simple lock mechanism is employed. Ensure that a load greater than 1 kg is not applied to the connectors. Moreover, clamp the cable so that excessive force is not applied due to vibration. However, shielding and clamping are not required for a cable of up to 50 cm.


B-63833EN/03

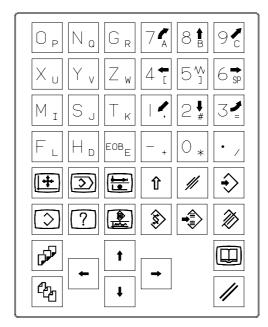
5.2 VARIED MDI KEY SWITCH

- 9"CRT/MDI unit (T series)
- 7.2"LCD/MDI unit (T series)
- 8.4"LCD/MDI unit (T series)
- Stand-alone type small MDI unit (T series)

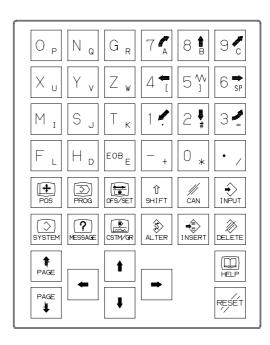

English display


Symbol display

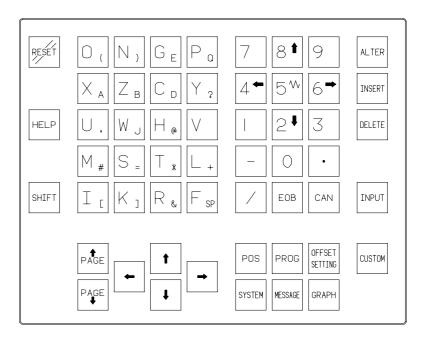
English and symbol display



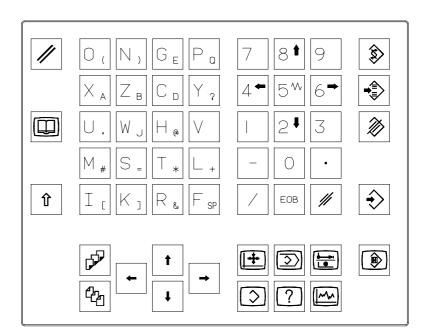
- 9"CRT/MDI unit (M series)
- 7.2"LCD/MDI unit (M series)
- 8.4"LCD/MDI unit (M series)
- Stand-alone type small MDI unit (M series)


English display

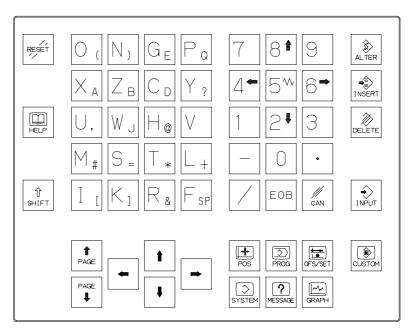
Symbol display



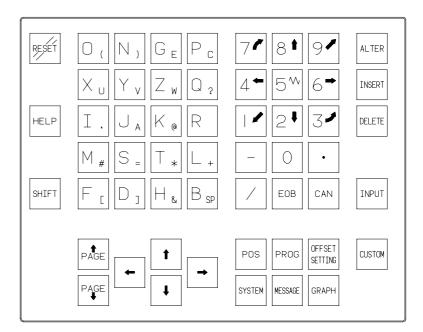
English and symbol display



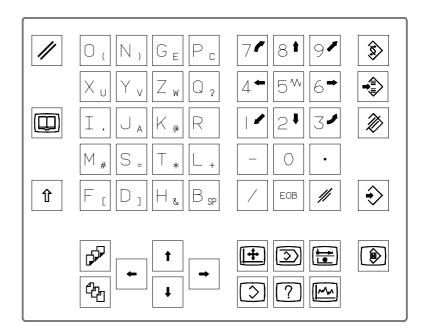
 Stand–alone type full–key MDI unit (T series)


English display

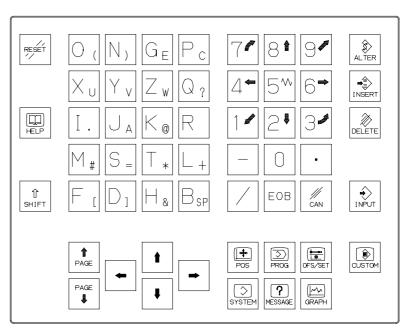
Symbol display



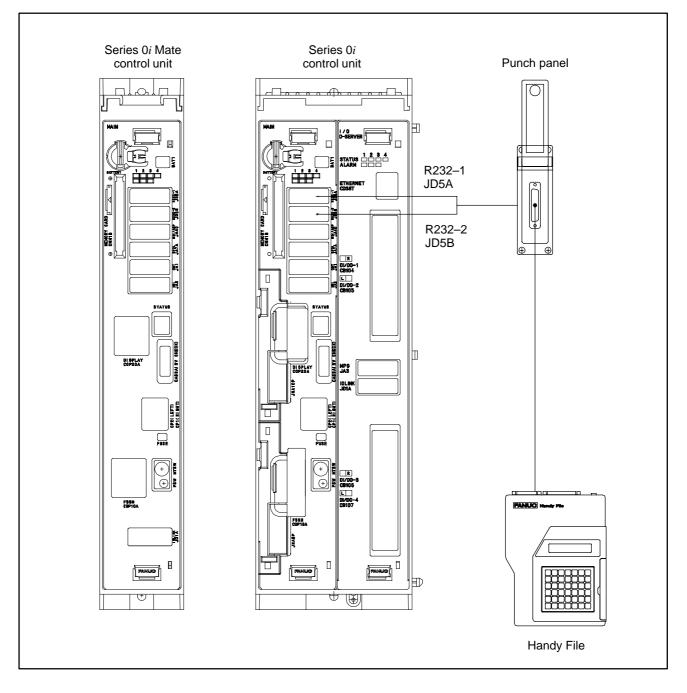
English and symbol display

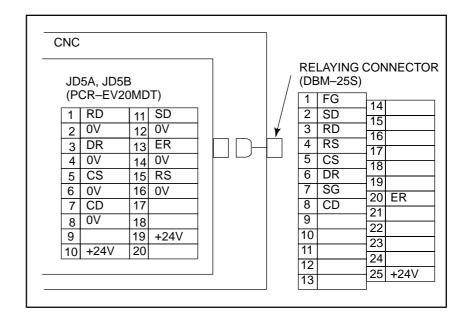


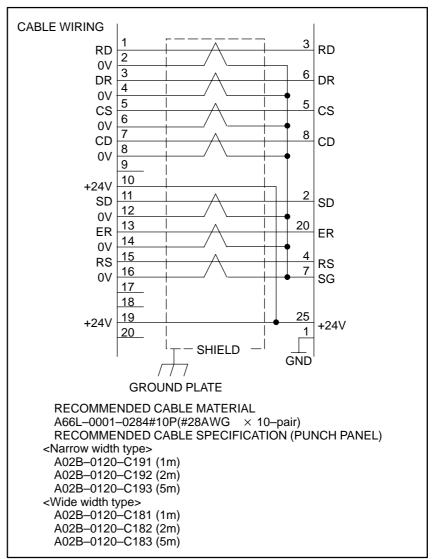
 Stand–alone type full–key MDI unit (M series)


English display

Symbol display


English and symbol display


5.3 CONNECTING I/O DEVICES


5.3.1 I/O devices are used for inputting various data such as CNC programs and parameters from external devices to the CNC or outputting data from the CNC to external devices. The Handy File is one of the I/O devices for the Series 0*i*. The interface for I/O devices complies with RS–232–C. The Series 0*i* can therefore be connected to devices which have an RS–232–C interface.

5.3.2 Connecting I/O Devices

5.3.3 RS–232–C Serial Port

5.3.4 RS–232–C Interface Specification

RS–232–C Interface signals

Generally signals as follows are used in RS-232-C interface.

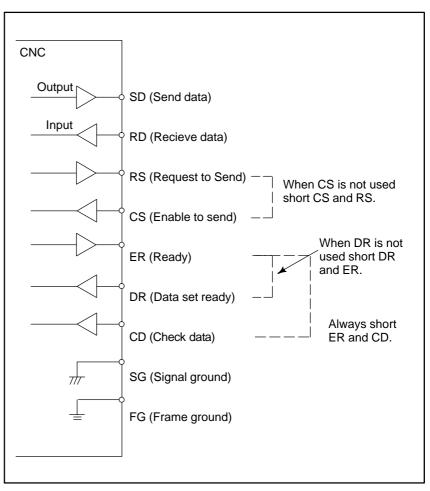
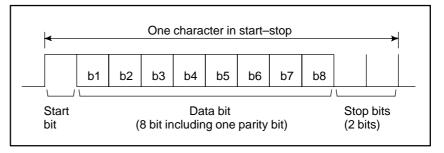


Fig.5.3.4 RS-232-C interface

Signal description of RS-232-C interface

Signal name	RS–232–C circuit number	I/O		Description
SD	103	Out- put	Sending data	Start bit Stop bit
RD	104	Input	Receiv- ing data	ON _ / 1 2 3 4 5 6 7 8 / / OFF (When ISO code "0" is sent)
RS	105	Input	Sending request	This signal is set to on when NC starts sending data and is turned off when transmission ends.
CS	106	Input	Sending permitted	When both this signal and the DR sig- nal are set, the NC can send data. If ex- ternal device processing is delayed by a punching operation, etc., NC data sending can be stopped by turning off this signal after sending two charac- ters, including the data being sent cur- rently. If this signal will not be used, make sure to strap this signal circuit to the RS signal circuit.
DR	107	Input	Data set ready	When external device is ready to oper- ate, this signal is set. This signal should usually be connected to the signal indicating external device pow- er supply being on. (ER signal of exter- nal device). See Note below. The NC transfers data when this signal is set. If the signals turned off during data transfer, alarm 086 is issued. If the DR signal will not be used, make sure to strap this signal circuit to the ER signal circuit.
ER	108.2	Out- put	NC ready to operation	This signal is set when the NC is ready to operate. External device should re- gard the SD signal as being significant when the ER signal is set.
CD	109	Input	Signal quality signal	Since this signal is not used in connec- tions with external device, the signal circuit must be strapped, inside the connecting cable, to the ER signal cir- cuit.
SG	102		Signal grounding	
FG	101		Frame grounding	

NOTE


Signal on/off state is defined as follows;

	-3V or lower	+3V or higher
Function	OFF	ON
Signal Condition	Marking	Spacing

Transmission Method of RS–232–C interface

Start-stop

Generally, two transmission methods are available at the serial interface. Series 0i use the start-stop method. With this method, start and stop signals are output before and after each data bit.

Codes

Transmission codes are as follows:

- (i) EIA code and Control codes DC1 to DC4.
- (ii) ISO code and Control codes DC1 to DC4 (Optional ISO code input is necessary.)

The connected external device must be able to recognize the following control codes, sent from NC.

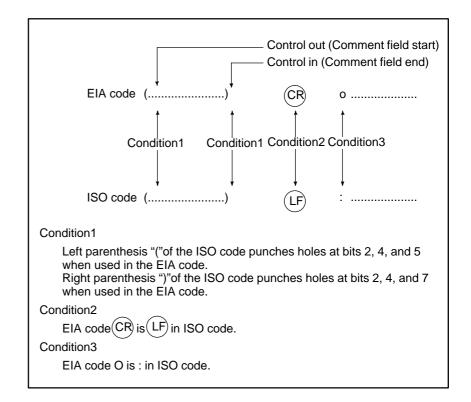
	Control code	8	7	6	5	4		3	2	1
DC1	Tape reader start				0		0			0
DC2	Tape punch designation				0		0		0	
DC3	Tape reader stop	0			0		0		0	
DC4	Tape punch release				0		0	0		0

NOTE

The listed control codes are used for both EIA and ISO.

In this interface, control codes DC1 to DC4 are used.

- (a) NC can control external device by issuing codes DC1 to DC4.
- (b) When external processing falls behind the pace of the NC signals (When NC issues data)
 - (i) External device can temporarily stop NC data output by using the NC's CS signal. Data output stops within two characters including a currently transmitting character when CS OFF signal is input to NC. When CS signal is turned on again, data transmission start.
 - (ii) If control code DC3 is input to NC, NC stops data output within ten characters. When control code DC1 is input to NC, NC starts sending data again.
- (c) When the external device is equipped with an ISO/EIA converter, the external device must satisfy the specification shown in Table 5.3.4.


5. CONNECTION TO CNC PERIPHERALS

			ISO	code						EIA code				Magning							
Character	8	7	6	5	4		3	2	1	Character	8	7	6	5	4		3	2	1	ĺ	Meaning
0			0	0		•				0			0			•					Numeral 0
1	0		0	0		•			0	1						•			0		Numeral 1
2	0		0	0		•		0		2						•		0			Numeral 2
3			0	0		•		0	0	3				0		•		0	0		Numeral 3
4	0		0	0		•	0			4						•	0				Numeral 4
5			0	0		•	0		0	5				0		•	0		0		Numeral 5
6			0	0		•	0	0	-	6				0		•	0	0	-		Numeral 6
7	0		0	0		•	0	0	0	7				-		•	0	0	0		Numeral 7
8	0		0	0	0	•	-	-	-	8					0	•			-		Numeral 8
9	-		0	0	0	•			0	9				0	0	•			0		Numeral 9
A		0	0	Ŭ	<u> </u>	•			0	a		0	0		0	•			0		Address A
В		Õ				•		0	-	b		Õ	0			•		0	0	?	Address B
C	0	0				•		0	0	c		0	0	0		•		Õ	0		Address C
D		0		<u> </u>		•	0	<u> </u>	0	d		0	0			<u> </u>	0		0	?	Address D
E	0	0		-		•	0		0	e		0	0	0		•	0		0	?	Address E
F	0					•	0		0	f		0	0			•	0	0	0	:	Address F
G		0				•		0				0		0		•	<u> </u>	0	_		
		0		<u> </u>			0	0	0	g			0	0	_	•	0	0	0		Address G
н		0	<u> </u>	 	0	•	 			h		0	0	_	0	•		<u> </u>	~		Address H
1	0	0	<u> </u>	<u> </u>	0	•	<u> </u>		0	i		0	0	0	0	•	<u> </u>	L	0	_	Address I
J	0	0		<u> </u>	0	•		0		j		0		0		•	<u> </u>		0	?	Address J
к		0			0	•	<u> </u>	0	0	k		0		0		•		0			Address K
L	0	0			0	•	0			1		0				•		0	0	?	Address L
М		0			0	•	0		0	m		0		0		•	0				Address M
N		0			0	•	0	0		n		0				•	0		0		Address N
0	0	0			0	•	0	0	0	0		0				•	0	0			Address O
Р		0		0		•				р		0		0		•	0	0	0		Address P
Q	0	0		0		٠			0	q		0		0	0	•					Address Q
R	0	0		0		•		0		r		0			0	•			0		Address R
S		0		0		•		0	0	s			0	0		•		0			Address S
Т	0	0		0		•	0			t			0			•		0	0		Address T
U		0		0		•	0		0	u			0	0		•	0				Address U
V		0		0		•	0	0		v			0			•	0		0	?	Address V
w	0	0		0		•	0	0	0	w			0			•	0	0			Address W
x	0	0		0	0	•	-	-	-	x			0	0		•	0	0	0		Address X
Y		Õ		Õ	0	•			0	у			0	Õ	0	•	-	-	-	?	Address Y
Z		Õ		Õ	0	•		0	0	z			0		Õ	•			0	-	Address Z
DEL	0	Õ	0	Ō	0	•	0	Õ	0	Del		0	0	0	Õ	•	0	0	0	*	
NUL		0	0		<u> </u>	•	0	Ŭ	0	Blank		Ŭ	<u> </u>	Ŭ	0	•	-	Ŭ	0	*	
BS	0			<u> </u>	0	•				BS			0		0	•		0		*	
НТ					0				0	Tab			0	0	0		0	0		*	
LF or NL					0	•		0	0	CR or EOB	0		<u> </u>	0	0	•		0		*	
CR	0				0	•	0	\cup	0		0					٠				*	
SP	0		0			•	0		0	SP				0						*	
					<u> </u>	•			_					0	0	•	<u> </u>	_		个	
%	0		0	<u> </u>		•	0		0	ER (2-4-5)				0	0	•	-	0	0		
			0		0	•								0	0	•	<u> </u>	0			
)	0		0	<u> </u>	0	•			0	(2-4-7)		0			0	•	<u> </u>	0		J.	
+						•		0	0	+		0		0		•	<u> </u>			*	
-			0		0	•	0		0	-		0				•				-	
:		L	0	0	0	•		0						\sim			<u> </u>	<u> </u>	_		
/	0		0	<u> </u>	0	•	0	0	0	/			0	0		•	<u> </u>		0		
•	1_		0	 	0	•	0	0				0	0	L	0	•		0	0		
#	0		0			•	L	0	0						-	-	1			*	
\$			0			•	0				-									*	
&	0		0			•	0	0		&					0	•	0	0		*	
,			0			•	0	0	0								\square			*	
*	0		0		0	•		0												*	
,	0		0		0	•	0			,			0	0	0	•		0	0	*	
;	0		0	0	0	•	1	0	0								1			*	
<	1		0	0	0	•	0										\vdash	ſ		*	
=	0		0	0	0	•	0		0					1				1		*	
>	Õ		Õ	Õ	Õ	•	Õ	0						\vdash						*	
?	1	-	0	Ō	0	•	Õ	Õ	0				ŕ-	1			-	1		*	
@	0	0	-	-	<u> </u>	•	-	<u> </u>	-		\sim			-			-	-		*	
"	Ť	<u> </u>	0	 		•		0						-	-					*	
			\cup			•		\cup		\sim				L						1	

Table 5.3.4

NOTE

1 When the external device is equipped with an ISO/EIA converter, the following items must be noted in Table 5.3.4.

NOTE

2 Control codes DC1 to DC4 are transmission codes output from the NC. So they need not to be punched on the NC tape.

(iii) Transmission rate (Baud rate)

The transmission rate (Baud rate) is the number of bits transferred per second.

The following baud rates are available depending on the system parameter.

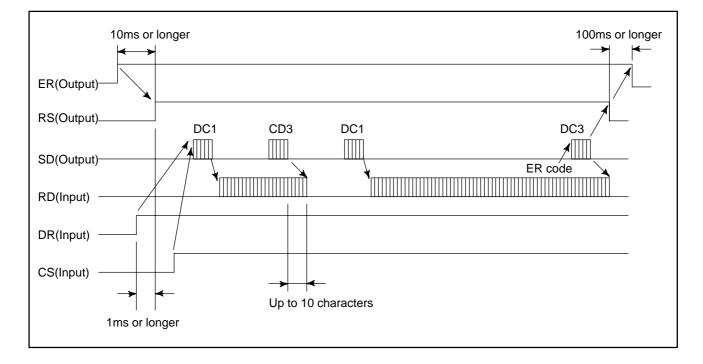
50, 100, 110, 150, 200, 300, 600, 1200, 2400, 4800, 9600, 19200.

(Example)

Baud rate : 110

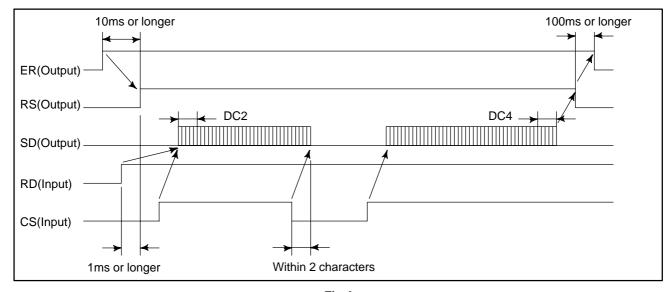
When using one start bit and two stop bits (totalling 11 bits per character):

Transmission characters/second=

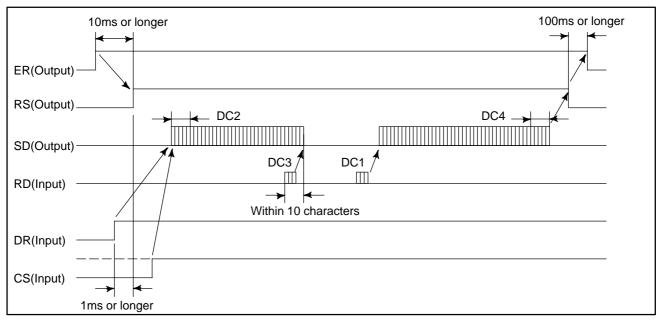

$$\frac{110}{11} = 10 \text{ characters/second (Max.)}$$

(iv) Cable length The cable length depends on the external device type. Consult with the device manufacturers for actual connecting cable lengths. When cable A (A66L-0001-0041) is used, cable length is as follows by the specification of NC. for RS-232-C 100m or less ... 4800 bauds or less

60m or less ... 9600 bauds

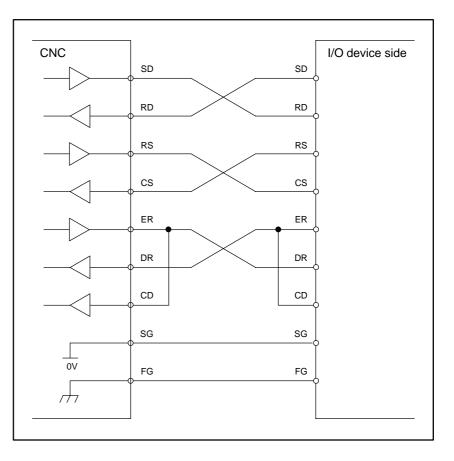

15m or less ... 19200 bauds

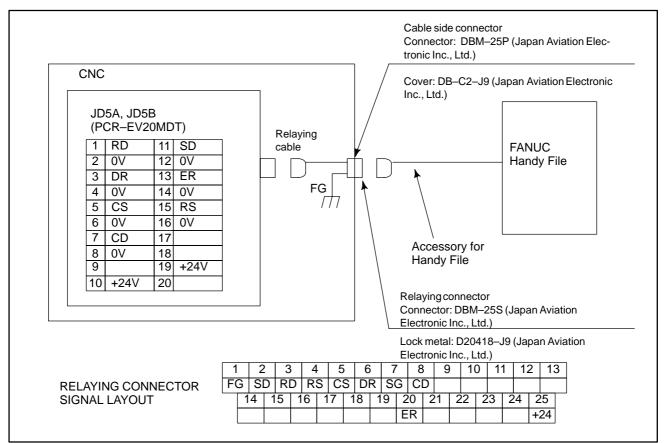
- (1) NC outputs DC1.
- (2) The external device starts sending data upon receiving DC1.
- (3) NC sends DC3 when NC processing is delayed.
- (4) The external device stops sending data to NC after receiving DC3. The device may send up to 10 characters after receiving DC3. If it sends more than 10 characters, alarm 087 will occur.
- (5) NC reissues DC1 upon completing delayed processing.
- (6) The external device restarts data output upon receiving the DC1 code (the data must be the next data to the preceding.)
- (7) NC sends DC3 upon completing data read.
- (8) The external device stops sending data.


Time chart when the NC receives data (Read into memory)

- (1) NC output DC2.
- (2) NC outputs punch data in succession.
- (3) When data processing is delayed at the external device.
- (a) Data output stops within two characters including a currently transmitting character when CS signal is turned off.
 When CS signal is turned on again, data transmission starts. (See Fig.A)
- (b) If control code DC3 is input to NC, NC stops data output within ten characters. When control code DC1 is input to NC, NC starts sending data again. (See Fig.B)
- (4) The NC starts sending the next data if the CS signal is turned on after the external device completes data processing.

(5) The NC issues DC4 upon completing data output.


Fig.A



— 73 —

Connection between RS–232–C interface and I/O devices

5.3.5 FANUC Handy File Connection

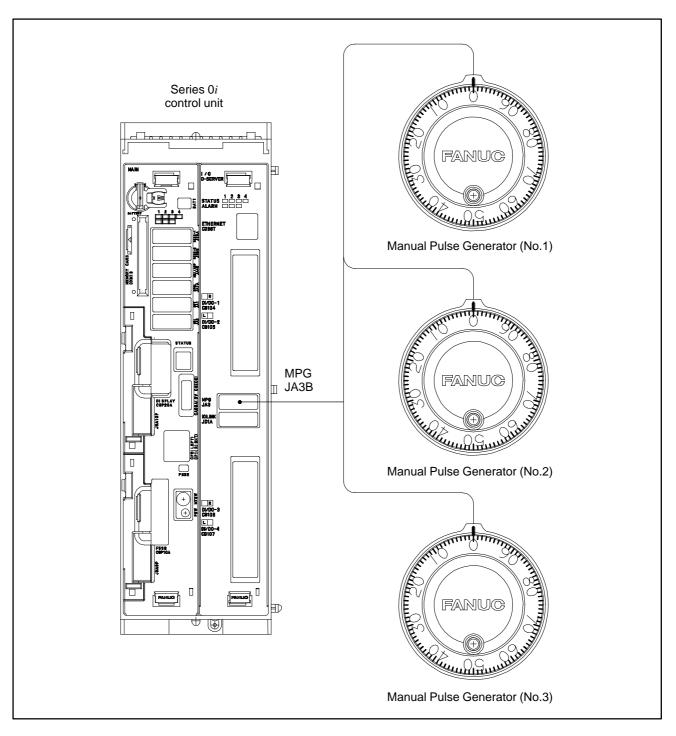
NOTE

- 1 Machine tool builder shall furnish relay connector and relay cable.
- 2 Use a totally shielded cable for the signal cable. Recommended cable specification:

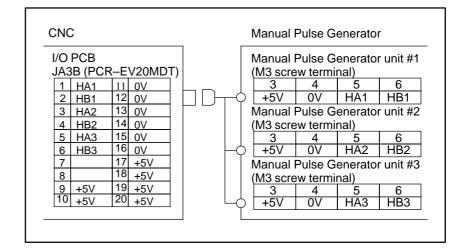
A66L-0001-0284#10P

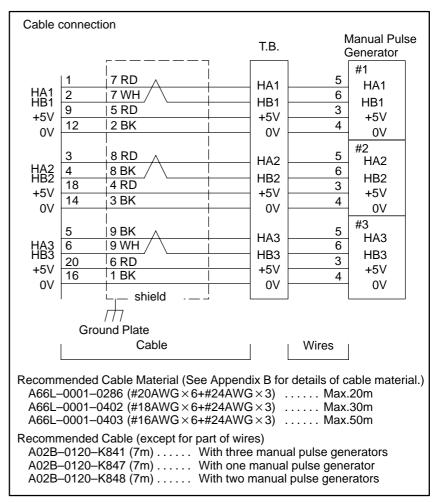
- 3 Open all terminals other than illustrated.
- 4 Set suitable parameters on reader/puncher interface for FANUC Handy File. The baud rate is 4800 baud in standard.
- 5 Connect the FANUC Handy File to either JD5A or JD5B. Do not use both pins; the power capacity may exceed that of +24V and blow the fuse.

— 75 —


B-63833EN/03

5.4 CONNECTING THE MANUAL PULSE GENERATOR


5.4.1 General


Manual pulse generators are used to manually move an axis in the handle feed mode.

This subsection describes manual pulse generators for the Series 0i. See Section 9.5 for the Series 0i Mate.

5.4.2 Connection to Manual Pulse Generators

5.4.3 Cable Length When Manual Pulse Generator is Used

Manual pulse generators are supplied with 5 VDC power the same as pulse coders. The drop in voltage due to cable resistance must not exceed 0.2V (on 0V and 5V lines in total).

 $\begin{array}{c} 0.2 \geqq \begin{array}{c} 0.1 \times R \times 2L \\ \hline m \end{array} \end{array} \qquad \mbox{where} 0.1 : Power supply current for the manual pulse generator = 0.1 A \\ R : Wire resistance per unit length [\Omega/m] \\ m : Number of 0-V wires \\ (= number of 5-V wires) \\ L : Cable length [m] \end{array}$

Example: When cable A66L–0001–0286 is used

This cable consists of three pairs of signal lines and six power wires $(20/0.18, 0.0394 \,\Omega/m)$.

When these three cables are used for 0V and 5V lines, the cable length is:

$$L \le \frac{3}{0.0394} = 76.75[m]$$

The maximum distance is, however, 50 m for the transmission of a pulse signal from the manual pulse generator. The cable length is, therefore, up to 50 m.

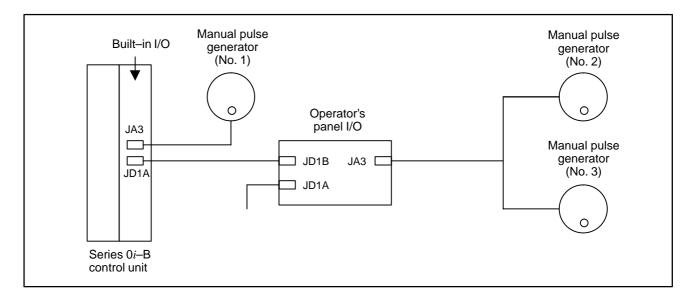
The maximum cable length is 38.37 m when using the two manual pulse generators, or 25.58 m when using the three generators.

Usually, for the Series 0i–B, the manual handle (manual pulse generator) is connected to the main body of the control unit. For the Series 0i Mate–B, the manual handle is connected to the operator's panel (including operator's panel I/O) equipped with a manual pulse interface connected with an I/O LINK.

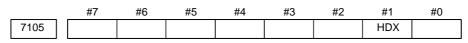
By using the manual handle allocation function, it is possible to add an operator's panel (including operator's panel I/O) similar to the one mentioned above to the above configuration, add additional manual handle interfaces, and set the manual handle interface to be used freely with an appropriate parameter.

Usually, if two or more units equipped with a manual handle interface are connected with an I/O LINK, the manual handle interface of the first unit connected to the I/O LINK will be automatically enabled.

The manual handle interface of the Series 0i-B is in built–in I/O, and this built–in I/O is the first unit on the I/O LINK. Usually, therefore, the manual handle interface of the built–in I/O will be enabled.


The use of this function enables the manual handle interfaces of the second and subsequent units. By setting bit 1 of parameter No. 7105, the manual handles associated with the X addresses set in parameters Nos. 12305 to 12307 can be allocated as the first, second, and third manual handles, respectively.

Up to three manual handles can be allocated. For the Series 0*i* Mate–TB, however, up to two manual handles can be allocated.


5.4.4 Manual Handle Allocation Function

Connection example

Connection example in which more than one unit equipped with a manual handle interface is connected with an I/O LINK

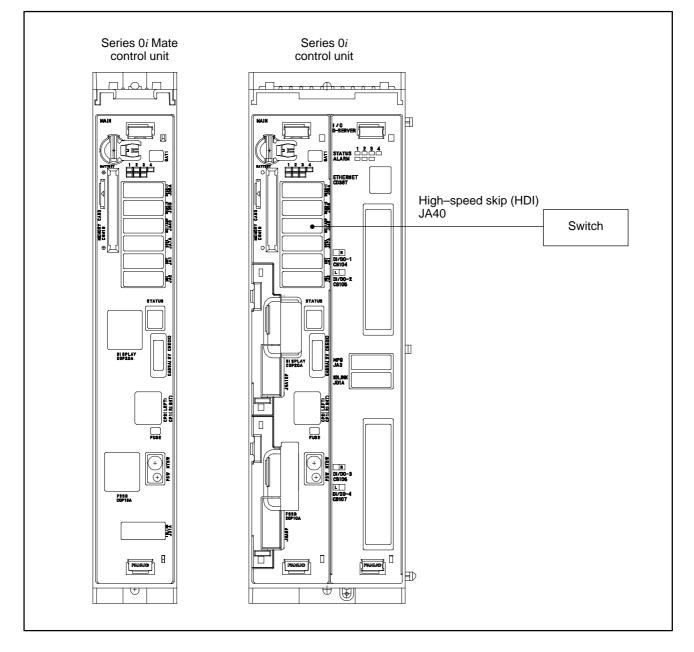
Parameter

[Unit of data] Bit

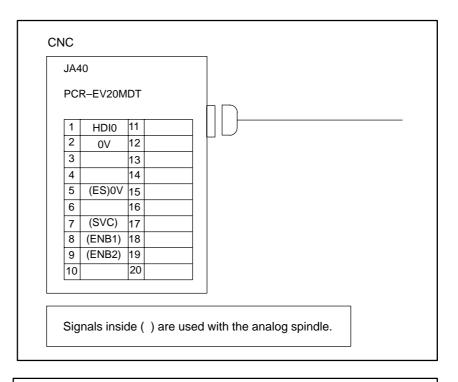
- HDX The manual handles connected with an I/O LINK are:
 - 0 : Automatically allocated in the order in which they are connected to the I/O LINK.
 - 1: Allocated to the X signal addresses set in the appropriate parameters.

12305	X signal address associated with the first manual handle
12306	X signal address associated with the secnd manual handle
12307	X signal address associated with the third manual handle

[Unit of data] Word

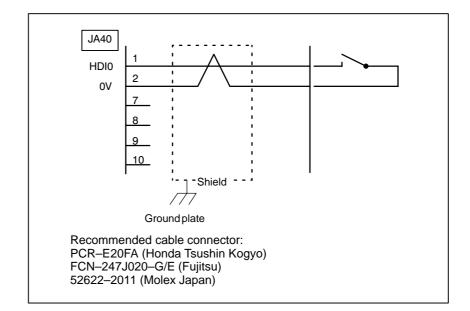

[Valid data range] 0 to 127

Set the addresses of the X signals used with the respective manual handles.

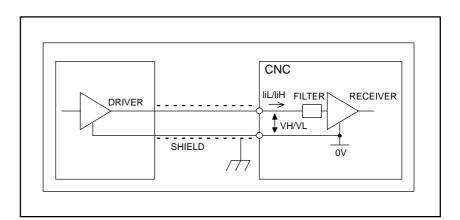

These parameters are effective when HDX, bit 1 of parameter No. 7105, is 1. The manual handles will not operate if the addresses of the manual handles of the units connected with the I/O LINK are not set correctly.

5.5 CONNECTING THE HIGH–SPEED SKIP (HDI)

5.5.1 General


5.5.2 Connection to the High–speed Skip (HDI)

NOTE


Leave connector pins unconnected if they are not intended for use.

Cable connections

5.5.3 Input Signal Rules for the High–speed Skip (HDI)

Circuit configuration

Absolute maximum rating

Input voltage range Vin: -3.6 to +13.6 V Input characteristics

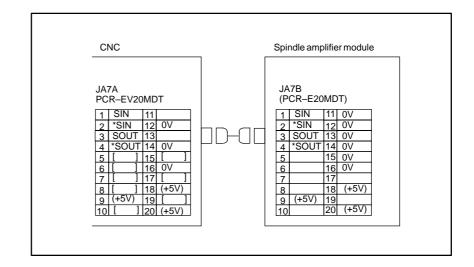
Unit	Symbol	Specification	Unit	Remark
High level input voltage	VH	3.6 to 11.6	V	
Low level input voltage	VL	0 to 1.0	V	
High level input current	liH	2 max	mA	Vin=5 V
		11 max	mA	Vin = 10 V
Low level input current	liL	–8.0 max	mA	Vin = 0 V
Input signal pulse duration		20 min	μs	
Input signal delay or variations		0.02(max)	ms	

NOTE

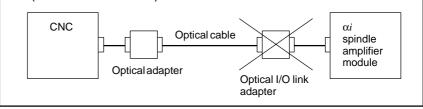
- 1 The plus (+) sign of liH/liL represents the direction of flow into the receiver. The minus (–) sign of liH/liL represents the direction of flow out of the receiver.
- 2 The high–speed skip signal is assumed to be 1 when the input voltage is at the low level and 0 when it is at the high level.
- 3 The input level for the CNC receiver is high when the circuit is open. So, the input level for the external driver must be low.

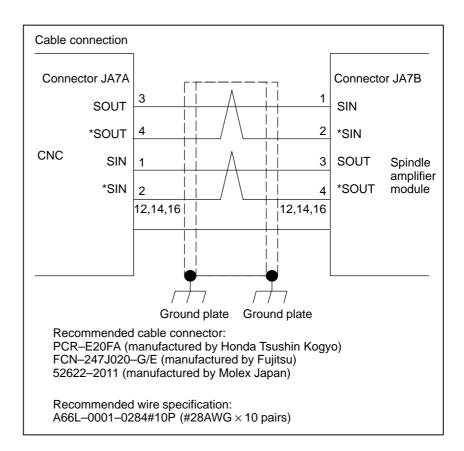
6

SPINDLE CONNECTION


The figure below shows the spindle–related connections. Note that the number of connectable spindles depends on the model. So, see the tables that follow the figure below.

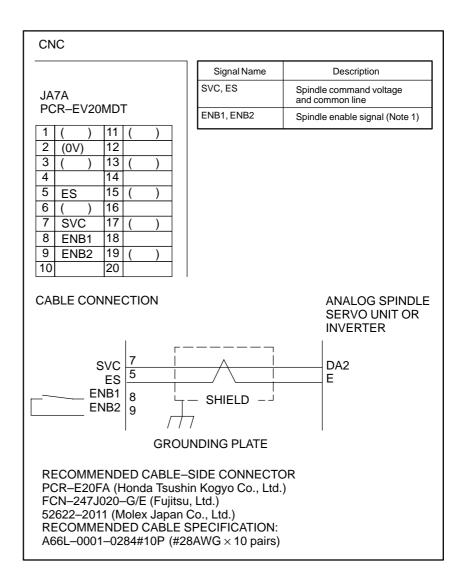
		Serie	Series 0 <i>i</i> Mate			
First serial spindle	0	0		0	0	
Second serial spindle		0				
Analog output			0	0		0
Position coder			0			0


6.1 SERIAL SPINDLE


6.1.1 Connection of One to Two Serial Spindles

NOTE

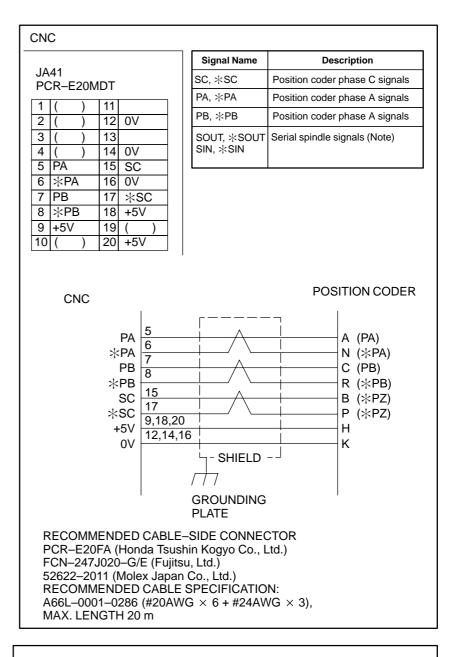
- 1 When an optical cable is used for connection between the NC and a spindle amplifier, the +5V signals indicated in parentheses are used to feed power to the optical I/O adapter. Do not connect these signals when an optical cable is not used. The signals in brackets ([]) are used when a position coder is used with an analog spindle is used.
- 2 The second serial spindle is connected as a branch from the spindle amplifier module.
- 3 The *αi* spindle cannot be connected to the conventional optical I/O link adapter. The optical adapter (A13B–0154–B003) must be used instead.



NOTE

In any of the following cases, make a connection via an optical fiber cable by using an optical I/O link adapter:

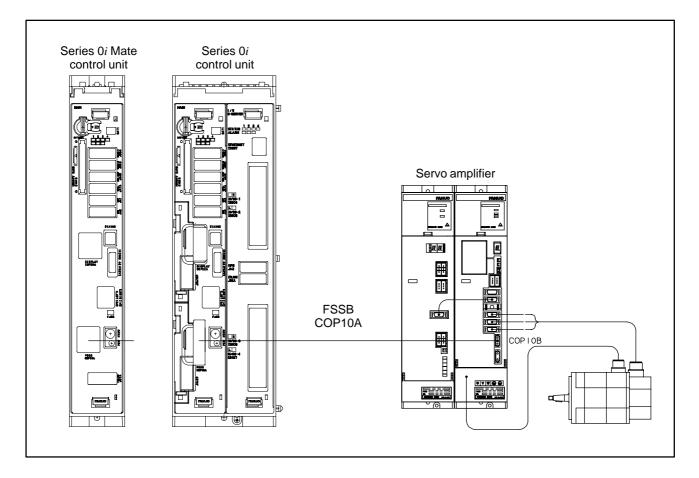
- When the cable is 20 m or longer
- When the power magnetics cabinet containing a spindle amplifier cannot be connected with the operator's panel cabinet containing a CNC control unit via a ground wire with a cross-sectional area of 5.5 mm² or more
- When the cable is subject to significant noise. For example, when there is a strong electromagnetic noise source such as a welding machine near the cable, or when the cable runs in parallel with a power line or power magnetics cable that can generate noise.


6.2 ANALOG SPINDLE INTERFACE

NOTE

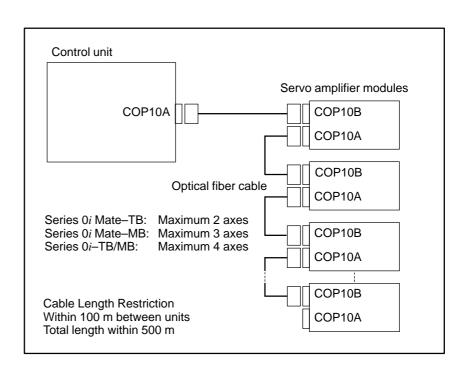
- 1 Signals ENB1 and ENB2 turn on when the spindle command voltage is effective. These signals are used when the FANUC Analog Spindle Servo Unit is used.
- 2 The analog output ratings are as follows:
 - Output voltage: ±10 V Output current: 2 mA (maximum) Output impedance: 100 ohms
- 3 The parenthesized signals are used for the high–speed skip function (HDI).

6.3 POSITION CODER INTERFACE



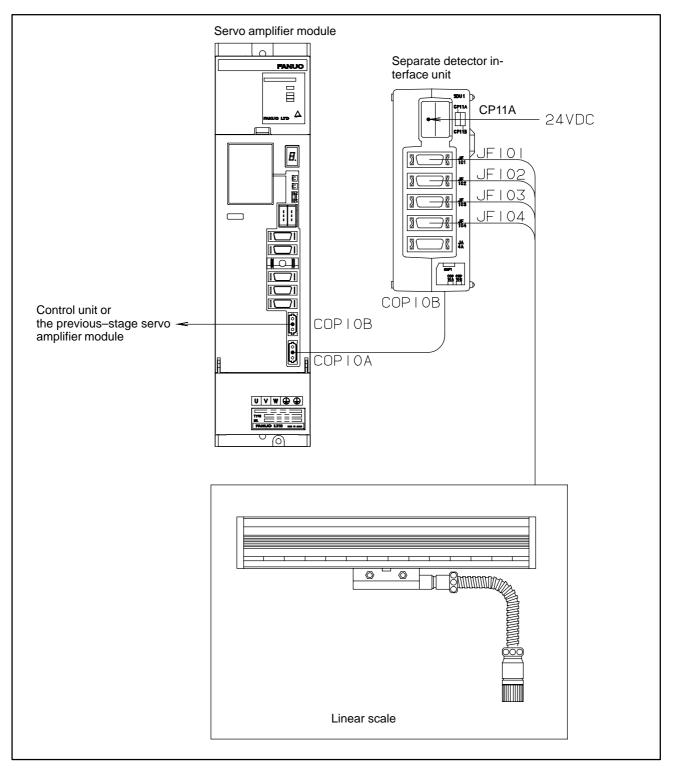
NOTE

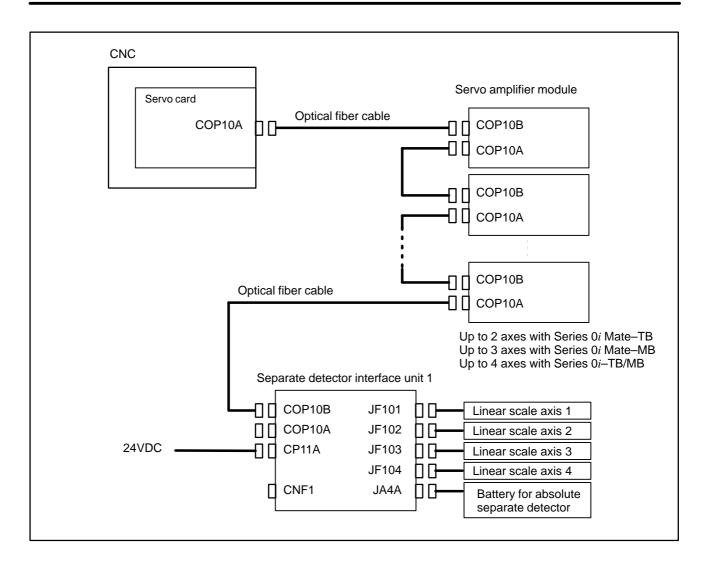
- 1 The signals for a serial spindle are parenthesized. These signals are not used for an analog spindle.
- 2 As the connector on the cable side, the solder-type 15-pin connector (FI40B-2015S, or conventional FI40-2015S) manufactured by Hirose Electric cannot be used.



7.1 CONNECTION TO THE SERVO AMPLIFIERS

7.1.1 General	This chapter describes how to connect the servo units to the Series 0 <i>i</i> /0. Mate. For details of the connection of the Servo amplifier, refer to the each servo amplifier manual.


7.1.2 Interface to the Servo Amplifiers


The connection between the CNC control unit and the servo amplifiers should use only one optical fiber cable, regardless of the number of controlled axes. See APPENDIX D for details on the optical fiber cable.

In the control unit, the COP10A connector is placed on the servo card installed on the main board.

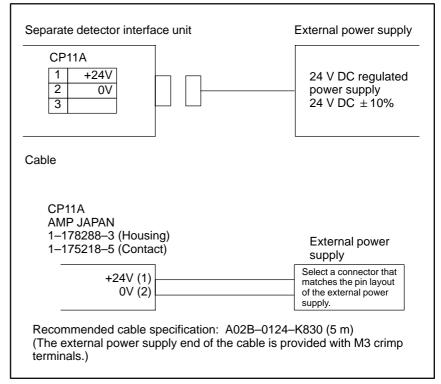
7.1.3 Separate Detector Interface

7. SERVO INTERFACE

When a separate pulse coder or linear scale is used, a separate detector interface unit, as shown above, is required. The separate detector interface unit should be connected to the CNC control unit through an optical fiber cable, as one of the units on the servo interface (FSSB). Although the above figure shows the separate detector interface connected in the final stage of the FSSB line, it can also be connected, at the nearest location, to the CNC control unit. Or, it can be installed between two servo amplifier modules.

7.1.5

Supply


7.1.4 Separate Detector Interface Unit Specification

Connection of Power

The interface unit can feed 0.35 A (5 V) to each separate detector.

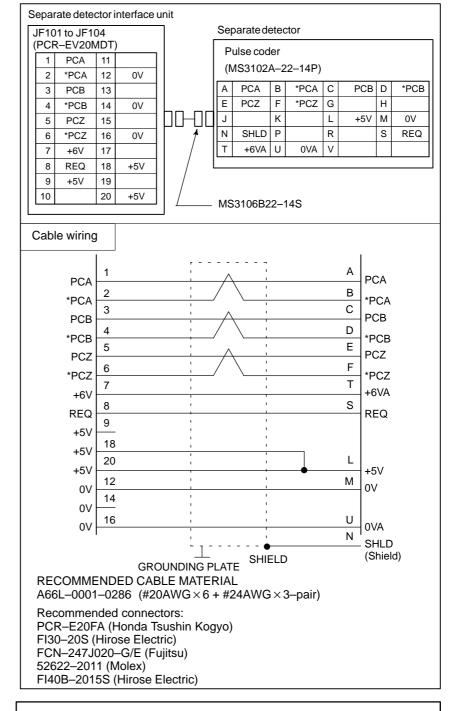
Item	Specification
Power supply capacity	Voltage 24 VDC ±10% Current 0.9 A (basic unit only) 1.5 A (basic unit + expansion unit)
Ordering information	A02B-0236-C205 (basic)
Method of installation	An interface unit can be installed by using screws or a DIN rail.

Power to the separate detector interface unit should be supplied from an external 24 V DC power supply.

The 24 V DC input to CP11A can be output at CP11B for use in branching. The connection of CP11B is identical to that of CP11A. In this case, the power supplied to CP11A should be equal to the sum of the rating of the separate detector interface unit and that of the units after CP11B.

7.1.6 Linear Scale Interface (Parallel Interface)

NOTE

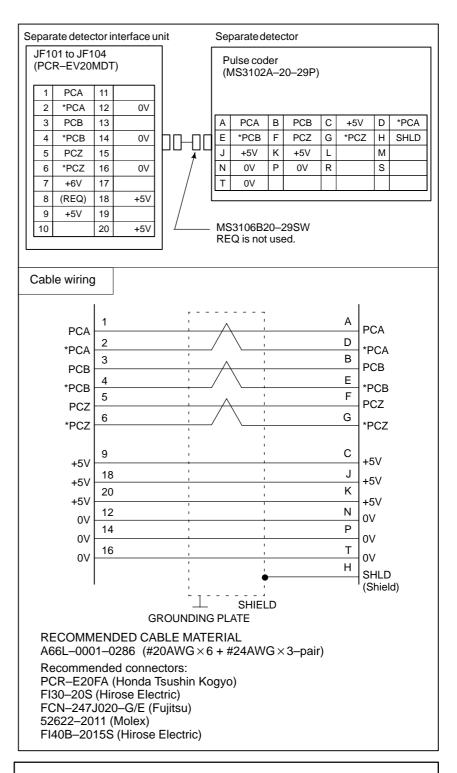

The +5V signals above can be used to feed power to the linear scales. The supply current per linear scale is 0.35 A maximum.

Minimum tolerance to 5 V: 4.95 V for main unit and 4.9 V for expanded section

7.1.7

Stand-alone Type Pulse Coder Interface (Parallel Interface)

• For absolute detector

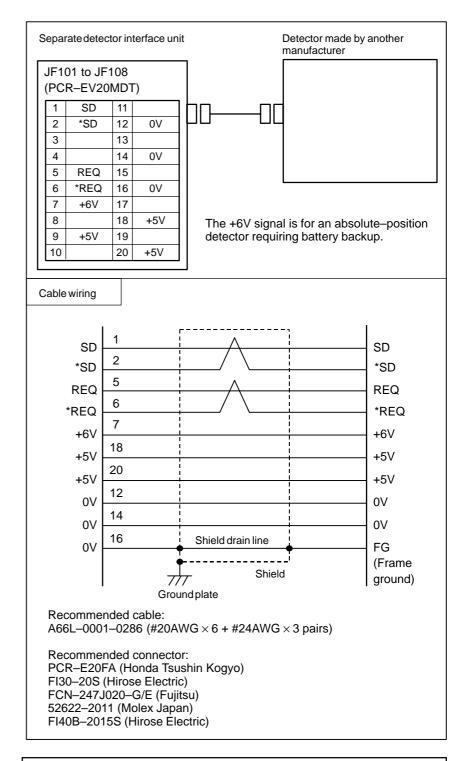

NOTE

The +5V signals above can be used to feed power to linear scales. The supply current per linear scale is 0.35 A maximum.

Minimum tolerance to 5 V: 4.95 V for main unit and 4.9 V for expanded section

(Parallel interface)

• For incremental detector

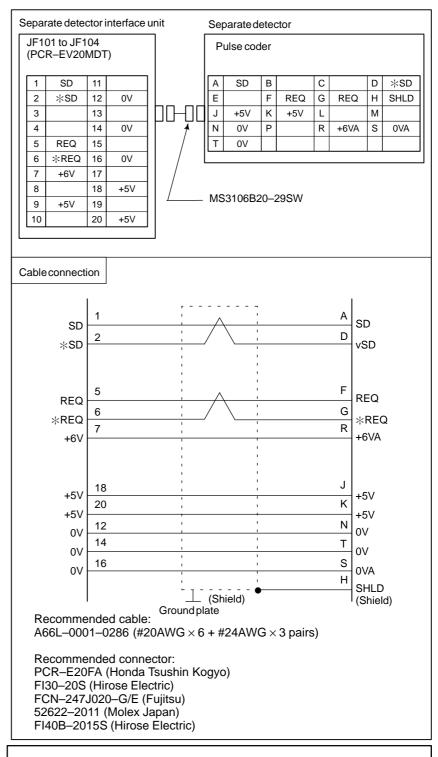


NOTE

The +5V signals above can be used to feed power to linear scales. The supply current per linear scale is 0.35 A maximum.

Minimum tolerance to 5 V: 4.95 V for main unit and 4.9 V for expanded section

Connection to a detector made by another manufacturer (Serial interface)


NOTE

1 The +5V signals above can be used to feed power to detectors. The supply current per detector is 0.35 A maximum.

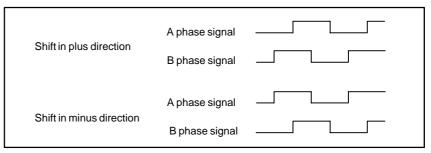
Minimum tolerance to 5 V: 4.95 V for main unit and 4.9 V for expanded section

2 When the 9090 series servo software is used, the serial interface cannot be used.

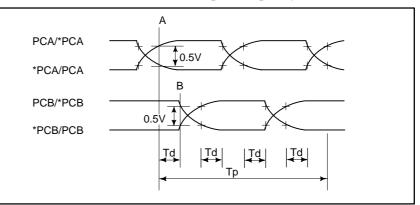
(Serial interface)

NOTE

- 1 The +5V signals above can be used to feed power to linear scales. The supply current per linear scale is 0.35 A maximum.
 - Minimum tolerance to 5 V: 4.95 V for main unit and 4.9 V for expanded section
- 2 When the 9090 series servo software is used, the serial interface cannot be used.

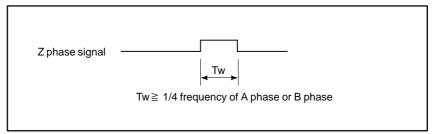

7.1.8 Input Signal Requirements

The standard of the feedback signal from the additional detector is as shown below.


(1) A and B phase signal input

This is a method to input position information by the mutual 90 degree phase slip of A and B phase signals.

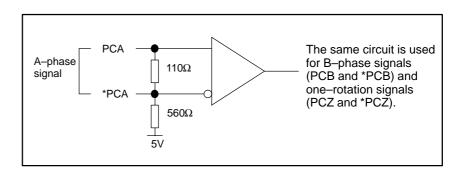
Detection of the position is performed with the state in which the B phase is leading taken as a shift in the plus direction, and the state in which the A phase is leading as a shift in the minus direction.



(2) Phase difference and minimum repeat frequency

(3)Z phase signal input

For the Z phase signal (1 rotation signal), a signal width of more than 1/4 frequency of the A phase or B phase signals is necessary.

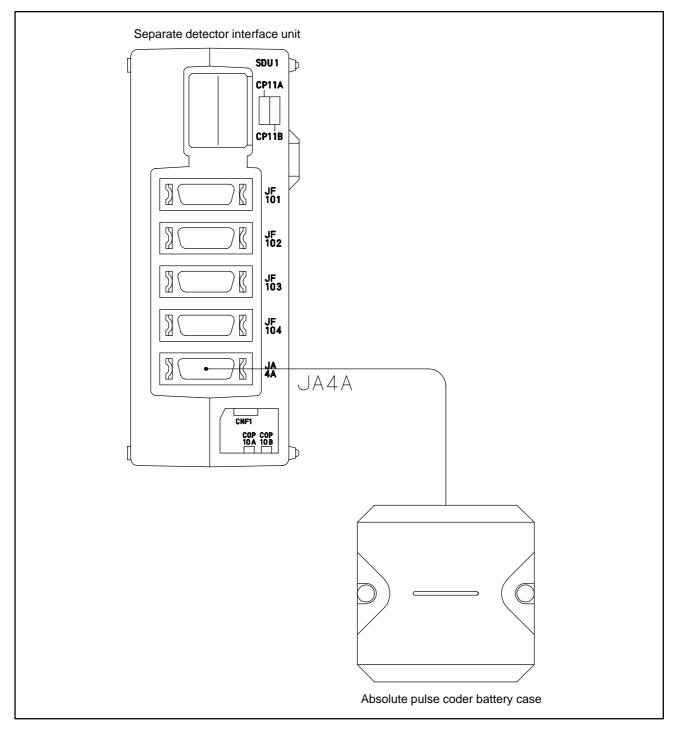

Time requirements

Receiver circuit

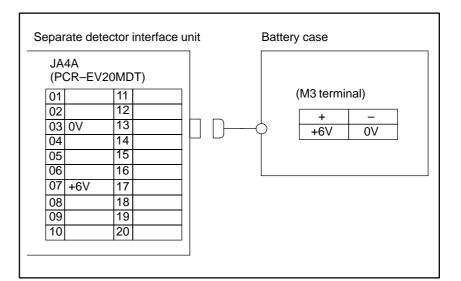
Requirements for the signals at the input pins of input connectors JF101 to JF104.

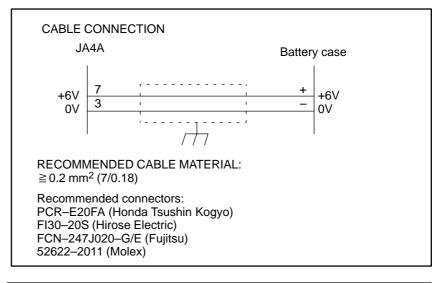
TD $\geq 0.15 \,\mu sec$

The signals for these connectors are differential input signals with A and B phases. An important factor is time TD from point A, when the potential difference between PCA and *PCA exceeds 0.5V, to point B, when the potential difference between PCB and *PCB becomes lower than 0.5V. The minimum value of TD is 0.15 μ s. The period and pulse width of the signals must be long enough to satisfy the above requirements.



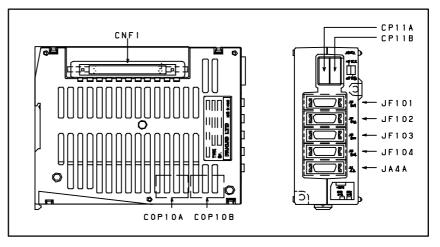
Relationship between the direction of rotation of the servo motor and that of the separate pulse coder If the separate pulse coder rotates in the opposite direction to that of the servo motor, reconnect the interface cable of the separate pulse coder as described below.


(1) Exchange signal PCA with signal PCB.


(2) Exchange signal *PCA with signal *PCB.

7.1.9 Connection of Battery for Separate Absolute Detector

— 101 —

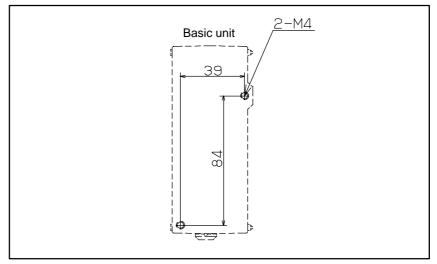


NOTE

The battery for the separate absolute detector is required only when the separate absolute detector is used. When an absolute pulse coder with built–in motor is used, it is powered by the built–in battery of the amplifier, such that the battery for the separate absolute detector is not required.

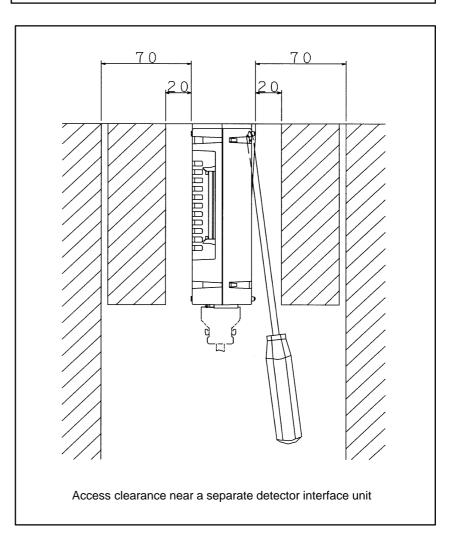
7.1.10 Connector Locations

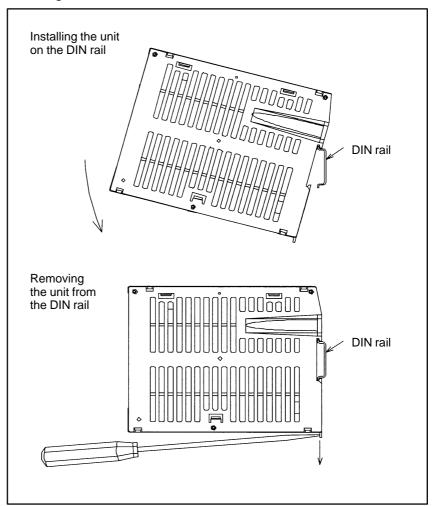
Connector locations on the basic unit


For the outside dimensions, see Appendix A.

7.1.11 Installation

- 1) Notes on installation
 - (1) Use an interface unit in a completely enclosed cabinet.
 - (2) Install an interface unit on a vertical surface, and provide a space of 100 mm above and below the unit. Below an interface unit, do not place equipment that generates a large amount of heat.


2) Installation using screws



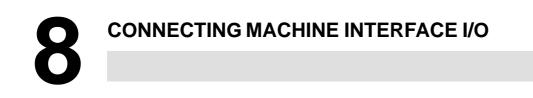
7.1.12 Notes on Installing a Separate Detector Interface Unit

CAUTION

To install/remove the unit, a screwdriver must be inserted obliquely. So, sufficient access clearances are required on both sides of the unit. As a guideline, if the front of an adjacent unit appears flush with the unit or slightly set back, allow a clearance of about 20 mm between the unit and the adjacent unit. If the front of an adjacent unit protrudes beyond the front of the unit, allow a clearance of about 70 mm between the unit and the adjacent unit. Also, when installing the unit near a side of the cabinet, allow a clearance of about 70 mm between the unit and the side of the cabinet.

Installing the unit on the DIN rail

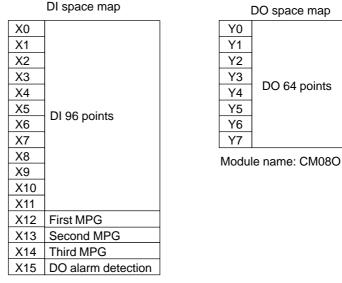
Installing the unit:


- 1. Hook the unit on the top of the DIN rail.
- 2. Push the unit in until it clicks.

Removing the unit:

- 1. Push down the lock by using a screwdriver.
- 2. Remove the unit by pulling the lower end of the unit towards you.

CAUTION


When removing the unit, be careful not to damage the lock by applying excessive force. When installing and removing the unit, hold the upper and lower ends of the unit so that stress is not applied to the side (that surface with the slits) of the unit.

8.1 GENERAL

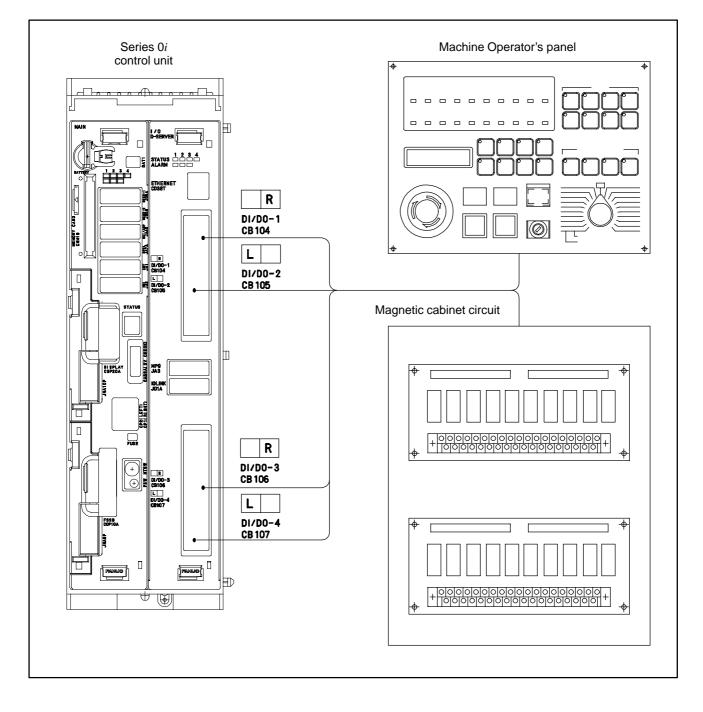
The Series 0*i* has a built–in I/O board for machine interface I/O. Number of DI/DO points for built–in I/O card are 96/64 points. This built–in I/O board must be assigned as the first slave of the I/O Link with the PMC ladder according to the following tables.

Built-in I/O assignment

Module name: CM16I

NOTE

- 1 Since readout from a manual pulse generator (X12 to X14) is directly performed by the CNC, only the above assignment must be performed by the PMC.
- 2 See Chapter 9 for details on DO alarm detection (X15).


If the number of DI/DO points is not sufficient, external I/O units such as the dispersed I/O can be added using the FANUC I/O Link. MIL ribbon cable connectors are used as the internal connectors for the built–in I/O board to simplify connection with the connector panel. The Series 0*i* Mate has no built–in I/O cards. Use the operator's panel I/O module described in Chapter 9 as machine interface I/O.

If a system alarm occurs in a CNC using this 48/32–point I/O module, or if I/O Link communication between the CNC and operator's panel I/O module fails, all the DO signals of the I/O module are turned off. Therefore, due care must be taken when setting up the machine sequence. Also, the same phenomenon occurs if the power of the CNC or the I/O module is turned off.

DO signal reaction to a system alarm

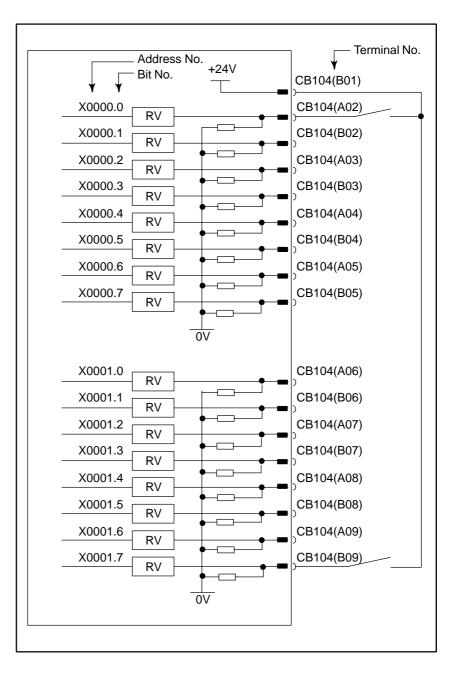
8.2 CAUTIONS	The following cautions must be observed when using I/O signal receivers and drivers for the machine interface.
8.2.1 DI Signals and Receivers	DI signals are basically of the sink type (a type that drains energy). Some DI signals, however, can be set to either sink type or source type (a type that supplies energy). See the description of the I/O board in the following section for details. A common signal is provided for selectable receivers. Whether the common signal is connected to 0 V or 24 V determines whether a DI signal is of sink or source type. A source type DI signal is undesirable from the viewpoint of safety, however, because if the input signal line is grounded, it will be latched in the same state as that existing when the contact is closed. It is recommended that all DI signals be set to sink type. Always connect the common signal to either 0 or 24 V; do not leave it open.
8.2.2 DO Signals and Drivers	The driver of DO signals is source type (a type that supplies energy, non–insulating).If a system alarm occurs in a control unit of the Series 0<i>i</i>, all I/O board drivers are turned off. Keep this in mind when setting up a machine sequence.The same situation can occur if the power to the control unit is turned off independently.

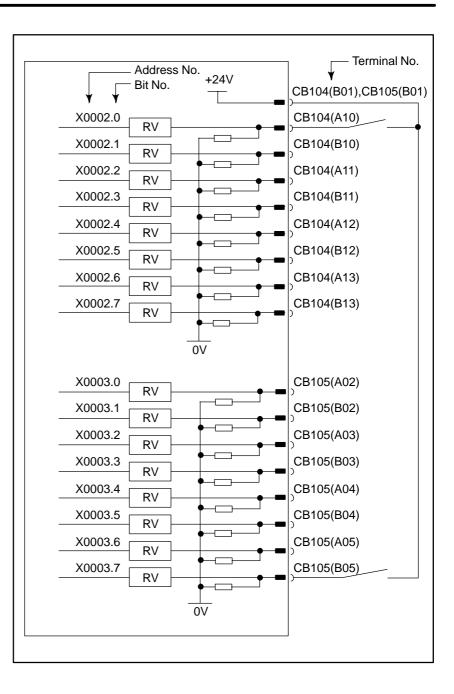
8.3 BUILT-IN I/O CARD CONNECTION

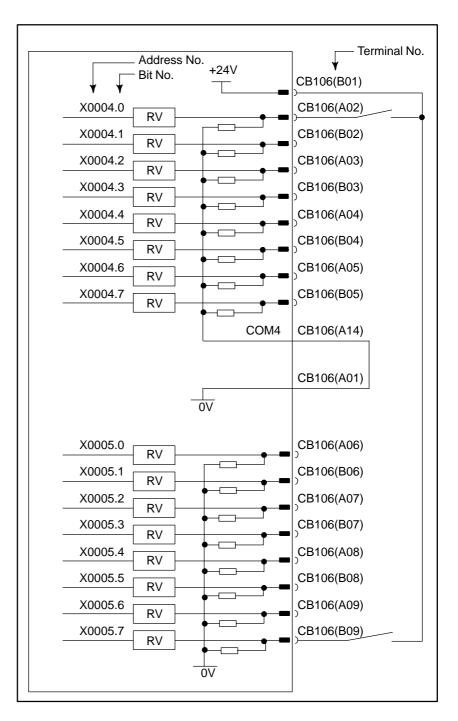
8.3.1 Connector Pin Arrangement

CB104				CB105			CB106			CB107			
HIROSE 50PIN			HIROSE 50PIN			HIROSE 50PIN			HIROSE 50PIN				
	A	В	[А	В		Α	В		A	В	
01	0V	+24V	Γ	01	0V	+24V	01	0V	+24V	01	0V	+24V	
02	X0000.0	X0000.1		02	X0003.0	X0003.1	02	X0004.0	X0004.1	02	X0007.0	X0007.1	
03	X0000.2	X0000.3		03	X0003.2	X0003.3	03	X0004.2	X0004.3	03	X0007.2	X0007.3	
04	X0000.4	X0000.5		04	X0003.4	X0003.5	04	X0004.4	X0004.5	04	X0007.4	X0007.5	
05	X0000.6	X0000.7	Γ	05	X0003.6	X0003.7	05	X0004.6	X0004.7	05	X0007.6	X0007.7	
06	X0001.0	X0001.1		06	X0008.0	X0008.1	06	X0005.0	X0005.1	06	X0010.0	X0010.1	
07	X0001.2	X0001.3	Γ	07	X0008.2	X0008.3	07	X0005.2	X0005.3	07	X0010.2	X0010.3	
08	X0001.4	X0001.5		08	X0008.4	X0008.5	08	X0005.4	X0005.5	08	X0010.4	X0010.5	
09	X0001.6	X0001.7		09	X0008.6	X0008.7	09	X0005.6	X0005.7	09	X0010.6	X0010.7	
10	X0002.0	X0002.1	Γ	10	X0009.0	X0009.1	10	X0006.0	X0006.1	10	X0011.0	X0011.1	
11	X0002.2	X0002.3		11	X0009.2	X0009.3	11	X0006.2	X0006.3	11	X0011.2	X0011.3	
12	X0002.4	X0002.5	Γ	12	X0009.4	X0009.5	12	X0006.4	X0006.5	12	X0011.4	X0011.5	
13	X0002.6	X0002.7		13	X0009.6	X0009.7	13	X0006.6	X0006.7	13	X0011.6	X0011.7	
14				14			14	COM4		14			
15				15			15			15			
16	Y0000.0	Y0000.1		16	Y0002.0	Y0002.1	16	Y0004.0	Y0004.1	16	Y0006.0	Y0006.1	
17	Y0000.2	Y0000.3	Γ	17	Y0002.2	Y0002.3	17	Y0004.2	Y0004.3	17	Y0006.2	Y0006.3	
18	Y0000.4	Y0000.5		18	Y0002.4	Y0002.5	18	Y0004.4	Y0004.5	18	Y0006.4	Y0006.5	
19	Y0000.6	Y0000.7		19	Y0002.6	Y0002.7	19	Y0004.6	Y0004.7	19	Y0006.6	Y0006.7	
20	Y0001.0	Y0001.1	Γ	20	Y0003.0	Y0003.1	20	Y0005.0	Y0005.1	20	Y0007.0	Y0007.1	
21	Y0001.2	Y0001.3		21	Y0003.2	Y0003.3	21	Y0005.2	Y0005.3	21	Y0007.2	Y0007.3	
22	Y0001.4	Y0001.5		22	Y0003.4	Y0003.5	22	Y0005.4	Y0005.5	22	Y0007.4	Y0007.5	
23	Y0001.6	Y0001.7		23	Y0003.6	Y0003.7	23	Y0005.6	Y0005.7	23	Y0007.6	Y0007.7	
24	DOCOM	DOCOM	Γ	24	DOCOM	DOCOM	24	DOCOM	DOCOM	24	DOCOM	DOCOM	
25	DOCOM	DOCOM	ſ	25	DOCOM	DOCOM	25	DOCOM	DOCOM	25	DOCOM	DOCOM	

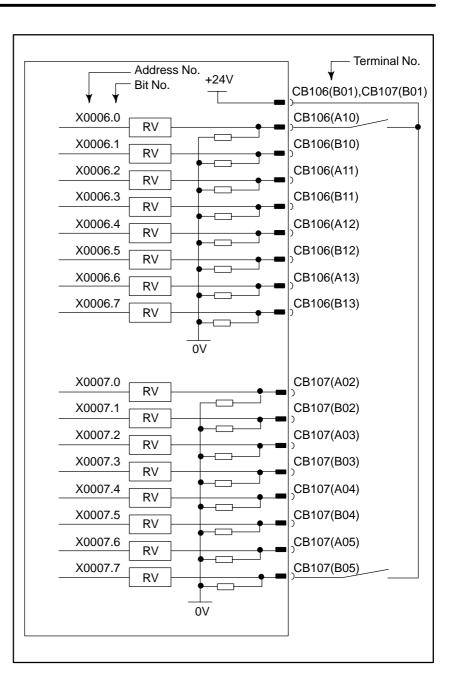
NOTE

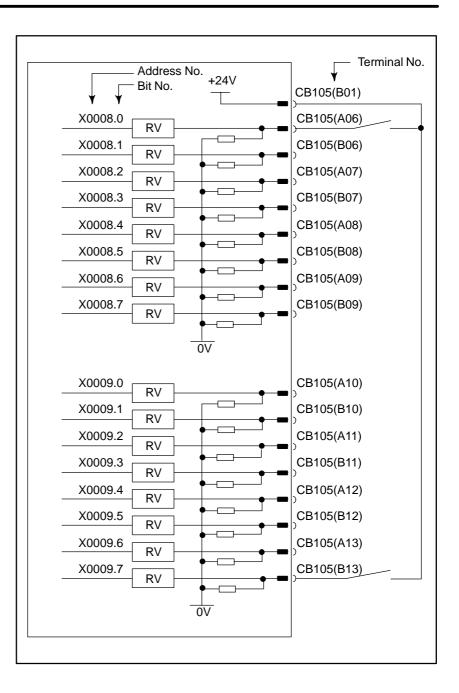

1 The B01 +24 V pins of the connectors (CB104, CB105, CB106, and CB107) are used for the DI input signals, and which output 24 VDC.

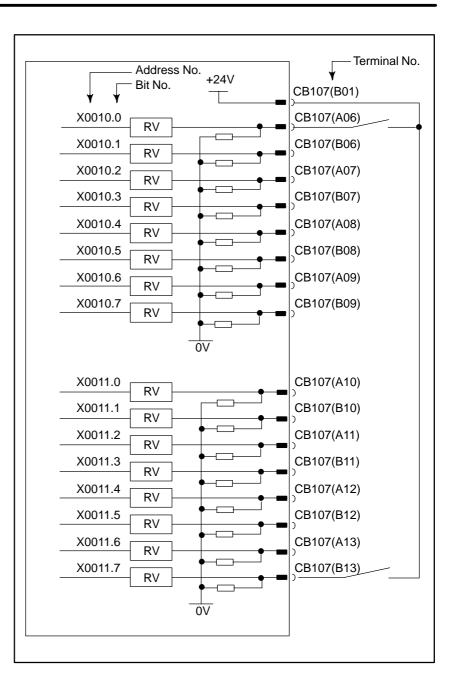

Do not connect +24 V of an external power supply to these pins.

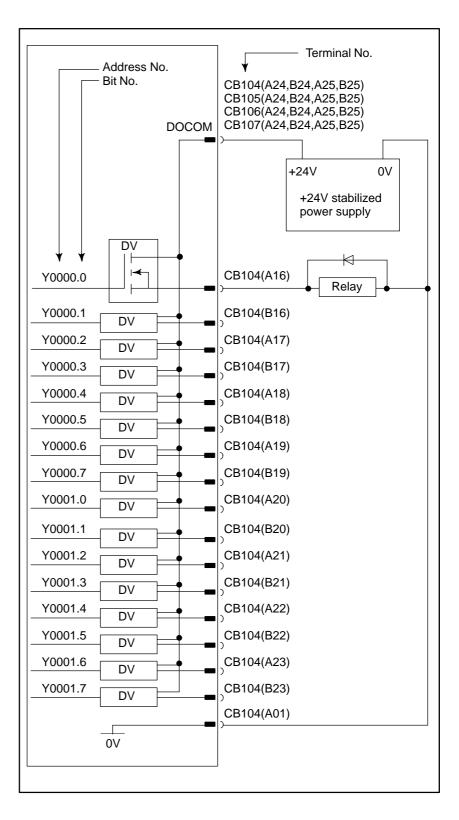

2 Each DOCOM is connected in the printer board. If using the DO signal (Y) of a connector, be sure to input 24 VDC to each pin of the DOCOM of that connector.

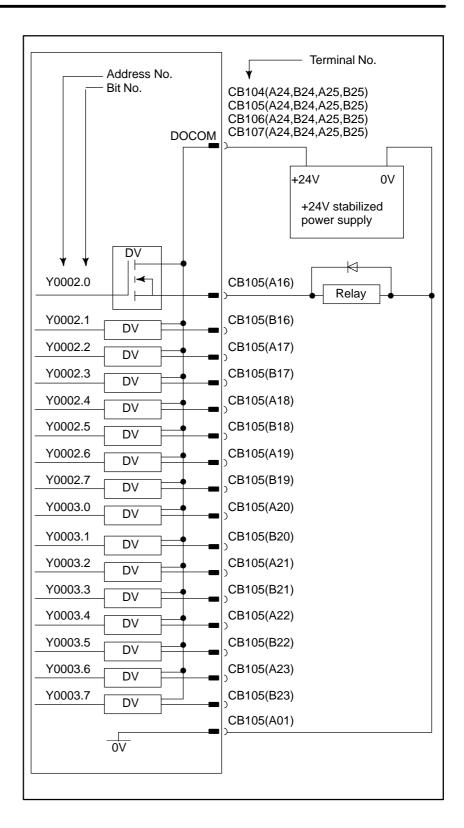
8.3.2 Connecting DI/DO

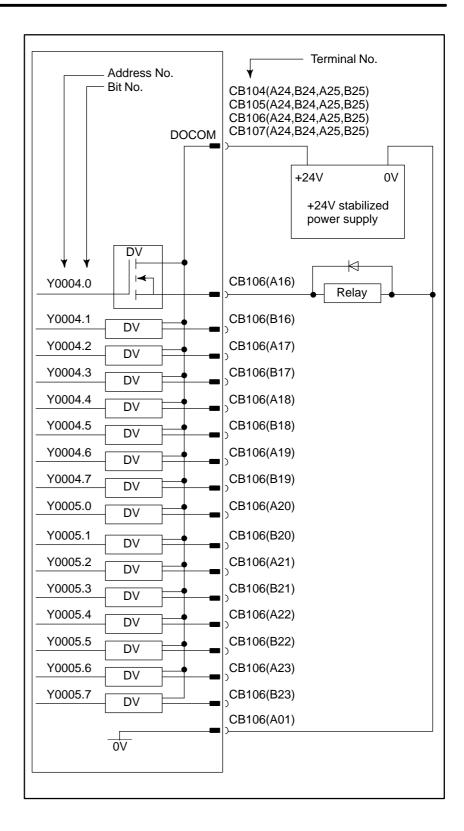

For example, connecting DI

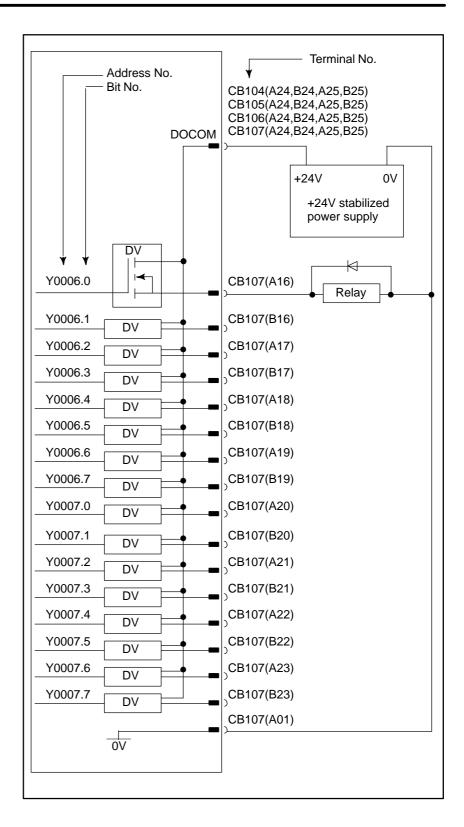




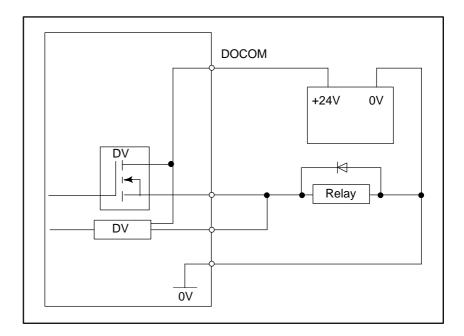

For address X0004, either a source or sink type (with a 0– or 24–V common voltage) can be selected. COM4 must be connected to either 24 or 0 V; never leave it open. From the viewpoint of safety standards, it is recommended that a sink type signal be used. The above diagram shows an example in which the signal is of sink type (with a 24–V common voltage).



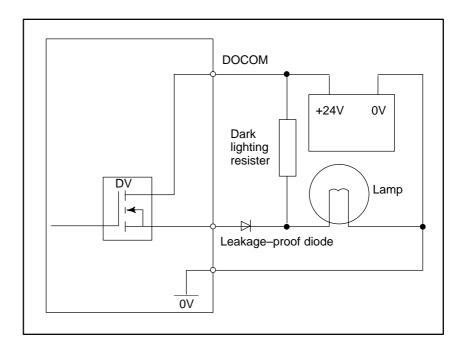



For example, connecting DO

B-63833EN/03



8.3.3 I/O Signal Requirements and External Power Supply for DO	Requirements for DI signals	Contact capacity : 30 VDC 16 mA or more Leakage current between contact points for an open circuit : 1 mA or less (at 26.4 V) Voltage drop between contact points for a closed circuit : 2 V or less (including the voltage drop in the cables)
	Ratings for the DO output driv- er	Maximum load current when turned on : 200 mA or less, including momentary surges (The maximum current for one DOCOM (power supply) pin must be 0.7 A or less.)
		Saturation voltage when turned on : 1.0 V max when the load current is 200 mA
		Dielectric strength : 24 V +20% or less, including momentary surges
		Leakage current when turned off : 100 μA or less
	External power supply for DO	Power supply voltage : 24 V ±10%
		Power supply current : (Sum of maximum load current including momentary surges + 100 mA) or more
		Power–on sequence : Turn on the external power supply at the same time or before turning on the control unit.
		Power–off sequence : Turn off the external power supply at the same time or after turning off the control unit.
	[


CAUTION

Never use the following DO parallel connection.

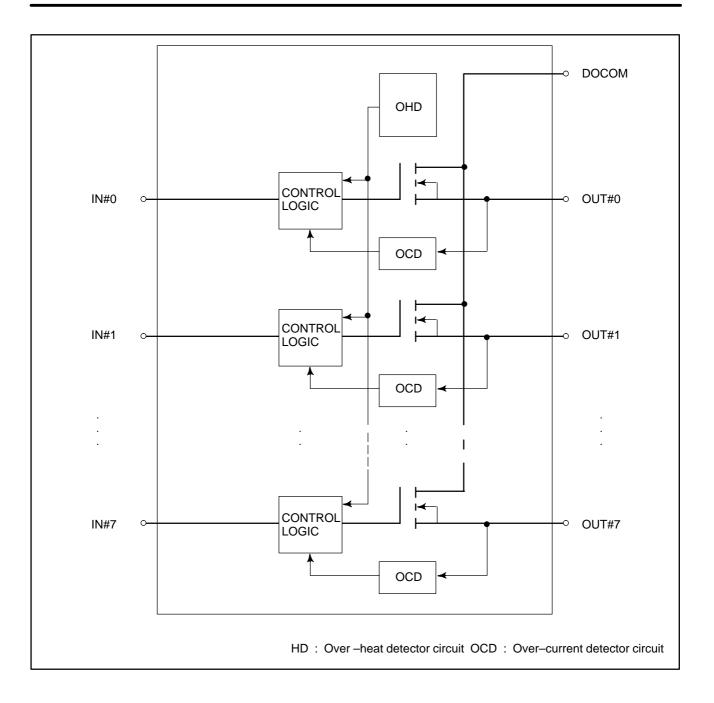
CAUTION

2 When using a dark lighting resistor as shown in the following figure, use a leakage–proof diode.

NOTE

Output signal driver

Each of the output signal driver devices used on this I/O board outputs eight signals.


A driver device monitors the current of each output signal. If it detects an overcurrent on an output, it turns off the output. Once an overcurrent causes an output to turn off, the overcurrent is no longer present. Then, the output is turned on again. In ground–fault or overload conditions, outputs may turn on and off alternately. This phenomenon also occurs when a load with a high surge current is connected.

Each driver device contains an overheat detector circuit. If an overcurrent is observed on an output continuously because of a ground–fault or similar reason and the temperature in the device rises, the overheat detector circuit turns off all eight outputs. The output–off state is maintained. This state can be released by logically turning off then on again the outputs after the internal temperature of the device drops to a specified level. This state can also be released by turning off the system power supply.

The output signals of the driver devices are assigned the following addresses:

Device #0:	Y1000.0 to Y1000.7
Device #1:	Y1001.0 to Y1001.7
Device #2:	Y1002.0 to Y1002.7
Device #3:	Y1003.0 to Y1003.7
Device #4:	Y1004.0 to Y1004.7
Device #5:	Y1005.0 to Y1005.7
Device #6:	Y1006.0 to Y1006.7
Device #7:	Y1007.0 to Y1007.7

If NC diagnosis shows that an output is on but the output is actually not turned on, an overload on that output or another output in the same device may have turned off the eight outputs of that device. In such a case, turn off the system power supply and remove the cause of the overload.

9.1 GENERAL

The FANUC I/O Link is a serial interface which connects the CNC, cell controller, dispersed I/O, machine operator's panel, or Power Mate and transfers I/O signals (bit data) at high speeds between each device. The FANUC I/O Link regards one device as the master and other devices as slaves when more than one device is connected. Input signals from the slaves are sent to the master at specified intervals. Output signals from the master are also sent to the slaves at specified intervals.

9.2 CONNECTION

The interface connector JD1A exists on the I/O card for the Series 0i or on the main board for the Series 0i Mate.

In the I/O Link there are the master station and its slave stations. As the Series 0i/0i Mate control unit, the master is connected to slaves such as a distributed I/O slave. The slaves are divided into groups, and up to 16 groups can be connected to one I/O Link. (For the Series 0i Mate, however, the number of I/O points is restricted.)

The I/O Link is connected in different ways depending on the types of units actually used and the I/O points. To connect the I/O Link, the assignment and addresses of the I/O signals have been made programmable with the PMC program. The maximum number of I/O points is 1024.

The two connectors of the I/O Link are named JD1A and JD1B, and are common to all units (that have I/O Link function). A cable is always connected from JD1A of a unit to JD1B of the next unit. Although JD1A of the last unit is not used and left open, it need not be connected with a terminator.

The pin assignments of connectors JD1A and JD1B are common to all units on the I/O Link, and are illustrated on Subsec. 9.2.1. Use the figures when connecting the I/O Link irrespective of the type of unit.

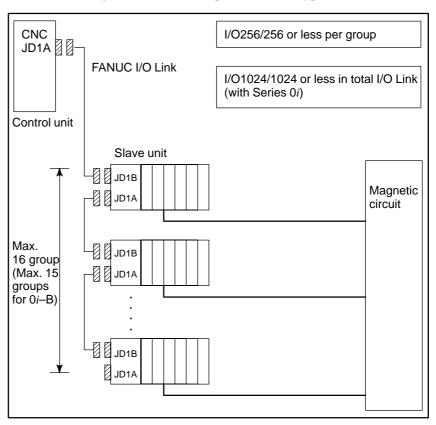
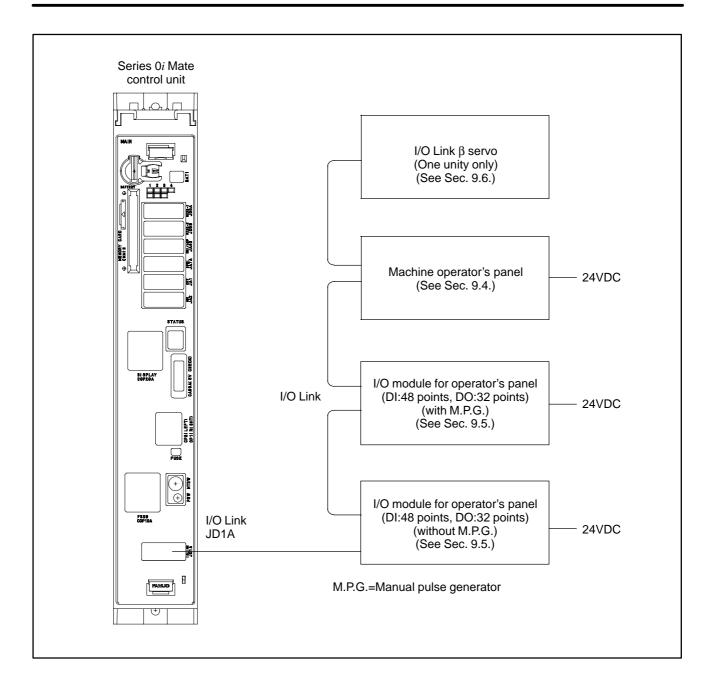
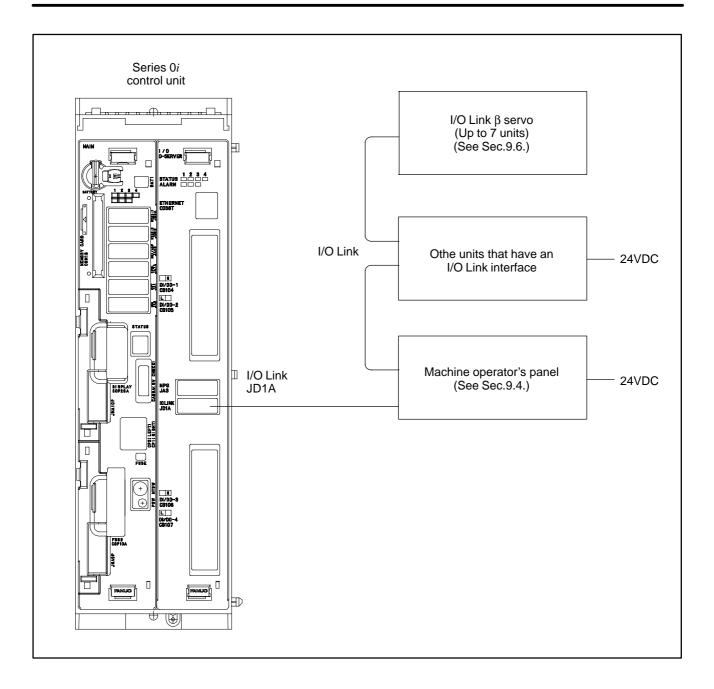



Fig.9.2 I/O Link connection diagram

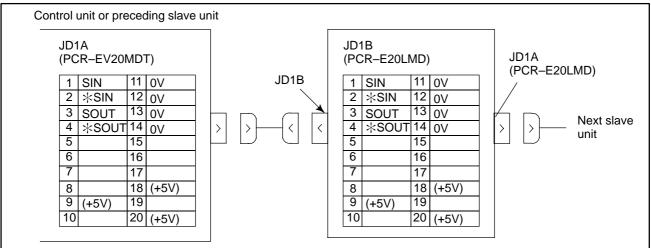

DI space map				
X4	Operator's panel I/O			
X5	DI 48 points			
•				
Х9				
X10	Reserved			
•	Reserved			
X15	Reserved			
X16	First MPG			
X17	Second MPG			
X18	Third MPG			
X19	DO alarm detection			
X20	Operator's panel I/O DI 48 points			
X21				
•				
X25				
X26	Reserved			
•	Reserved			
•	Reserved			
X34	Reserved			
X35	DO alarm detection			
X36	Machine operator's			
•	[–] panel			
X47				

The following is an example in which two operator's panel I/O boards and one machine operator's panel are used.

DO space map				
Y0	Operator's panel I/O			
Y1	DO 32 points			
Y2				
Y3				
Y4	Operator's panel I/O			
Y5	DO 32 points			
Y6				
Y7				
Y8	Machine operator's			
Y9	panel			
Y10				
Y11				
Y12				
Y13				
Y14				
Y15				

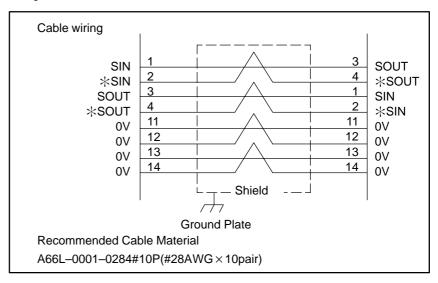
NOTE

- 1 Since readout from the manual pulse generator (X16 to X18) is directly performed by the CNC, only the above assignment must be performed by the PMC.
- 2 See Subsec. 9.5.8 for details on DO alarm detection (X19 and X35).
- 3 For the Series 0*i* Mate, up to 240 DI points and up to 160 DO points can be used.


	DI space map	I	DO space map
X0	Built-in I/O	Y0	Built–in I/O
X1	DI 96 points	Y1	DO 64 points
X2	-	Y2	
X3	-	Y3	
X4	_	Y4	
X5	_	Y5	
X6	_	Y6	
X7	_	Y7	
X8	_	Y8	External
X9	_	Y9	I/O
X10	_	Y10	
X11	_	Y11	
X12	First MPG	Y12	
X13	Second MPG	Y13	
X14	Third MPG	Y14	
X15	DO alarm detection	Y15	
X16	External I/O	Y16	
X17		Y17	
X18		Y18	
X19		Y19	
X20		Y20	
•		•]
•		•]
•		•]
•		•]

....

NOTE


- 1 Since readout from the manual pulse generator (X12 to X14) is directly performed by the CNC, only the above assignment must be performed by the PMC.
- 2 See Subsec. 9.5.8 for details on DO alarm detection (X15).

9.2.1 Connection of FANUC I/O Link by Electric Cable

+5 V terminals are for an optical I/O Link adapter. They are not necessary when connecting with a metal cable.

A line for the +5V terminal is not required when the Optical I/O Link Adapter is not used.

9.2.2 Power Supply Precautions

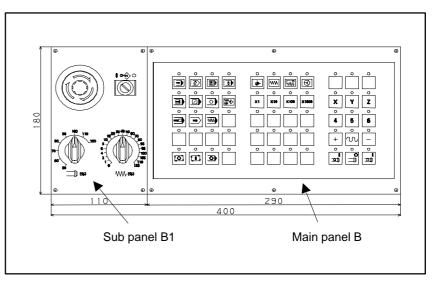
Take the following precautions about the power supply of a slave unit connected through the FANUC I/O Link.

- During power–up, supply +24 V when or before turning on the CNC.
- During power-down, stop supplying +24 V when or after turning off the CNC.
- When turning off a slave unit, be sure to turn off the other units connected through the same I/O Link.

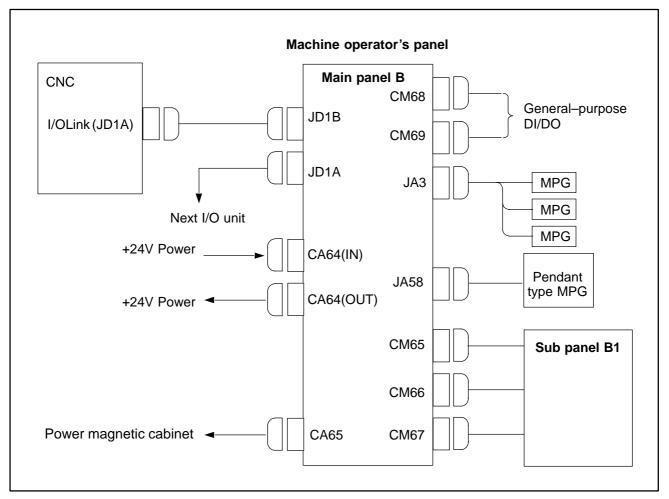
These are general rules. Therefore, when additional rules are specified for each unit, be sure to observe them.

9.3 UNITS THAT CAN BE CONNECTED USING FANUC I/O Link

Basically, the Series 0i can be connected to any unit that has a FANUC I/O Link slave interface. For the Series 0i Mate, however, only the following units can be connected. Detailed descriptions of each unit are given later in this section. For details on the other units used with the Series 0i, see the manual for each unit.


General units that can be connected to the Series 0i

Unit	Reference
Machine operator's panel unit	Sec. 9.4, 9.5
Connector I/O module	Sec. 9.6
I/O module for operator's panel	Sec. 9.7


9.4 CONNECTION TO MACHINE OPERATOR'S PANEL

9.4.1 Overview

This machine operator's panel is connected with CNC by I/O Link, which is composed with the following 2 operator's panels.

9.4.2 Total Connection Diagram

NOTE

- 1 Usually, *i* series CNC is only possible to use the MPG interface on this operator's panel. If i series CNC uses some I/O unit having MPG interface (ex. Dispersion type I/O module for panel) and this operator's panel, the MPG interface nearest the CNC is only available on the I/O Link connection. For the Series 0*i*-B, a built-in I/O card is used to enable the MPG interfaces of the second and subsequent units, use the manual handle allocation function described in Subsection 5.4.4.
- 2 MPG cannot be connected with either of JA3 and JA58.

9.4.3 Connections

9.4.3.1 Pin assignment

CA64 (Po	ower source	e)			
3		2	0V	1	+24V
6		5	0V	4	+24V
Housi Conta	ng: AMP 1- ct: AMP 1-	-17828 175218	or for cable 8–3 (3 pins 3–5 protect, ES	type)	
A01	EON	B01	EOFF	.,	
A02	COM1	B02	COM2		
A03	Xm+1.4	B03	KEYCOM		
A04	*ESP	B04	ESPCM1		
A05	 TR1	B05	TR2		
	ct: AMP 1– Seneral–pu				
		-	X0 5		
A02	V m i O A	B02	Xm+0.5		
A03	Xm+0.1	B03	Xm+0.3		
A04	+24V	B04	Xm+0.4		
A05	Xm+0.2	B05	Xm+0.0		
Hirose CM68 (C	e electric: H General–pu	IF3BA- rpose [
A01	+24V	B01	Xm+1.5		
A02	Xm+1.6	B02	Xm+1.7		
A03	Xm+2.0	B03	Xm+2.1		
A04	Xm+2.2	B04	Xm+2.3		
A05	Xm+2.4	B05	Xm+2.5		
A06	TR3	B06	TR4		
A07	TR5	B07	TR6		
A08	Yn+5.3	B08	Yn+5.7		
A09	Yn+6.3	B08	Yn+6.7		
A10	DOCOM	B10	0V		
Recon	nmended c	onnect	or for cable	:	

Recommended connector for cable: Housing: AMP 178289–8 Contact: AMP 1–175218–5

С	CA65 (Power magnetic cabinet)									
	A01	EON	B01	EOFF						
	A02	COM1	B02	COM2						
	A03	*ESP	B03	ESPCM1						
	A04	TR1	B04	TR2						
	A05	TR3	B05	TR4						
	A06	TR5	B06	TR6						
	A07	TR7	B07	TR8						
	A08		B08							
	A09		B08							
	A10		B10							

Recommended connector for cable: Hirose electric: HIF3BA–20D–2.54R

CM66 (General-purpose DI)

A01		B01	
A02		B02	Xm+1.3
A03	Xm+0.7	B03	Xm+1.1
A04	+24V	B04	Xm+1.2
A05	Xm+1.0	B05	Xm+0.6

Recommended connector for cable: Hirose electric: HIF3BA-10D-2.54R

CM69 (General-purpose DI/DO)

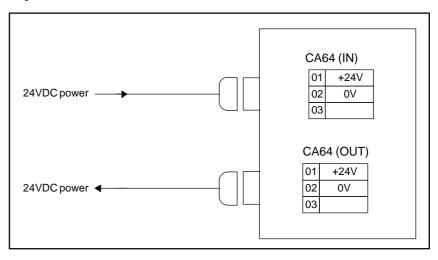
-	-	-	-
A01	+24V	B01	Xm+2.6
A02	Xm+2.7	B02	Xm+3.0
A03	Xm+3.1	B03	Xm+3.2
A04	Xm+3.3	B04	Xm+3.4
A05	Xm+3.5	B05	Xm+3.6
A06	Xm+3.7	B06	DICOM
A07	TR7	B07	TR8
A08	Yn+7.3	B08	Yn+7.4
A09	Yn+7.5	B08	Yn+7.6
A10	DOCOM	B10	0V

Recommended connector for cable: Housing: AMP 178289–8 Contact: AMP 1–175218–5

NOTE

- 1 Input/output Pins shaded by are in pairs. Only one in each pair is usable.
- 2 Pins shaded by are those for forwarding signals. Pins with the same name are connected directly to one another.

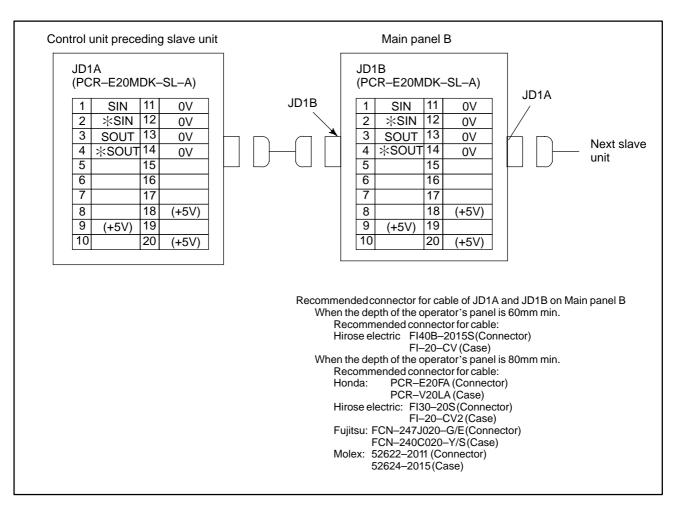
JA3	JA3 (Manual pulse generator)									
1	HA1	11								
2	HB1	12	0V							
3	HA2	13								
4	HB2	14	0V							
5	HA3	15								
6	HB3	16	0V							
7		17								
8		18	+5V							
9	+5V	19								
10		20	+5V							

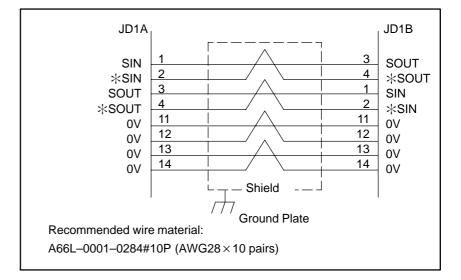

JA58 (Pendant type manual pulse generator)

1	HA1	11	Xm+1.5
2	HB1	12	0V
3	Xm+2.2	13	Xm+1.6
4	Xm+2.3	14	0V
5	Xm+2.4	15	Xm+1.7
6	Xm+2.5	16	0V
7	Yn+5.3	17	Xm+2.0
8	Xm+2.1	18	+5V
9	+5V	19	+24V
10	+24V	20	+5V

Recommended connector for cable of JA3 and JA58 When the depth of the operator's panel is 60mm min. Recommended connector for cable: Hirose electric : FI30–20S (Connector) FI–20–CV7 (Case) When the depth of the operator's panel is 80mm min. Recommended connector for cable of JA3: Hirose electric : FI40B–2015S (Connector) FI–20–CV (Case) Recommended connector for cable of JA58: Honda : PCR–E20FA (Connector) PCR–V20LA (Case) Hirose electric : FI30–20S (Connector) FI–20–CV2 (Case) Hirose electric : FI30–20S (Connector) FI–20–CV2 (Case) Fujitsu : FCN–247J020–G/E (Connector) FCN–240C020–Y/S (Case) Molex : 52622–2011 (Connector) 52624–2015 (Case)

9.4.3.2 Power supply connection

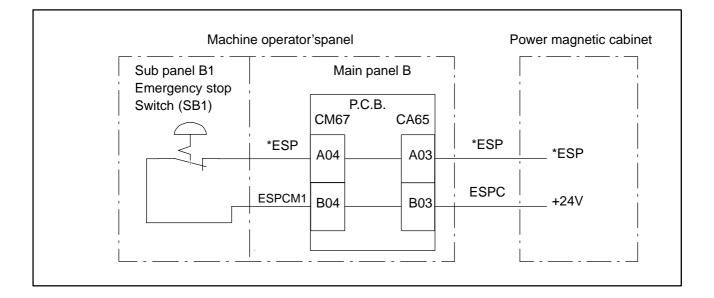

To the connector CA64 (IN), shown in the figure below, supply the power necessary for this operator's panel to operate and the power necessary for general–purpose DI. To facilitate power branching, the powers supplied to CA64 (IN) are output directly to CA64 (OUT). If power branching is required, use CA64 (OUT).


NOTE

- 1 Both connectors CA64 (IN) and CA64 (OUT) are same specification. And there is not indication of (IN) and (OUT) on the PCB.
- 2 Power supply for the operator's panel must not turn off at operation. If +24V is turned off at operation, CNC happen to get system alarm (Communication alarm between CNC and operator's panel). +24V for operator's panel must be supplied before or same time CNC power on.

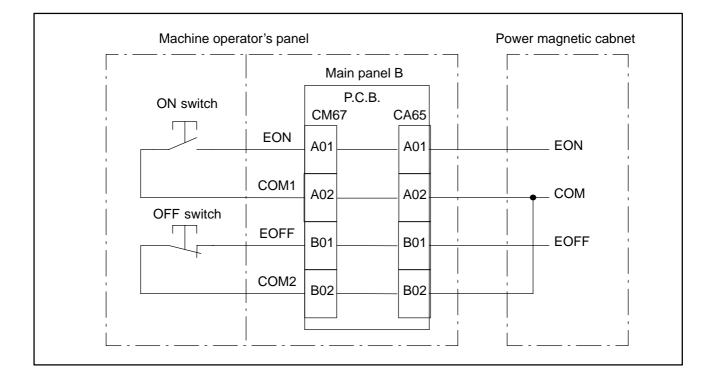
9.4.3.3 I/O link connection

+5V terminals are for an optical I/O Link adapter. They are not necessary when connecting with a metal cable.

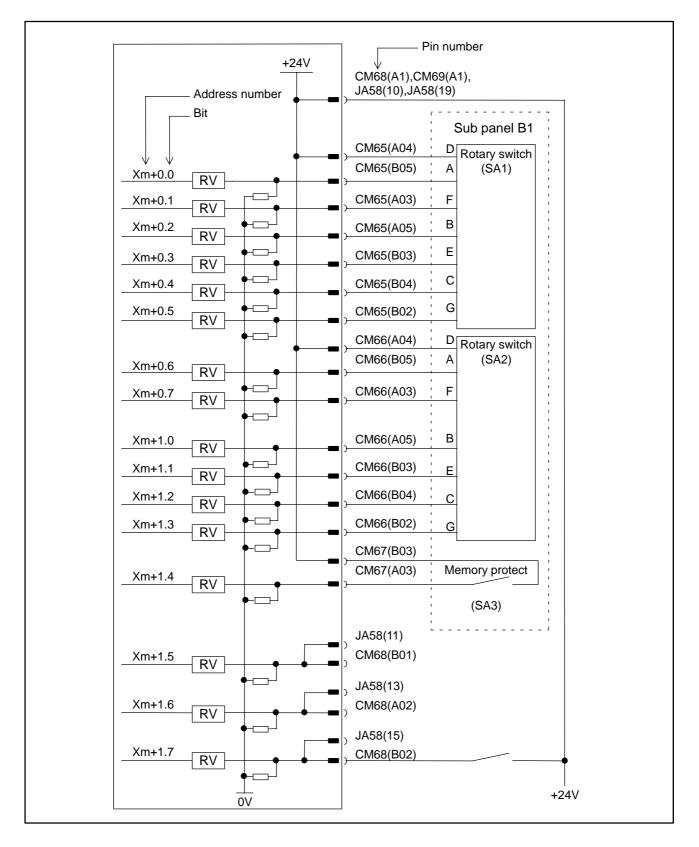


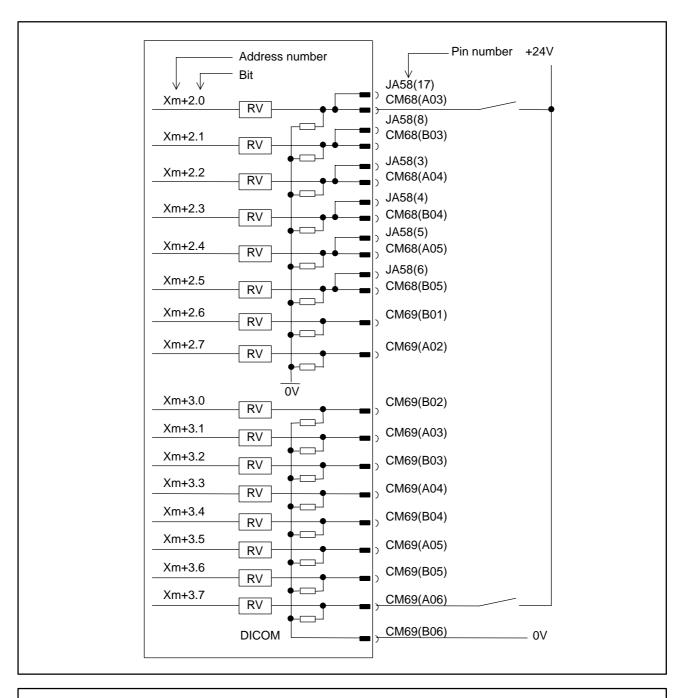
If not using the optical I/O link adapter, do not connect the +5 V pin.

9.4.3.4 Emergency stop signal connection


A signal generated by the emergency stop switch on the machine operator's panel can be sent to the power magnetic cabinet. (This signal cannot be sent to the FANUC I/O Link.)

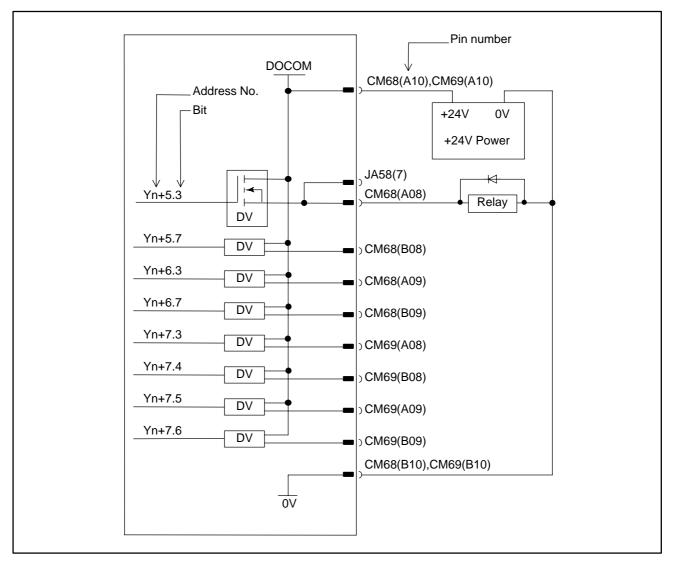
When MTB uses the Sub panel B1, wiring to the emergency stop switch is contained in the Sub panel.

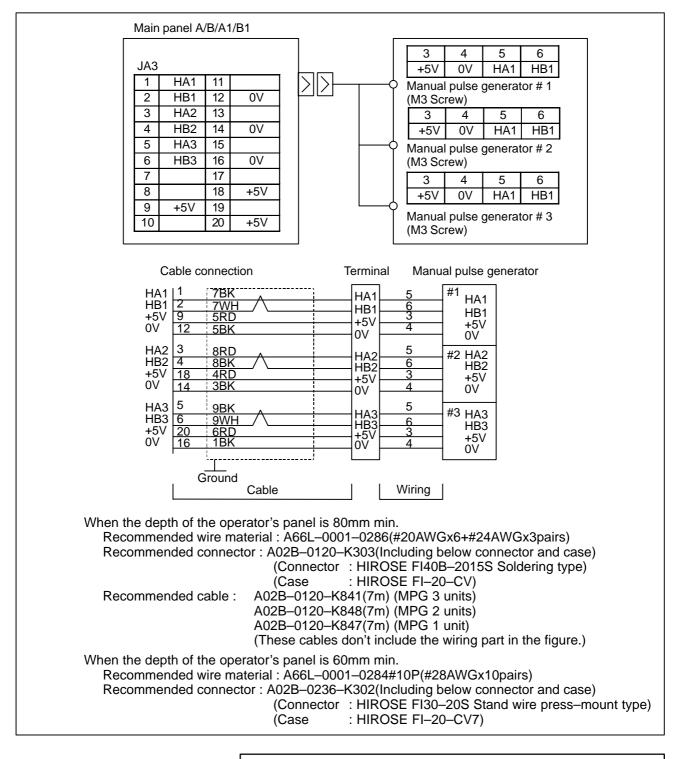



9.4.3.5 Power ON/OFF control signal connection

Signal generated by the power ON/OFF control switches on the machine operator's panel can be sent to the power magnetic cabinet. (This signal cannot be sent to the FANUC I/O Link.) Sub panel B1 is not included Emergency stop button.

9.4.3.6 DI (input signal) connection

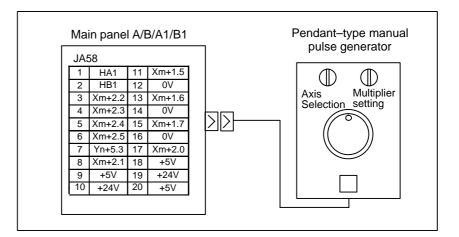



NOTE

- 1 Xm+3.0 to 3.7 have a common line that is possible to select the source/sink type. If DICOM (CM69–B06pin) is connected to +24V, the DI signal logic is negative. But in this connection, if the DI signal wires happen to drop the ground level, the status of the DI signal is same as the DI signal is "ON". From the safety viewpoint, DICOM should be connected 0V.
- 2 Xm+0.0 to 0.7, Xm+1.0 to 1.7 and Xm+2.0 to 0.7 common lines are fixed. So, if these DI pins in this address open, the status of these one stay "0". And in case of Xm+3.0 to 3.7 which have a selectable common line, if the DICOM(CM69–B06pin) is connected to 0V and these DI pins open, the status of these one stay "0". And if the DICOM are connected to +24V and these DI pins open, the status of these one stay "1". And if the DICOM is not connected to 0V or +24V and these DI pins open, the status of these one stay "1". And if the DICOM is not connected to 0V or +24V and these DI pins open, the status of these one stay "1".

9.4.3.7 DO (output signal) connection

9.4.3.8 Manual pulse generator connection



NOTE

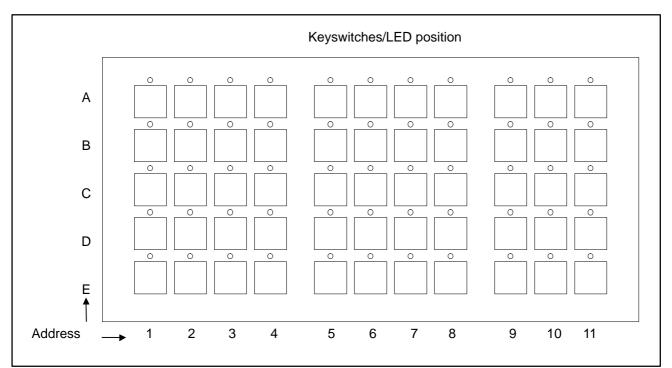
For an explanation of the length of the cable for the manual pulse generator, see Subsection 5.4.3.

9.4.3.9

When a pendant-type manual pulse generator

NOTE

- 1 When Xm+1.5 to Xm+2.5 of connector JA58 are allocated as the Dis used for the axis selection and multiplier setting, Xm+1.5 to Xm+2.5 of connector CM68 cannot be used.
- 2 One DO is available for the manual pulse generator side at the user's direction. When this is used, Yn+5.3 of CM68 cannot be used, as in the case for DIs above.


9.4.3.10

Connector (on the cable side) specifications

Connector	Make	r Specification	Order specifi cation			
JD1A, JD1B, JA3, JA58 (Operators panel depth=60mmmin.)	Stand wire press– mount type	Hirose FI30–20S(Connector) FI–20–CV7(Case)	A02B-0236-K302			
JD1A, JD1B, JA58 (Operators panel depth=80mmmin.)	Solderingtype	Honda PCR–E20FS (Connector) PCR–V20LA (Case)	A02B-0120-K301			
		Hirose FI40B–20S(Connector) FI–20–CV2(Case)				
	Stand wire press- mount type	Honda PCR–E20FA (Connector) PCR–V20LA (Case)	A02B-0120-K302			
		Hirose FI30–20S(Connector) FI–20–CV2(Case)				
JA3 (Operators panel depth=80mmmin.)	Solderingtype	Hirose FI40B–2015S(Connector) FI–20–CV (Case)	A02B-0120-K303			
CA64 (IN), CA64 (OUT)	AMP 1–178288–3(Ho 1–175218–5(Co		A02B-0120-K324			
CM67	AMP 178289–5(Hous 1–175218–5(Co	ing) ntact)	A02B-0236-K312			
CM68, CM69	AMP 178289–8(Hous 1–175218–5(Co	A02B-0236-K313				
CM65, CM66	Hirose HIF3BA–10D–2.	A02B-0236-K314				
CA65	Hirose HIF3BA–20D–2.	Hirose HIF3BA–20D–2.54R				
CA55	JAV LY10–DC10(Hot LY10–C2–3(Cor		A02B-0236-K303			

9.4.4 DI/DO Address

9.4.4.1 DI/DO address of Keyswitches and LED on the keyboard of Main panel B are as follows.											
BIT Key/LED	7	6	5	4	3	2	1	0			
Xm+4/Yn+0	B4	B3	B2	B1	A4	A3	A2	A1			
Xm+5/Yn+1	D4	D3	D2	D1 D4		C3	C2	C1			
Xm+6/Yn+2	A8	A7	A6	A5	A5 E4		E2	E1			
Xm+7/Yn+3	C8	C7	C6	C5	B8	B7	B6	B5			
Xm+8/Yn+4	E8	E7	E6	E5	D8	D7	D6	D5			
Xm+9/Yn+5		B11	B10	B9		A11	A10	A9			
Xm+10/Yn+6		D11	D10	D9		C11	C10	C9			
Xm+11/Yn+7						E11	E10	E9			

9.4.4.2

Table of gray code output is as follows when the Sub panel B1 is used

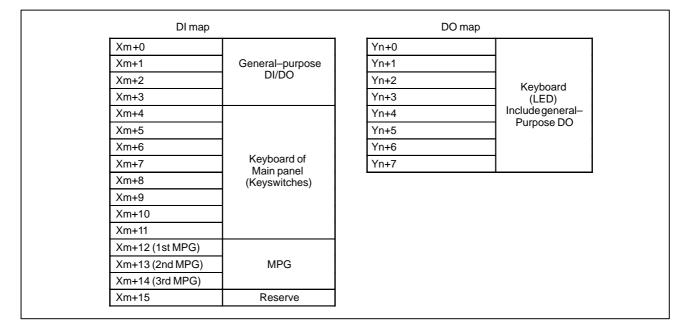
Rotary switch (SA1)

%	0	1	2	4	6	8	10	15	20	30	40	50	60	70	80	90	95	100	105	110	120
Xm+0.0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
Xm+0.1	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1
Xm+0.2	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1
Xm+0.3	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
Xm+0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
Xm+0.5	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

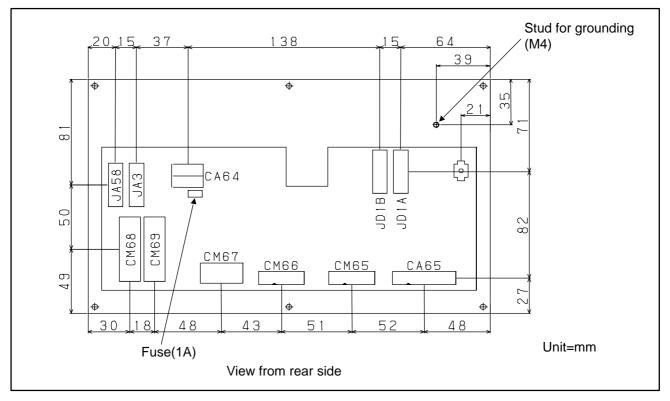
NOTE

Xm+0.5 is a parity bit.

Rotary switch (SA2)


	1							
%	50	60	70	80	90	100	110	120
Xm+0.6	0	1	1	0	0	1	1	0
Xm+0.7	0	0	1	1	1	1	0	0
Xm+1.0	0	0	0	0	1	1	1	1
Xm+1.1	0	0	0	0	0	0	0	0
Xm+1.2	0	1	0	1	0	1	0	1
Xm+1.3	0	0	0	0	0	0	0	0

NOTE


Xm+1.2 is a parity bit.

9.4.5 DI/DO Mapping

I/O address map is as follows.

9.4.6 Connector Locations of Main Panel B

9.4.7 Specifications

9.4.7.1 Environmental requirement

Temperature Around a unit	At operation0°C to 58°CStoring or transporting-20°C to 60°C		
Temperature variance	Max. 1.1°C/min		
Humidity	Normally75% or less (Relative humidity)Short time (Within one month)95% or less (Relative humidity)		
Vibration	Operating 0.5G or less		
Atmosphere	Normal FA atmosphere(Consult us when using the system under environments with higher degree of dust, coolant, or organic solution.)		

9.4.7.2 Order specification

Name	Specification	Note
Machine operator's panel Main panel B	A02B-0236-C231	Symbol key
Machine operators panel Main panel B1	A02B-0236-C241	English key
Machine operator's panel Sub panel A	A02B-0236-C231	
Machine operator's panel Sub panel B1	A02B-0236-C235	
Set of transparent key tops	A02B-0236-K170	55 transparent key tops
Set of blank key tops	A02B-0236-K171	55 key tops with no symbols printed
Set of symbolic key tops	A02B-0236-K172	34 symbol key tops + 21 blank key tops
Fuse(Spare part)	A03B-0815-K001	1A

9.4.7.3 Main panel B, B1 specification

Item	Specification	Note
General-purpose DI points	32 points	24VDC type input
General–purpose DO points	8 points	24VDC type output, non-insulating
Keyswitches of Machine operator's panel	55 keys	Matrix DI
LED	Color : Green	Attached to all keyswitches, Matrix DO
MPG interface	Max. 3 units	
Interface to CNC	FANUC I/O Link connection	Max. 16 modules or total points max. 1024/1024 will be available.

9.4.7.4 Sub panel A, B1 specification

ltem	Sub panel specification		Note
	Α	В	
Override rotary switch	2	2	5 bit Gray code output (with a parity bit)
Emergency stop switch	1	1	Number of Contact : 4 (Contact a \times 2, Contact b \times 2) M3.5 Screw
Program protect key	1	1	
ON/OFF switch	ON/OFF	_	

9.4.7.5 Power supply specification

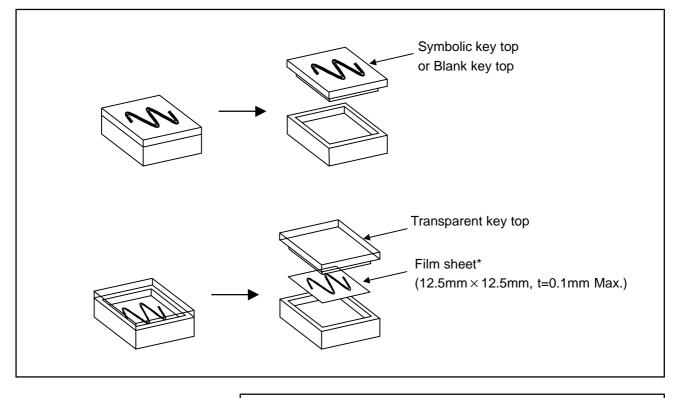
Voltage	Capacity	Note
24 VDC \pm 10% (from Power connector CA64, including momentary values) Momentary values and ripples are also included in \pm 10%.	0.4A	Including all DI consumption

9.4.7.6 General–purpose DI signal definition

Capacity	30VDC, 16mA or more		
Interconnect leakage current in closed circuit	1mA or less (at 26.4V)		
Interconnect voltage drop in closed circuit	2V or less (including the voltage drop in the cables)		
Delay time	Receiver delay : Max. 2ms Need to consider about the serial communication (I/O Link) delay between CNC and operator's panel 2ms (MAX) + Scan cycle of ladder (Scan cycle is different each CNCs).		

9.4.7.7 General–purpose DO signal definition

Maximum load current in ON state	200mA or less
Saturation voltage in ON state	Max. 1V (When load current is 200mA)
Withstand voltage	$24V \pm 20\%$ or less (including momentary values)
Leakage current in OFF state	20μA or less
Delay time	Driver delay : Max. 50µs Need to consider about the serial communication (I/O Link) delay between CNC and operator's panel 2ms (MAX)+Scan cycle of lad- der (Scan cycle is different each CNCs).


9.4.8 Key Symbol Indication on Machine Operator's Panel

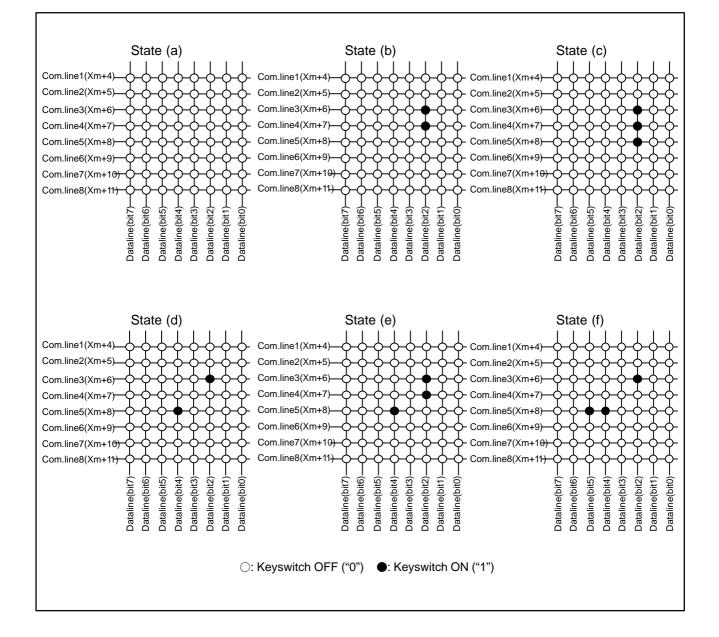
9.4.8.1 Meaning of key symbols

Symbol indication	Meaning of key	
	AUTO mode selection signal; Sets automatic operation mode.	
$\overline{\langle}$	EDIT mode selection signal; Sets program edit opera- tion mode.	
M	MDI mode selection; Sets MDI mode.	
	DNC operation mode; Sets DNC operation mode.	
.	Reference position return mode selection; Sets reference position return mode.	
	JOG feed mode selection; Sets jog feed mode.	
	Step feed mode selection; Sets step feed mode.	
	Manual handle feed mode selection; Sets manual han- dle feed mode.	
(M) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	Teach–in jog (reach–in handle) mode selection signal; Sets teach–in jog (teach–in handle) mode.	
	Single block signal; Executes program one by one. This key is used to check a program.	
	Block delete (optional block skip); Skips the execution of the blocks starting with the first block prefixed with / and ending with the end of block (;) when this button is pressed during automatic operation.	
0	Program stop(output only); Turns on the LED on the button when automatic operation is stopped by M00 specified in the program.	
\bigcirc	Optional stop; Stops automatic operation after execu- tion of the block of a program where M01 is specified in the program.	

Symbol indication	Meaning of key
	Program restart; A program may be restart at a block by specifying the sequence number of the block, after automatic operation is stopped because of a broken tool or for holidays.
	Dryrun; Sets the axis feedrate to the jog feedrate instead of a programmed feedrate when automatic op- eration is performed by setting this button to on. This function is used to check only the movement of the tool when no workpiece is mounted.
	Machine lock; Updates only position display on the screen without making any axis movement, when auto- matic operation is performed by setting this button to on. This function is used to check a program.
	Cycle start; Start automatic operation.
	Cycle stop; Stops automatic operation.
X1 X10 X100 X1000	Manual handle feed magnification: Magnification for manual handle feed. Magnified by 1, 10, 100, 1000.
X Y Z 4 5 6	Manual feed axis selection; Axes are selected, when these buttons are set to on in the jog feed mode or step feed mode.
+ -	Manual feed operation; Performs movement along se- lected axes when these buttons are set on in the jog feed mode or step feed mode.
M	Traverse; Performs jog feed at rapid traverse rate when this button is set to on.
	Positive spindle rotation direction; Rotates the spindle motor in the positive direction.
	Negative spindle rotation direction; Rotates the spindle motor in the negative direction.
○	Spindle stop; Stops the spindle motor rotation.

9.4.8.2 Keyboard of machine operator's panel has 55 keys. All key tops are detachable key top detachable. MTB can customize keys and make his original key layout easily. And using transparent key top (optional), a film sheet with marking is inserted into the key.

NOTE
* Use the oil–proof sheet in the environment which oil is used for.


9.4.9 Others

The keyboard of this operator's panel is a matrix composition. When three or more keys are pushed, the bypass current cause unrelated key to be available. This malfunction can be prevented with ladder program. One example is shown as follows.

(Elimination rule of malfunction)

When three keyinputs or more is input, all the keyinput since the third is made invalid.

However, when the number of all keyinput becomes two or less because keyinput was lost, all keyinputs are made effective.

(Operation of ladder program)

The example of the operation of ladder program is shown about matrix DI composed of 8bits x 8commons as follows.

[1] The number of datalines where the keyinput exists is examined.

Logical add R1 of the data of all addresses is calculated. The number of bits which are "1" in the 8bits data of R1 corresponds to the number of datalines where the keyinput exists.

- (1) When the data of R1 is corresponding to 00h, there is no bit which is "1" in the data of R1.
 - Ex. State (a): R1 = (0000000) \rightarrow There is no dataline where input exists.
- (2) when the data of R1 is corresponding to the data in undermentioned datatable 1., the number of bits which are "1" in the data of R1 is one. Similarly, when the data of R1 is corresponding to the data in datatable 2., the number of bits which are "1" in the data of R1 is two.

Ex. State (b) or (c): R1 = (00000100)

 \rightarrow There is one dataline where input exists.

Ex. State (d) or (e): R1 = (00010100)

- \rightarrow There are two datalines where input exists.
- (3) If the data of R1 is not corresponding to 00h and the both datatables, the number of bits which are "1" in the data of R1 is three or more.
 - Ex. State (f): R1 = (00110100)

 \rightarrow There are three datalines where input exists.

Data table 1.	Data table 2.		
0000001 00000010	00000011 00000110 00001100 00011000		
00000100 00001000	00110000 01100000 11000000 10000001		
00010000 00100000	00000101 00001010 00010100 00101000		
01000000 10000000	01010000 10100000 01000001 10000010		
	00001001 00010010 00100100 01001000		
	10010000 00100001 01000010 10000100		
	00010001 00100010 01000100 10001000		

[2] Judgment 1

(1) If there is no dataline where the keyinput exists.

Ex. State (a)

(2) When the keyinput exists in two datalines or less.

 \rightarrow To [3]

- (3) When the keyinput exists in three data lines or more.
 - \rightarrow There are three keyinputs or more.

 \rightarrow Any key switch is not pushed.:

It is invalid keyinput.: Ex. State (f)

[3] When the keyinput exists in two datalines or less, it is examined whether two or more keyinput exists on the same dataline.

The data of all addresses is subtracted from logical add R1 and subtraction result R2 is obtained. There are no two or more keyinput on the same dataline if it is R2 = 00h.

Ex. When there is one dataline where input exists.

State (b) : R2 = FCh

State (c) : R2 = F8h

When there are two datalines where input exists.

State (d) : R2 = 00h

State (e) : R2 = FCh

[4] Judgment 2

(1) In case of R2 = 00h → There are two or less datalines where input exists, and there are no two or more keyinputs on the same dataline. In this case, the numbers of all keyinputs are one or two. It is effective keyinput.: Ex. State (d)

(2) In case of R2 \neq 00h \rightarrow There are two or less datalines where input exists, and two or more keyinputs exists on the same dataline. To [5].

[5] Judgment 3

When there is one dataline where input exists \rightarrow To [6].

When there are two datalines where input exists

- \rightarrow There are three keyinputs or more.
 - It is invalid keyinput.:

Ex. State (e)

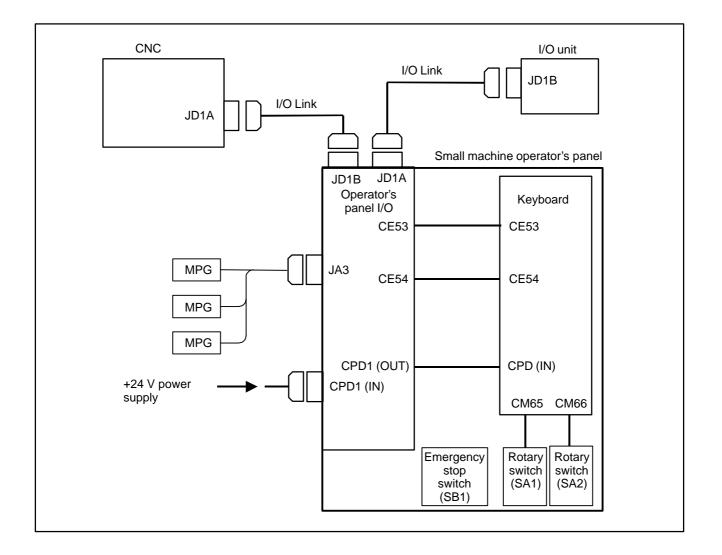
[6] Subtraction result R2 is added to logical add R1. If this addition result is 00h, the number of all keyinputs is two.

Ex. State (b) : R1 + R2 = 04h + FCh = 00h

State (c) : R1 + R2 = 04h + F8h = FCh

[7] Judgment 4

In case of R1 + R2 = 00h → There is one dataline where input exists, and there are two keyinputs on this dataline. That is, because the numbers of all input are two keys, it is effective input.: Ex. State (b)


In case of $R1+R2 \neq 00h \rightarrow$ There are three keyinputs or more on the same dataline. It is invalid keyinput.: Ex. State (c)

[8] Only when the keyinput becomes effective because of judgment 1–4, all DI data (Xm+4–Xm+11) is used by the ladder program.

9.5 CONNECTION TO THE SMALL MACHINE OPERATOR'S PANEL

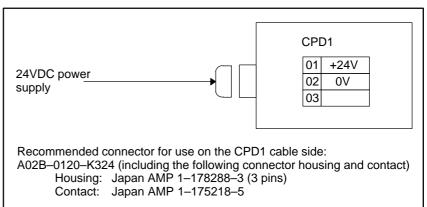
9.5.1 The small machine operator's panel is a machine operator's panel connected to the *i* series CNC with an I/O Link. The operator's panel contains 30 keys, an emergency stop switch, and two override rotary switches.

9.5.2 Overall Connection Diagram

NOTE

- 1 If this operator's panel is used together with a unit (such as an I/O module for branching) connected to an I/O Link having another MPG interface, only the MPG interface of the unit (module) nearest the CNC connected to the I/O Link will be enabled by default. To enable the MPG interfaces of the second and subsequent units, set appropriate parameters. For details, refer to the manual supplied with the NC used.
- 2 The following screw-on connectors cannot be used for the connection of an I/O Link and manual pulse generator.

Connectors that cannot used on the cable side


	Specification	Manufacturer
Connector case	FI-20-CV7	Hirose Electric Co., Ltd.
Connector case and connector	FI30-20S-CV7	Hirose Electric Co., Ltd.

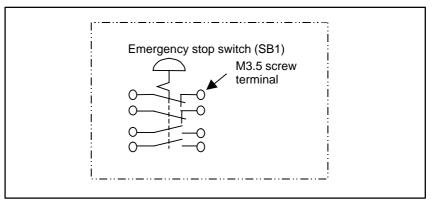
9.5.3 Connection of Each Section

9.5.3.1

Power connection

To the CPD1 connector, shown in the figure below, supply the power necessary for this operator's panel to operate, as well as the power for the general–purpose DI.

NOTE

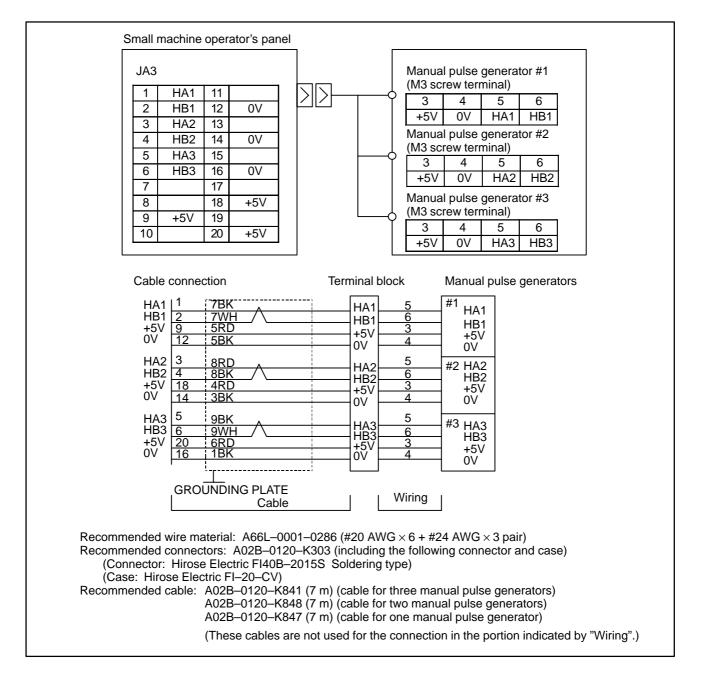

The +24V power supplied to this connector must be turned OFF during operation. Turning it OFF will cause a CNC communication alarm to be generated. Make sure that at power ON, the supply of this +24V power is at the same time as or earlier than the supply of the power to the CNC and that at power OFF, it is at the same time as or later than the interruption of the power to the CNC.

When the CNC connected to this operator's panel with an I/O Link is to be turned off, the power to this operator's panel must also be turned off.

9.5.3.2 The emergency stop switch has contain two circuits. (This signal is not Link.)

The emergency stop switch has contact A in two circuits and contact B in two circuits. (This signal is not sent to the CNC with a FANUC I/O Link.)

The machine tool builder is required to connect the switch to other DI/DO devices.



9.5.3.3 I/O Link connection

See Subsection 9.4.3.3.

9.5.3.4 Manual pulse generator connection

An example in which three manual pulse generators are connected is given below. If this operator's panel is used together with a unit (such as an I/O module for connection) connected to an I/O Link having another MPG interface, only the MPG interface of the unit (module) nearest the CNC connected to the I/O Link will be enabled by default. To enable the MPG interfaces of the second and subsequent units, set appropriate parameters. For details, refer to the manual supplied with the CNC used.

Calculate the maximum allowable length of the cable for the manual pulse generator, with the method described below.

Manual pulse generators are supplied with 5 VDC power. The drop in voltage due to cable resistance must not exceed 0.2V (on 0V and 5V lines in total).

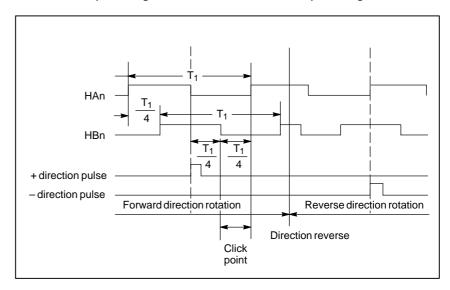
$0.2 \ge \frac{0.1 \times R \times 2L}{m}$	Where 0.1 : Power supply current for the manual pulse generator = 0.1 A
Therefore,	R : Wire resistance per unit length [Ω/m] m: Number of 0–V wires (= number of 5–V wires) L : Cable length [m]
L≦ <u>m</u> R	

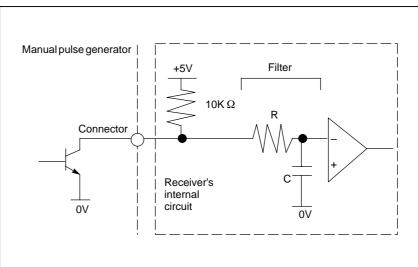
Example: When cable A66L-0001-0286 is used

This cable consists of three pairs of signal lines and six power wires $(20/0.18, 0.0394 \,\Omega/m)$.

When these three cables are used for 0V and 5V lines, the cable length is:

$$L \le \frac{3}{0.0394} = 76.75[m]$$

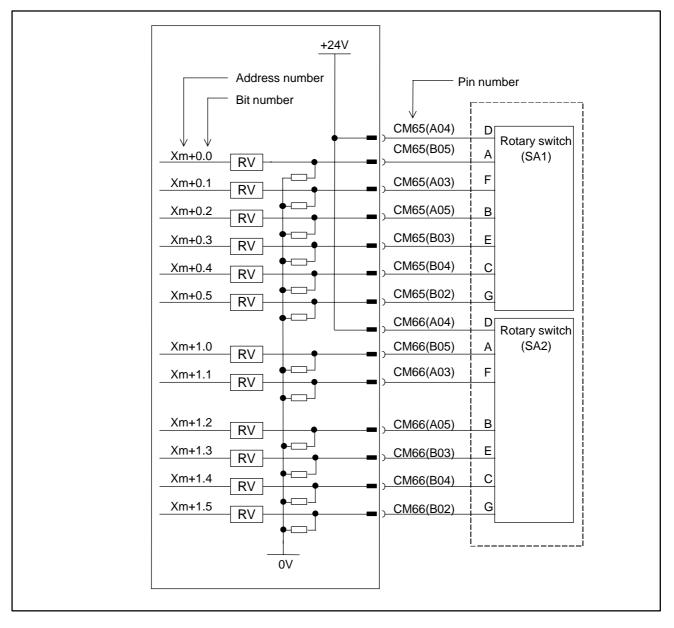

Thus, the length is 76.75 m. (Because of the applicable regulation of FANUC, however, the length is limited to 50 m.) For two units, the cable can be extended to 38.37 m.


For three units, it can be extended to 25.58 m.

If the cable A66L–0001–0284#10P is used, the cable can be extended to 12.88 m for one unit, 6.44 m for two units, and 4.29 m for three units.

Make sure that the following conditions are satisfied when manual pulse generators other than those made by FANUC are used.

The relations between the HAn and HBn signals and the pulses issued to the CNC are as shown in the figure below. The period of the pulses T_1 must be 200 µsec or greater and $T_1/4$ must be 50 µsec or greater.

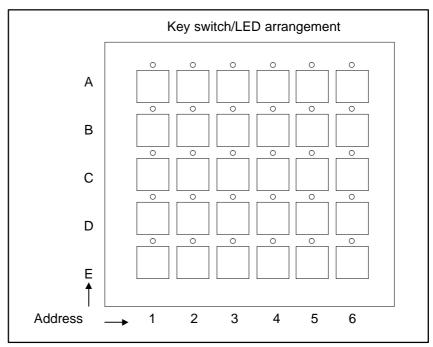


The circuit to receive the signal of the manual pulse generator is as shown in the figure below.

Point of change of the input signal for the receiver (threshold) 3.7 V or greater if the input signal changes from the LOW level to the HIGH level.

1.5 V or less if the input signal changes from the HIGH level to the LOW level.

9.5.4 DI Signal Connection (Rotary Switch Connection)



9.5.5 I/O Address

9.5.5.1 Keyboard of the operator's panel

The I/O address correspondence between the key switches on the machine operator's panel and LEDs are as follows.

BIT Key/LED	5	4	3	2	1	0
Xm+4/Yn+0	A6	A5	A4	A3	A2	A1
Xm+5/Yn+1	B6/ Without LED	B5/ Without LED	B4/ Without LED	B3	B2	B1
Xm+6/Yn+2	C6/ Without LED	C5/ Without LED	C4/ Without LED	C3	C2	C1
Xm+7/Yn+3	D6/ Without LED	D5/ Without LED	D4/ Without LED	D3	D2	D1
Xm+8/Yn+4	E6	E5	E4	E3	E2	E1

9.5.5.2

Gray codes are output according to the table below.

Override signals

Rotary switch (SA1)

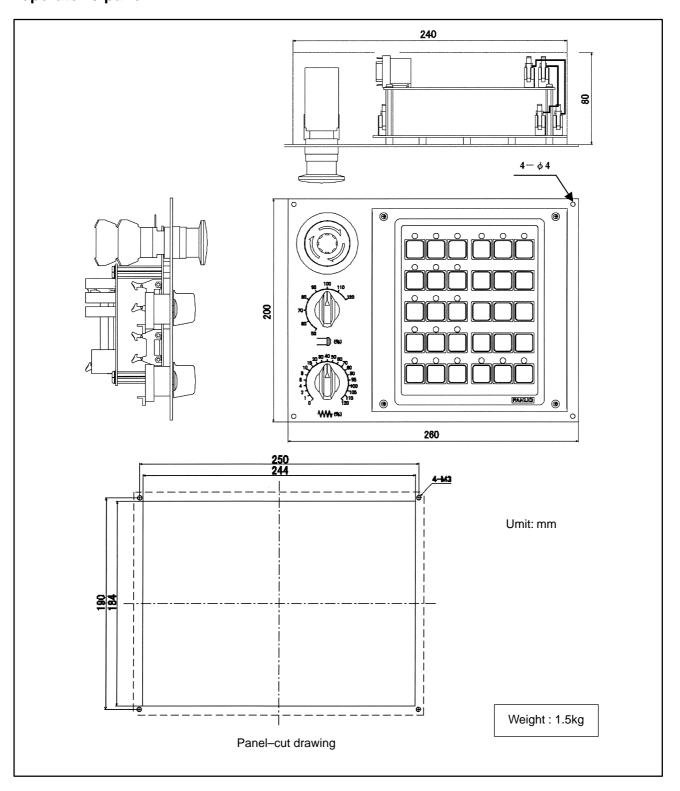
%	0	1	2	4	6	8	10	15	20	30	40	50	60	70	80	90	95	100	105	110	120
Xm+0.0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
Xm+0.1	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1
Xm+0.2	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1
Xm+0.3	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1
Xm+0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
Xm+0.5	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

Rotary switch (SA2)

%	50	60	70	80	90	100	110	120
Xm+1.0	0	1	1	0	0	1	1	0
Xm+1.1	0	0	1	1	1	1	0	0
Xm+1.2	0	0	0	0	1	1	1	1
Xm+1.3	0	0	0	0	0	0	0	0
Xm+1.4	0	1	0	1	0	1	0	1
Xm+1.5	0	0	0	0	0	0	0	0

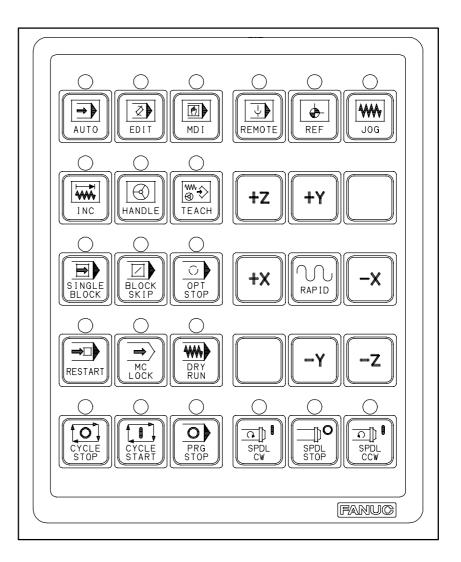
NOTE

- 1 Xm+0.5 and Xm+1.4 are parity bits.
- 2 If parity bits are used, the output timing of override signals may differ from that of the parity bits.

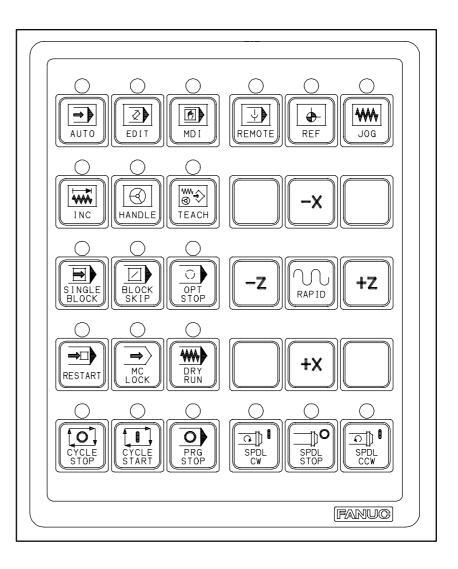

9.5.6 I/O Address Allocation

The I/O address maps for the main panel are as follows.

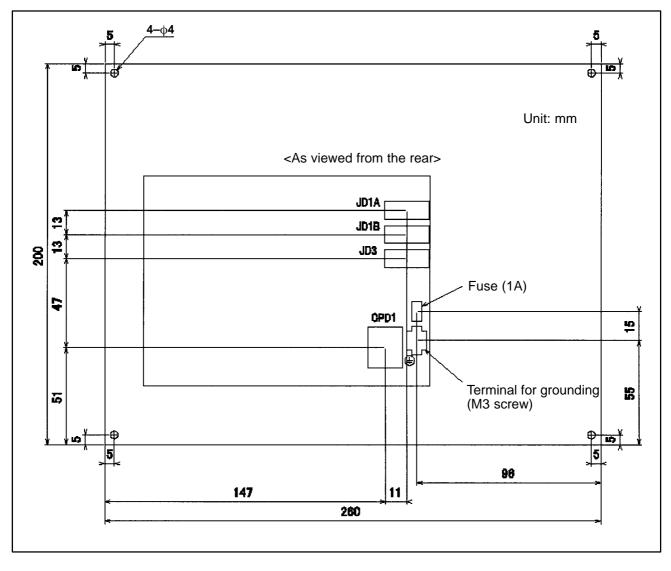
Map of	the DI space	Ma	ap for the DO space
Xm+0	General-purpose DI	Yn+0	
Xm+1	(Rotary switch)	Yn+1	Operator's panel
Xm+2	Decement	Yn+2	Keyboard
Xm+3	Reserved	Yn+3	(LED)
Xm+4		Yn+4	
Xm+5	Operator's panel	Yn+5	
Xm+6	Keyboard	Yn+6	Reserved
Xm+7	(Key switch)	Yn+7	
Xm+8			
Xm+9			
Xm+10	Reserved		
Xm+11			
Xm+12 (1st MPG)			
Xm+13 (2nd MPG)	MPG		
Xm+14 (3rd MPG)			
Xm+15	Reserved		


9.5.7 **External Dimensions**

9.5.7.1 Outline drawing and panel–cut drawing of the small machine operator's panel



9.5.7.2 Layout of the key sheet


(1) M series

(2) T series

9.5.8 Connector Layout of the Small Machine Operator's Panel

9.5.9 Specifications

9.5.9.1 Environmental requirement

Temperature Around a unit	At operation0°C to 55°CStoring or transporting-20°C to 60°C				
Temperature variance	Max. 1.1°C/min				
Humidity	Normally75% or less (Relative humidity)Short time (Within one month)95% or less (Relative humidity)				
Vibration	Operating 0.5G or less				
Atmosphere	Normal FA atmosphere (Consult us when using the system under environments with higher degree of dust, coolant, or organic solution.)				

9.5.9.2 Order specification

Name	Specification	Remarks
Small machine operator's panel	A02B-0299-C150#M	M series
Small machine operator's panel	A02B-0299-C150#T	T series
Transparent keysheet	A02B-0299-K210	Three transparent keysheets
Fuse(Spare part)	A02B-0815-K001	1A

9.5.9.3 Operator's panel specification

Item	Specification	Remarks
Keyswitches of Machine operator's panel	30 keys	Matrix DI
LED	Green	Supplied with 21 key switches
Override rotary switch	2	Gray code output (with a parity bit)
Emergency stop switch	1	Number of Contact : 4 (Contact a \times 2, Contact b \times 2) M3.5 Screw
MPG interface	Max. 3 units	
Interface to CNC	FANUC I/O Link connection	

9.5.9.4 Power supply specification

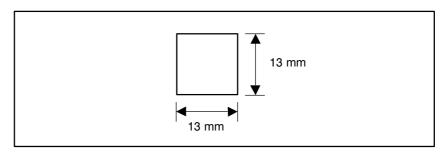
Item	Capacity	Remarks
24 VDC \pm 10% (from Power connector CPD1, including momentary values) Momentary values and ripples are also included in \pm 10%.	0.4A	Including all DI consumption

9.5.10 Key Symbol Indication on Machine Operator's

Panel

9.5.10.1 Meaning of key symbols

Symbol indication	English	Meaning of key
	AUTO	AUTO mode selection signal; Sets automatic operation mode.
$\overline{2}$	EDIT	EDIT mode selection signal; Sets program edit operation mode.
M	MDI	MDI mode selection; Sets MDI mode.
¥)	REMOTE	DNC operation mode; Sets DNC operation mode.
• -	REF	Reference position return mode selection; Sets reference position return mode.
	JOG	JOG feed mode selection; Sets jog feed mode.
	INC	Step feed mode selection; Sets step feed mode.
	HANDLE	Manual handle feed mode selection; Sets manual handle feed mode.
₩ ₩	TEACH	Teach–in jog (reach–in handle) mode selec- tion signal;Sets teach–in jog (teach–in han- dle) mode.
	SINGLE BLOCK	Single block signal; Executes program one by one. This key is used to check a program.


Symbol indication	English	Meaning of key
	BLOCK SKIP	Block skip: Pressing this button during auto- matic operation causes the block under execu- tion to stop, skipping to the end of block (;).
0	PRG STOP	Program stop (output only); Turns on the LED on the button when automatic operation is stopped by M00 specified in the program.
\bigcirc	OPT STOP	Optional stop; Stops automatic operation af- ter execution of the block of a program where M01 is specified in the program.
	RESTART	Program restart; A program may be restart at a block by specifying the sequence number of the block, after automatic operation is stopped because of a broken tool or for holidays.
	DRY RUN	Dry run; Sets the axis feedrate to the jog fed- erate instead of a programmed feedrate when automatic operation is performed by setting this button to on. This function is used to check only the movement of the tool when no workpiece is mounted.
	MC LOCK	Machine lock; Updates only position display on the screen without making any axis move- ment, when automatic operation is performed by setting this button to on. This function is used to check a program.
	CYCLE START	Cycle start; Start automatic operation.
	CYCLE STOP	Cycle stop; Stops automatic operation.
+Y ·	–X –Y –Z	Manual feed axis selection; Performs jog feed (or step feed) in the direction in which this button is set to ON in jog feed (or step feed) mode.
M	RAPID	Traverse; Performs jog feed at rapid traverse rate when this button is set to on.
	SPDL CW	Positive spindle rotation direction; Rotates the spindle motor in the positive direction.
	SPDL CCW	Negative spindle rotation direction; Rotates the spindle motor in the negative direction.
	SPDL STOP	Spindle stop; Stops the spindle motor rota- tion.

9.5.10.2 Customization of the key sheet

If a customer wishes to partially modify the standard key sheet, he or she can customize the key sheet.

- The machine tool builder prints out the desired key indication on a sticker prepared by the machine tool builder.
- Apply the sticker on the standard key sheet.
- Remove the screws from the front side, remove the escutcheon, apply a transparent key sheet on the standard key sheet, taking care not to get dust or air caught between them. Finally, put back the escutcheon.
- The transparent key sheet is an option.
 Specification: A02B–0299–K210 (set of three transparent key sheets)

Size of the sticker

NOTE

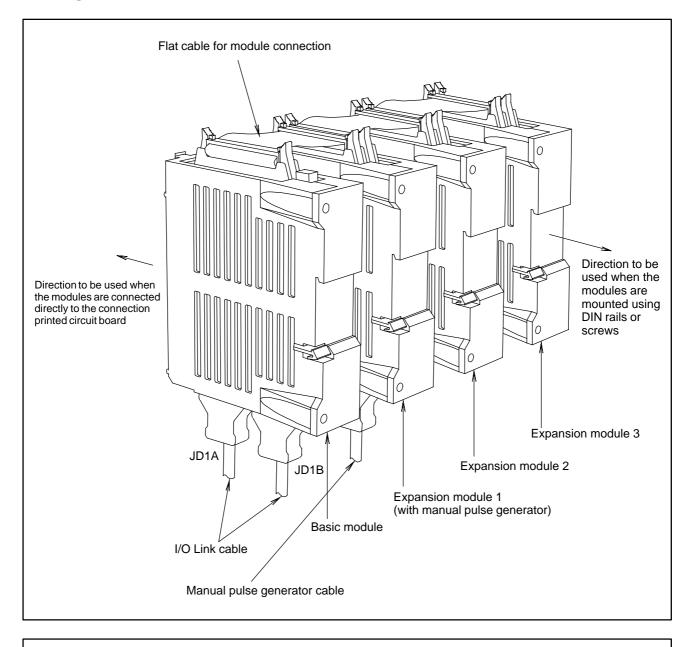
If a small machine operator's panel customized in this way is to be maintained (replaced), the application of the sticker must be performed by the customer. The customer must prepare a sticker. Once peeled off, the transparent sheet cannot be reused. Another transparent sheet must be used.

9.5.11 Others

The keyboard of this operator's panel is in a matrix configuration. If three or more keys are pressed on the DI matrix, DIs not entered will be entered because of the circulation of the current. It is possible to take action against this malfunction using a Ladder program. See Subsection 9.4.9.

9.5.12 Maintenance Parts

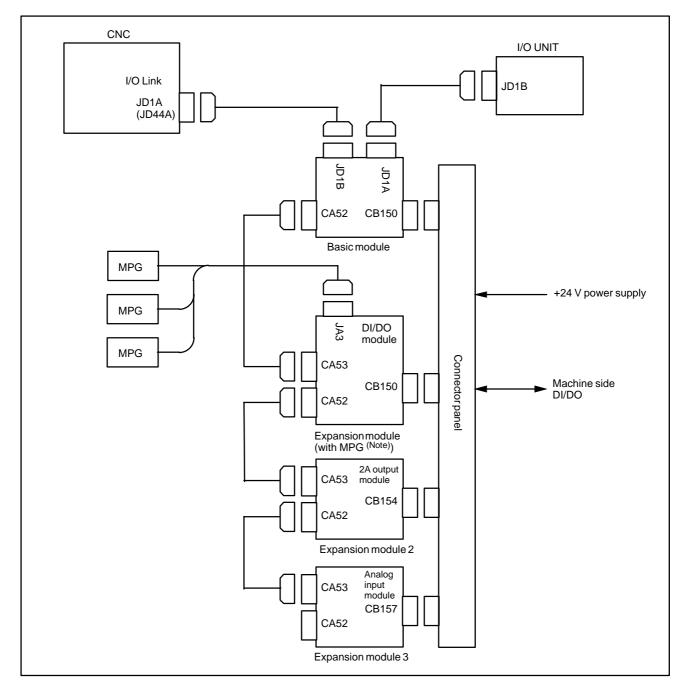
Consumables


Name	Ordering specification	Remarks
Fuse (Operator's panel I/O printed circuit board)	A60L-0001-0290#LM10	Rated: 1A

Items to be repaired

Name	Ordering specification	Remarks
Operator's panel I/O printed circuit board	A20B-2002-0470	
Keyboard printed circuit board	A20B-2003-0660	
Small machine operator's panel	A20B-0299-C150#M	M series
Small machine operator's panel	A20B-0299-C150#T	T series

9.6 CONNECTION OF CONNECTOR PANEL I/O MODULE


9.6.1 Configuration

NOTE

For direction connection to the connection printed circuit board, expansion modules are installed to the right of the basic module on the installation plane. For installation using DIN rails or screws, expansion modules are installed to the left of the basic module on the installation plane.

9.6.2 Connection Diagram

NOTE

- 1 Ensure that the expansion module with the MPG interface is located nearest to the basic module, as shown in the figure. The MPG can be connected to the connector panel I/O module only when the *i* series CNC is used.
- 2 The connection diagram above shows an example of using a DI/DO module, 2A output module, and analog input module as expansion modules. These expansion modules can be used in any combination.

9.6.3 Module Specifications

Types of modules

Name	Drawing No.	Specifications	Reference item
I/O module for connection (basic module)	A03B-0818-C001	DI/DO : 24/16	
I/O module for connection (expansion module A)	A03B-0818-C002	DI/DO : 24/16 With MPG interface	
I/O module for connection (expansion module B)	A03B-0818-C003	DI/DO : 24/16 Without MPG interface	
I/O module for connection (expansion module C)	A03B-0818-C004	DO : 16 2A output module	
I/O module for connection (expansion module D)	A03B-0818-C005	Analog input module	
Fuse (accessory)	A03B-0815-K002	1A (For basic module)	
Inter-module flat cable	A03B-0815-K100	20 mm long Suitable for a module interval of 32 mm	

Module specifications (common items)

ltem	Specifications	Remarks
Interface with CNC	FANUC I/O Link connection	Expandable up to 16 units or 1024/1024 points as CNC slaves
Interface between basic module and expansion modules	Bus connection using a flat cable	Up to three expansion modules connectable per basic module

For the specifications (such as signal input requirements) specific to each module, see the relevant pages of each item.

Installation conditions

Ambient temperature for the unit	Operation: 0°C to 55°C Storage and transportation: -20°C to 60°C
Temperature change	1.1°C/minute maximum
Humidity	Normal condition:75% (relative humidity)Short term (within one month):95% (relative humidity)
Vibration	Operation: 0.5 G or less
Atmosphere	Normal machining factory environment (For use in an environment with relatively high levels of dust, coolant, organic solutions, and so forth, additional measures are required.)
Other conditions	 Use each I/O module in a completely sealed cabinet. For ventilation within each I/O module, each module must be installed in the orientation shown below. Moreover, for ventilation and wiring, allow a clearance of 100 mm or more above and below each module. Never place a device that generates a large amount of heat below an I/O module. While referring to Section 9.6.17, ensure that the vent hole of the basic module is not obstructed by the flat cable.
	Upper side
	Basic module Expansion Expansion Expansion Expansion Expansion
	I/O Link connection Lower side

Power supply rating

Module	Power supply voltage	Power supply rating	Remarks
Basic module	24 VDC \pm 10% is fed through the I/O connector (CB150) of	0.2A+7.3mA×DI	Number of DI points with DI=ON
Expansion modules A and B	the basic module; ± 10% includes momentary variations	0.1A+7.3mA×DI	Number of DI points with DI=ON
Expansion module C (2A module)	and ripples.	0.1A	
Expansion module D (analog input module)		0.1A	

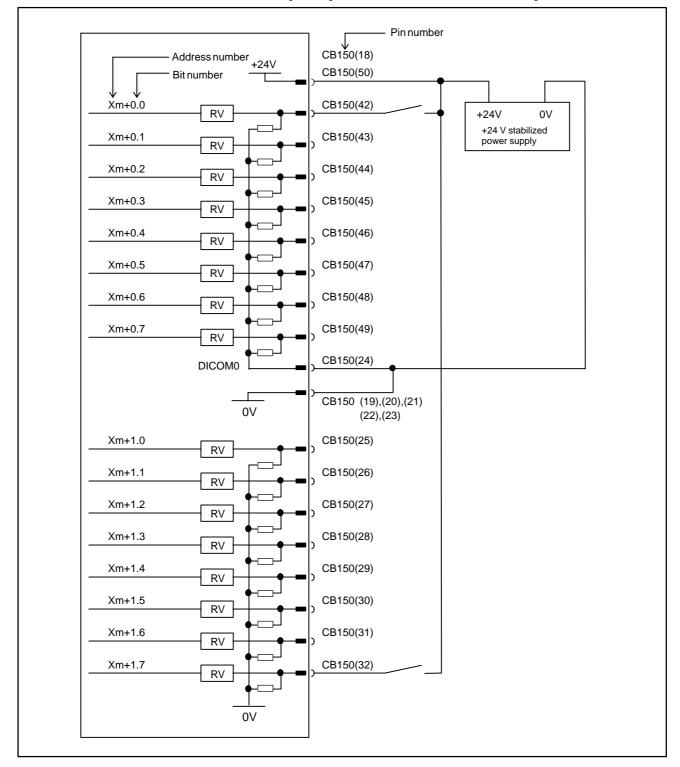
As a guideline for the heat dissipation, assume [power supply capacity \times 24 (W)].

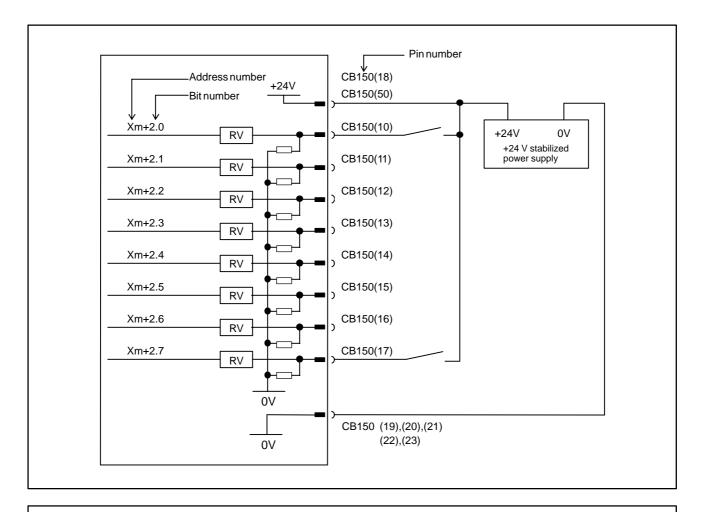
9.6.4 DI/DO Connector Pin Assignment

This section describes the DI/DO connector pin allocation of the basic module and expansion modules A and B.

33	DOCOM			01	DOCOM	50 male pins with fittings
34	Yn+0.0	19	0)/	02	Yn+1.0	fixing the connector cove
35	Yn+0.1		-	03	Yn+1.1	
36	Yn+0.2	20	0V	04	Yn+1.2	
37	Yn+0.3	21	0V	05	Yn+1.3	
38	Yn+0.4	22	0V	06	Yn+1.4	
39	Yn+0.5	23		07	Yn+1.5	
40	Yn+0.6	24		08	Yn+1.6	
41	Yn+0.7	25	Xm+1.0	09	Yn+1.7	
42	Xm+0.0	26		10	Xm+2.0	
43	Xm+0.1	27	Xm+1.2	11	Xm+2.1	
44	Xm+0.2	28		12	Xm+2.2	
45	Xm+0.3	29		13	Xm+2.3	
46	Xm+0.4	30		14	Xm+2.4	
47	Xm+0.5	31	Xm+1.6	15	Xm+2.5	
48	Xm+0.6	32	Xm+1.7	16	Xm+2.6	
49	Xm+0.7			17	Xm+2.7	
50	+24V			18	+24V	

NOTE


- 1 The DI and DO addresses for the basic and expansion modules run contiguously. These basic and expansion module DI and DO addresses are allocated to the I/O Link as a group. For example, when the DI and DO top addresses are X0004 and Y0000 (m = 4 and n = 0), respectively, then the addresses are allocated as shown in the following table.
- 2 Pins 18 and 50 (+24V) of connector CB150 are used to apply 24 V externally to a module. Be sure to connect these pins because the +24 V applied to the module is used internally.


	DI	DO
Basic module	X4–X6	Y0–Y1
Expansion module 1	X7–X9	Y2-Y3
Expansion module 2	X10–X12	Y4_Y5
Expansion module 3	X13–X15	Y6–Y7

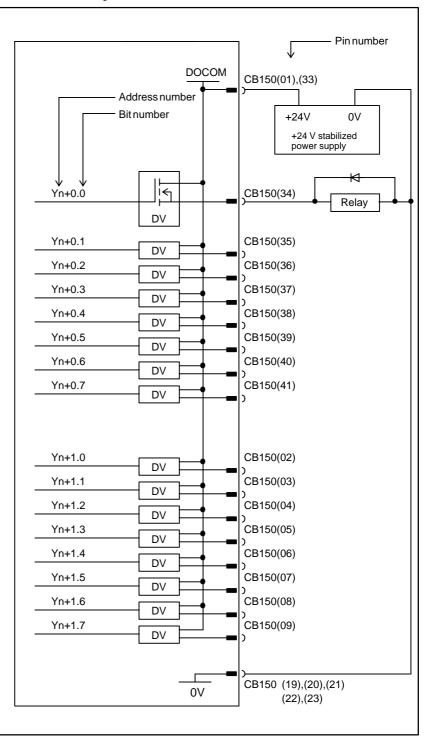
9.6.5 DI (Input Signal) Connection

This section describes the DI (input signal) connections of the basic module and expansion modules A and B.

A maximum of 96 points are provided
 (24 points per module; 1 basic module + 3 expansion modules).

NOTE

Xm+0.0 through Xm+0.7 are DI pins for which a common voltage can be selected. That is, by connecting the DICOM0 CB150(24) pin to the +24 V power supply, a DI signal can be input with its logical state reversed. If, however, a cable is connected to ground, it has the same effect as inputting an ON state DI signal. To prevent such accidents, the connection of the DICOM0 CB150(24) pin to the 0 V power supply is recommended whereever possible.


For safety reasons, the emergency stop signal needs to be allocated to an appropriate bit of the addresses for which the common voltage is fixed, ranging from Xm+1.0 to Xm+1.7 or from Xm+2.0 to Xm+2.7. See 9.6.19 for information about how to allocate the emergency stop signal.

For unused DI pins allocated to the addresses for which the common voltage is fixed (from Xm+1.0 to Xm+1.7 and from Xm+2.0 to Xm+2.7), the logic is fixed to "0". For unused pins allocated to Xm+0.0 to Xm+0.7 for which the common voltage can be selected, the logic is fixed to "0" when the DICOM0 CB150(24) pin is connected to the 0 V power supply. When the DICOM0 CB150(24) pin is connected to the +24 V power supply, the logic is fixed to "1". The logic of the unused pins allocated to Xm+0.0 to Xm+0.0 to Xm+0.7 is variable when the contact of the DICOM0 CB150(24) pin is open.

9.6.6 DO (Output Signal) Connection

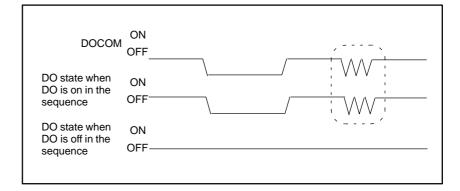
This section describes the DO (output signal) connections of the basic module and expansion modules A and B.

• A maximum of 64 points are provided (16 points per module; 1 basic module + 3 expansion modules).

9.6.7 DI/DO Signal Specifications

This section describes the specifications of the DI/DO signals used with the basic module and expansion modules A and B.

DI (input signal specifications)

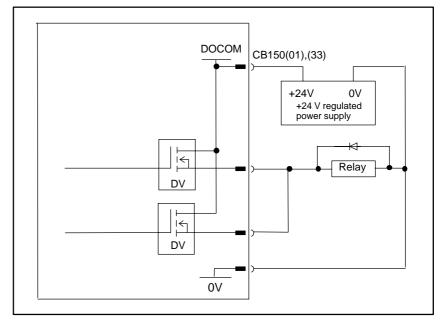

Number of points	24 points (per module)
Contact rating	30 VDC, 16 mA or more
Leakage current between contacts when opened	1 mA or less (26.4 V)
Voltage decrease between contacts when closed	2 V or less (including a cable voltage decrease)
Delay time	The receiver delay time is 2 ms (maximum). In addition, [I/O Link transfer time between CNC and I/O module (2 ms maximum)] + [Iadder scan period (depending on CNC)] must be considered.

DO (output signal specifications)

Number of points	16 points (per module)
Maximum load current when ON	200 mA or less including momentary variations
Saturation voltage when ON	1 V (maximum) when the load current is 200 mA
Withstand voltage	24 V +20% or less including momentary variations
Leakage current when OFF	20 μA or less
Delay time	The driver delay time is 50 μ s (maximum). In addition, [I/O Link transfer time between CNC and I/O module (2 ms maximum)] + [ladder scan period (depending on CNC)] needs to be considered.

ON/OFF of the power supply (DO common) for DO signals (output signals)

By turning off (opening) the power supply pin (DOCOM) for the DO signals (output signals), all the DO signals of each module can be turned off at the same time. At this time, the DO state is as shown below.



NOTE

When DO is on in the sequence, the ON/OFF state of DOCOM is directly reflected in the DO state as indicated above by the dashed box. The +24 V signal to be supplied to the I/O module must not be turned off during operation. Otherwise, a CNC communication alarm is issued. Ensure that +24 V is supplied either when or before the power to the CNC is turned on, and that +24 V is removed either when or after the power to the CNC is turned off.

Parallel DO (output signal) connection

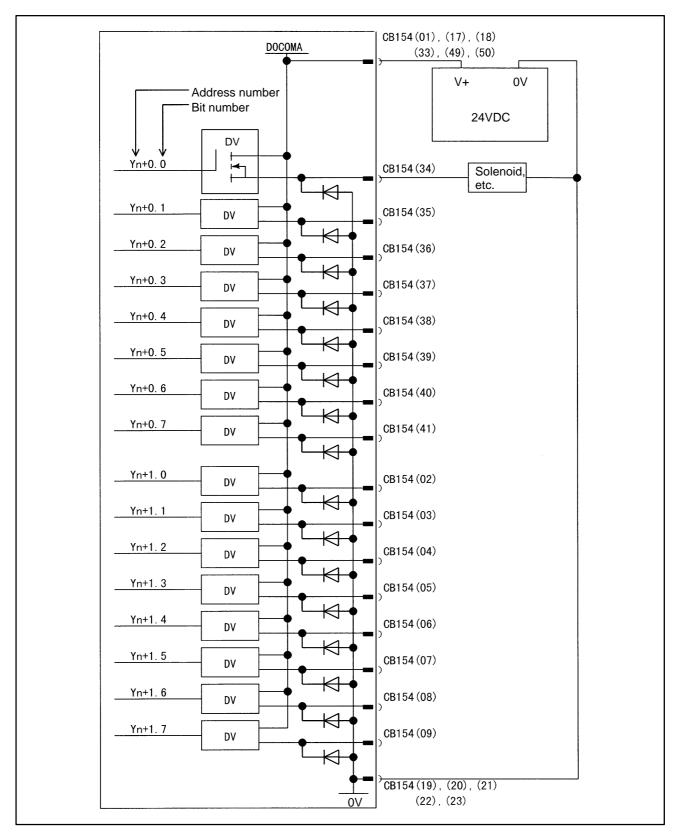
A DO load current of twice the level can be obtained by connecting DO points in parallel and exercising ON/OFF control at the same time in the sequence. Namely, the maximum load current per DO point is 200 mA. By connecting two DO points in parallel and turning on the two DO points at the same time, 400 mA can be obtained. In this case, however, the leakage current is doubled up to $40 \,\mu\text{A}$ when the DO points are turned off.

9.6.8 2A Output Connector Pin Allocation

This section describes the 2A output connector pin allocation of expansion module C.

33	DOCOMA			01	DOCOMA
34	Yn+0.0	40		02	Yn+1.0
35	Yn+0.1	19	GNDA	03	Yn+1.1
36	Yn+0.2	20	GNDA	04	Yn+1.2
37	Yn+0.3	21	GNDA	05	Yn+1.3
38	Yn+0.4	22	GNDA	06	Yn+1.4
39	Yn+0.5	23	GNDA	07	Yn+1.5
40	Yn+0.6	24		08	Yn+1.6
41	Yn+0.7	25		09	Yn+1.7
42		26		10	
43		27		11	
44		28		12	
45		29		13	
46		30		14	
47		31		15	
48		32		16	
49	DOCOMA			17	DOCOMA
50	DOCOMA			18	DOCOMA

50 pins, male, with a metal fitting for securing the connector cover


NOTE

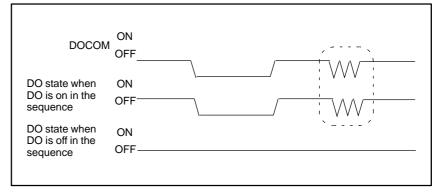
- 1 The DI/DO addresses of an expansion module and the DI/DO addresses of the basic module are contiguous. Addresses allocated to I/O Link are handled as a group covering the basic and expansion modules. That is, when the first addresses allocated are X0004 and Y0000 (m = 4, n = 0), the DI/DO addresses are as listed below.
- 2 When the 2A output module is used, the DI addresses of the module cannot be used. (When the 2A output module is used as expansion module 3, X13 through X15 cannot be used.)

	DI	DO
Basic module	X4 to X6	Y0 to Y1
Expansion module 1	X7 to X9	Y2 to Y3
Expansion module 2	X10 to X12	Y4 to Y5
Expansion module 3	X13 to X15	Y6 to Y7

9.6.9 2A DO (Output Signal) Connection

This section describes the 2A output connector connections of expansion module C.

9.6.10 2A Output DO Signal Specifications


This section describes the specifications of the 2A output DO signals used with expansion module C.

DO (output signal specifications)

Number of points	32 points (per module)
Maximum load current when ON	2 A or less per point. 12 A maximum for the entire module (DO: 16 points) (including momentary variations).
Withstand voltage	24 V +20% or less (including momentary variations)
Leakage current when OFF	100 μA or less
Delay time	[I/O Link transfer time (2 ms maximum)] + [ladder scan period (depending on CNC)] must be considered.

ON/OFF of the power supply (DO common) for DO signals (output signals)

By turning off (opening) the power supply pin (DOCOM) for the DO signals (output signals), all the DO signals of each module can be turned off at one time. At this time, the DO state is as shown below.

NOTE

When DO is on in the sequence, the ON/OFF state of DOCOM is directly reflected in the DO state as indicated above by the dashed box. The +24 V signal to be supplied to the I/O module must not be turned off during operation. Otherwise, a CNC communication alarm is issued. Ensure that +24 V is supplied either when or before the power to the CNC is turned on, and that +24 V is removed either when or after the power to the CNC is turned off.

Parallel DO (output signal) connection

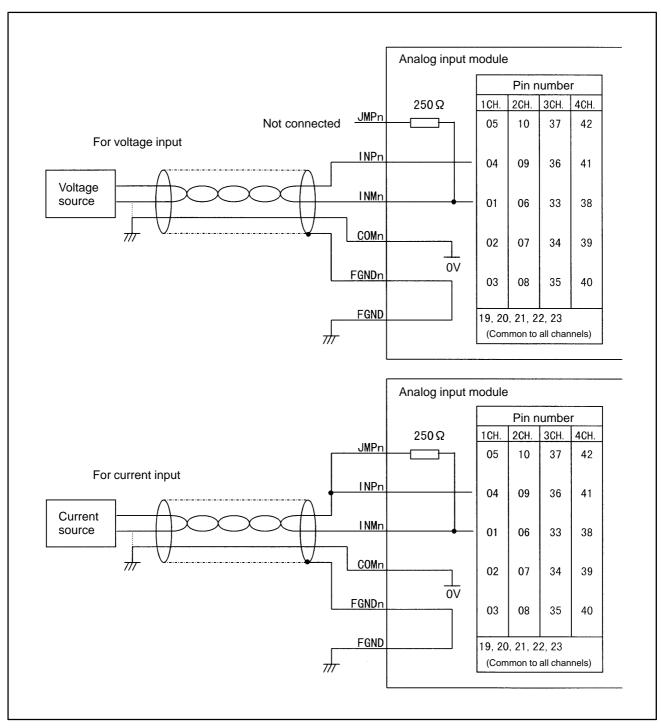
The 2A output module does not allow parallel DO connections including parallel connections with the DO signals of other modules.

— 191 —

9.6.11 Analog Input Connector Pin Allocation

This section describes the analog input connector pin allocation of expansion module D.

33	INM3			01	INM1	50 pins, male,
34	COM3		FOND	02	COM1	with a metal fitting for sec
35	FGND3	19	FGND	03	FDND1	the connector cover
36	INP3	20	FGND	04	INP1	
37	JMP3	21	FGND	05	JMP1	
38	INM4	22	FGND	06	INM2	
39	COM4	23	FGND	07	COM2	
40	FGND4	24		08	FGND2	
41	INP4	25		09	INP2	
42	JMP4	26		10	JMP2	
43		27		11		
44		28		12		
45		29		13		
46		30		14		
47		31		15		
48		32		16		
49]		17		
50		1		18		


NOTE

- 1 The DI/DO addresses of an expansion module and the DI/DO addresses of the basic module are contiguous. Addresses allocated to I/O Link are handled as a group covering the basic and expansion modules. That is, when the first addresses allocated are X0004 and Y0000 (m = 4, n = 0), the DI/DO addresses are as listed below.
- 2 With the analog input module, the DO space is also used as an input channel selection area.

	DI	DO		
Basic module	X4 to X6	Y0 to Y1		
Expansion module 1	X7 to X9	Y2 to Y3		
Expansion module 2	X10 to X12	Y4 to Y5		
Expansion module 3	X13 to X15	Y6 to Y7		

9.6.12 Analog Input Signal Connections

This section provides a diagram of the analog input connector connections of expansion module D.

NOTE

- 1 In the diagram above, n represents each channel (n = 1, 2, 3, 4).
- 2 Current input or voltage input can be selected on a channel–by–channel basis. For current input, connect JMPn to INPn.
- 3 For the connection, use a shielded twisted pair.
- 4 In the diagram above, the shield of each channel is connected to FGNDn, and FGND is used for shield processing of all channels. However, the shield of a channel may be directly connected to frame ground with a cable clamp, instead of using FGNDn.
- 5 If the voltage (current) source has a GND pin, as shown in the figure above, connect COMn to this pin. Otherwise, connect INMn and COMn together in the analog input module.

9.6.13 Analog Input Signal Specifications

This section describes the specifications of the analog input signals used with expansion module D.

ltem	Specific	cations	Remarks
Number of input channels (Note)	Four channels		
Analog input	DC –10 to +10 (Input resistand DC –20 to +20 (Input resistand	æ: 4.7 MΩ) mA	Voltage input or current input can be selected on channel-by-channel basis.
Digital output (Note)	12 bits (binary)		Represented as two's complement
Input/output correspondence	Analoginput	Digital output	
correspondence	+10V	+2000	
	+5V or +20mA	+1000	
	0V or 0mA	0	
	-5V or -20mA	-1000	
	-10V	-2000	
Resolution	5 mV or 20 μA		
Overall precision	Voltage input: Current input:		With respect to full scale
Maximum input voltage/current	\pm 15V/ \pm 30mA		
Minimum conversion time (Note)	Ladder scan p connected	eriod of CNC	
Number of occupied input/output points (Note)	DI = 3 bytes, D	00 = 2 bytes	

NOTE

This analog input module has four input channels. The digital output section consists of a group of 12 bits within the three–byte occupied input points. This means that the channel to be used can be dynamically selected by the ladder. The channel switching DO point for channel selection is included in the two–byte occupied output points.

9.6.14 Analog Input Specifications

(Digital output)

This digital input module has four input channels. The digital output section consists of a group of 12 bits within the three–byte occupied input points. The output format is indicated below.

Address in the module	7	6	5	4	3	2	1	0	
Xm (even-numbered address)	D07	D06	D05	D04	D03	D02	D01	D00	
Xm+1 (odd-numbered address)	0	0	CHB	CHA	D11	D10	D09	D08	

D00 to D11 represent 12–bit digital output data. D00 and D11 correspond to weightings of 2^0 and 2^{11} , respectively.

D11 is a sign bit expressed as a two's complement. CHA and CHB represent analog input channels.

This means that when the two bytes above are read with a PMC program, the A–D converted data of the CHA and CHB input channels can be read from D11 to D00. For CHA and CHB, see the description of channel selection, below.

Section 6.3 provides notes on reading data with a PMC program.

(Channel selection)

With this analog input module, which of the four channels is to be output to the digital output section must be determined with a PMC program. The DO points used for this selection are CHA and CHB (two-byte occupied output points). These are mapped as indicated below.

Address in the module	7	6	5	4	3	2	1	0
Yn	X	Х	Х	Х	Х	Х	Х	Х
Yn+1	Х	Х	Х	Х	Х	Х	СНВ	CHA

By writing the values indicated below to CHA and CHB, the corresponding channel is selected, and the A–D converted data of the channel and the data of the selected channel can be read as DI data. The character X indicated above represents an unused bit, so that either 1 or 0 may be written in place of X.

СНВ	СНА	Channel selected
0	0	Channel 1
0	1	Channel 2
1	0	Channel 3
1	1	Channel 4

(Address)

The start address of X (DI) of the basic modules including the analog input module must always be allocated at an even–numbered address. With this allocation, the digital output addresses of the analog input module are as described below, depending on where the analog input module is allocated

• When the analog input module is allocated in the space for expansion module 1 (m represents the allocation start address.)

Address in the module	7	6	5	4	3	2	1	0
Xm+3 (odd-numbered address)	Undefined							
Xm+4 (even-numbered address)	D07	D06	D05	D04	D03	D02	D01	D00
Xm+5(odd-numberedaddress)	0	0	СНВ	CHA	D11	D10	D09	D08

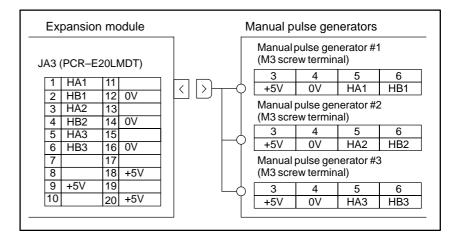
• When the analog input module is allocated in the space for expansion module 2 (m represents the allocation start address.)

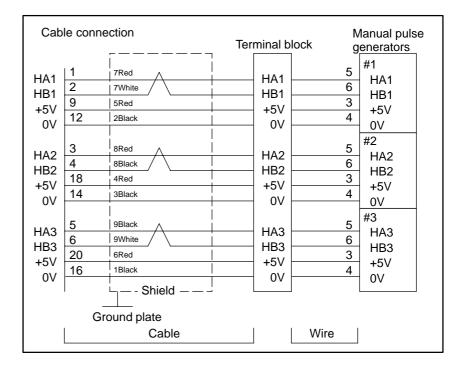
Address in the module Xm+6 (even-numbered address) Xm+7 (odd-numbered address) Xm+8 (even-numbered address)

odule	7	6	5	4	3	2	1	0	
dress)	D07	D06	D05	D04	D03	D02	D01	D00	
dress)	0	0	СНВ	CHA	D11	D10	D09	D08	
dress)	Undefined								

• When the analog input module is allocated in the space for expansion module 3 (m represents the allocation start address.)

Address in the module Xm+9 (odd-numbered address) Xm+10 (even-numbered address) Xm+11 (odd-numbered address)


lule	7	6	5	4	3	2	1	0	
ess)	Undefined								
ess)	D07	D06	D05	D04	D03	D02	D01	D00	
ess)	0	0	СНВ	CHA	D11	D10	D09	D08	


NOTE

When two-byte digital output addresses are to be referenced with a PMC program, a read must always be performed word-by-word (16 bits).

9.6.15 Manual Pulse Generator Connection

An example in which three manual pulse generators are connected to expansion module A is shown below. The manual pulse generator can be connected only for the i series CNC.

Recommended wire material:

A66L-0001-0286 (#20 AWG × 6 + #24 AWG × 3 pairs) Recommended connector: A02B-0120-K303 (including the following connector and case) (Connector: FI40-2015S (Hirose Electric Co., Ltd.)) (Case: FI40-20-CV5 (Hirose Electric Co., Ltd.)) Recommended cables: A02B-0120-K841 (7 m) (for connecting three manual pulse generators) A02B-0120-K848 (7 m) (for connecting two manual pulse generators) A02B-0120-K847 (7 m) (for connecting one manual pulse generator) (These cables do not include the wire shown in the above figure.)

NOTE

The number of connectable manual pulse generators depends on the type and option configuration.

9.6.16 Cable Length for Manual Pulse Generator Like a pulse coder, the manual pulse generator operates on 5 VDC. The supply voltage drop due to the cable resistance must be held below 0.2 V (when those of the 0–volt and 5–volt wires are combined), as expressed in the following expression:

$$0.2 \ge \frac{0.1 \times \mathbf{R} \times 2\mathbf{L}}{\mathbf{m}}$$

Where

0.1 = manual pulse generator supply current (0.1 A)

R = resistance per unit cable length (Ω/m)

m = number of 0-volt and 5-volt wires

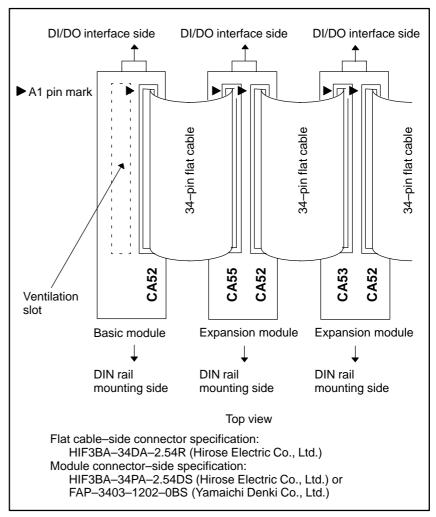
L = cable length (m).

Therefore, the cable length can be determined using the following expression.

$$L \leq \frac{m}{R}$$

In the case of the A66L–0001–0286 cable, for example, when three pairs of signal wires and six power supply wires (20/0.18, 0.0394 Ω/m) are used (three power supply wires connected to 5 V and the other three to 0 V), the cable length is:

$$L \le \frac{3}{0.0394} = 76.75[m]$$

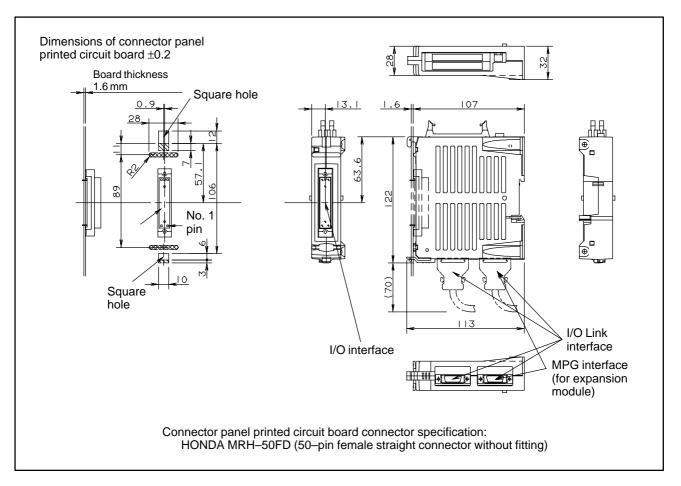

However, the maximum pulse transmission distance for the manual pulse generator is 50 m. Taking this into consideration, the cable length may be extended to:

38.37 m (when two generators are used), or

25.58 m (when three generators are used).

9.6.17 Connection of Basic and Expansion Modules

Modules can be connected in the same way, regardless of whether you are connecting the basic module to an expansion module or connecting two expansion modules. Connect the modules by using 34–pin flat cable connectors as shown in the figure below. Ensure that all 34 pins at one end of the cable are connected to the corresponding pins at the other end; e.g., connect the A1 pin to the pin having the same designation (A1) at the other end.

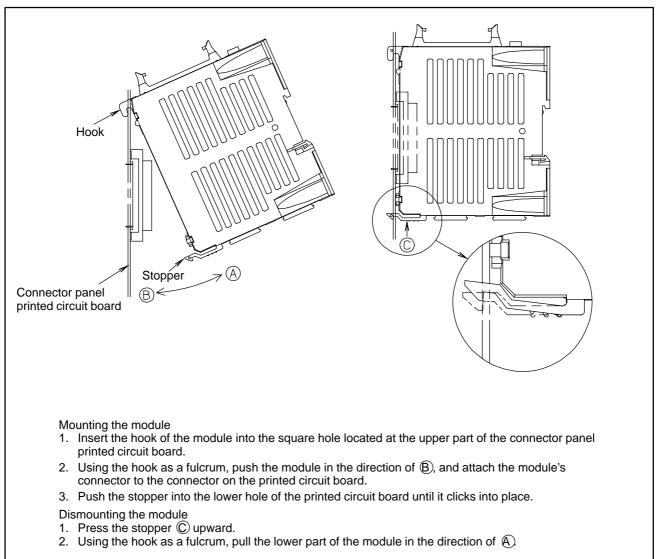

NOTE

Modules need to be spaced at least 32 mm apart, in which case a flat cable of about 20 mm in length is required. To install modules further away from each other, the cable length will be 20 mm plus the extra distance. Note that the maximum length of a flat cable is 300 mm. To ensure adequate ventilation, install the modules in such a way that the flat cables lie on top of them. The basic module has a vent at the top (as indicated by the dotted lines in the above figure). When connecting modules, install expansion modules so that the flat cables do not cover the vent, as shown in the above figure.

Therefore, for direct connection to the connection printed circuit board, expansion modules are installed to the right of the basic module on the installation plane. For installation using DIN rails or screws, expansion modules are installed to the left of the basic module on the installation plane.

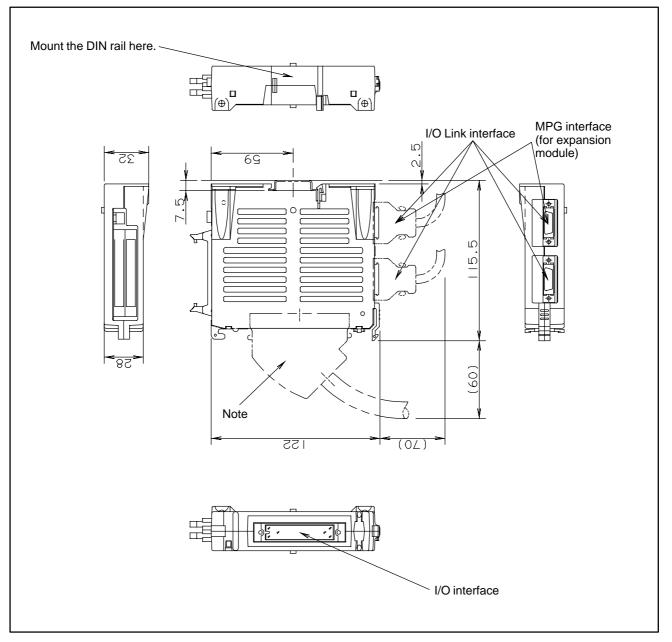
9.6.18 Module Installation

When connecting a connector panel printed circuit board directly (external module view and mounting diagram)

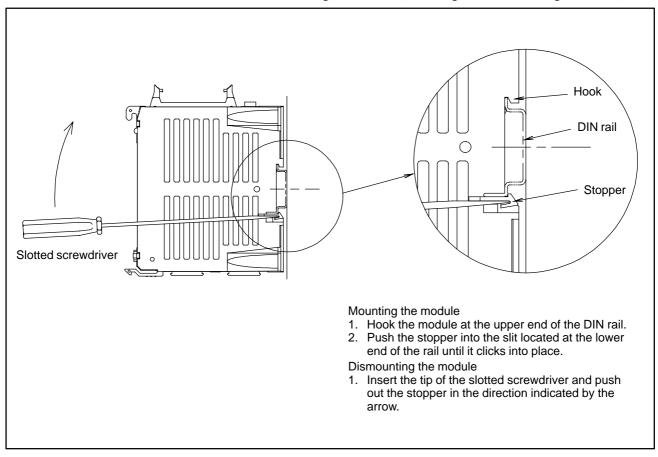


NOTE

- 1 A connector with a fitting (HONDA MRH–50RMA) is used for the module–side I/O interface. Always use a connector having no fitting for the connector panel printed circuit board.
- 2 Area where pattern printing is prohibited


- : Prohibited area on soldered side
- : Prohibited area on component side

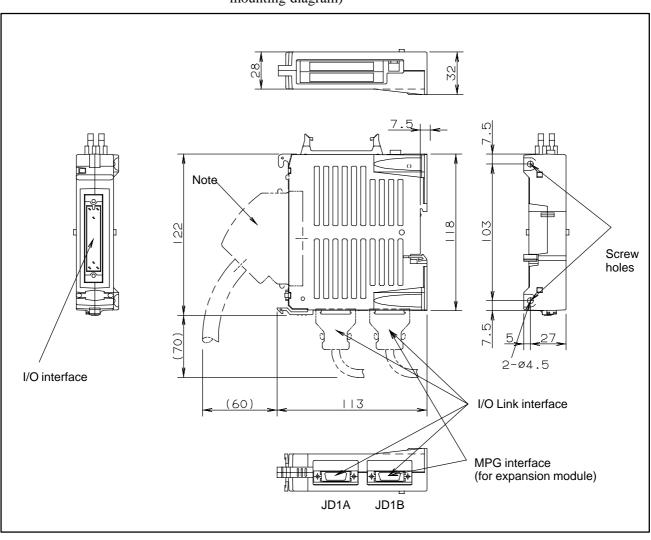
When connecting a connector panel printed circuit board directly (mounting and dismounting a module)


NOTE

When mounting and dismounting a module, hold the module by its top and bottom surfaces. Avoid applying force to the sides where there are slits.

When mounting a DIN rail (external module view and mounting diagram)

NOTE Recommended connector: A02B–0098–K891 (including the following connector and case) (Connector: HONDA MR–50FH solder type) (Case: HONDA MR–50NSB angled type) Recommended wire material: A66L–0001–0042 (7/0.18, 50 pins)



When mounting a DIN rail (mounting and dismounting a module)

NOTE

When dismounting the module, take care not to damage the stopper by applying excessive force with the screwdriver.

When mounting and dismounting a module, hold the module by its top and bottom surfaces. Avoid applying force to the sides where there are slits.

When mounting a module using screws (external module view and mounting diagram)

NOTE

Recommended connector:	A02B–0098–K891 (including the following connector and case)
	(Connector: HONDA MR–50FH solder type)
	(Case: HONDA MR–50NSB angled type)
Recommended wire material	l: A66L–0001–0042 (7/0.18, 50 pins)

9.6.19 Other Notes

DO signal reaction to a system alarm

If a system alarm occurs in a CNC using the connector panel I/O module, or if I/O Link communication between the CNC and connector panel I/O module fails, all the DO signals of the I/O module are turned off. Therefore, due care must be taken when setting up the machine sequence. Also, the same phenomenon occurs if the power to the CNC or the I/O module is turned off.

Address allocation

For the connector panel I/O module, I/O addresses are mapped as follows.

DI space r	nap	DO	space map
Xm		Yn	Basic
Xm+1	Basic	Yn+1	module
Xm+2	module	Yn+2	Expansion
Xm+3	E	Yn+3	module 1
Xm+4	Expansion module 1	Yn+4	Expansion
Xm+5		Yn+5	module 2
Xm+6	F	Yn+6	Expansion
Xm+7	Expansion module 2	Yn+7	module 3
Xm+8			
Xm+9	Evenencien		
Xm+10	Expansion module 3		
Xm+11	module 5		
Xm+12 (for 1st MPG)	_ ·		
Xm+13 (for 2nd MPG)	Expansion module 1		
Xm+14 (for 3rd MPG)			
Xm+15 (DO alarm detection)	Basic module		

The basic connector panel I/O module is allocated a group of DI addresses (16 bytes) and a group of DO addresses (8 bytes). Up to three hardware expansion modules can be added or removed as required. The reason for this address allocation is explained below.

The MPG interface (MPG counter) occupies a DI space from Xm+12 through Xm+14. These addresses are fixed regardless of whether expansion module 2 or 3 is used, and Xm+12 through Xm+14 must be allocated as a DI work area to enable the use of the MPG. Therefore, when using an MPG for the *i* series CNC, allocate DI addresses in units of 16 bytes. Do not use the DI space from Xm+12 through Xm+14 for Ladder; the CNC processes the MPG counter value directly.

DI address Xm+15 is used for detecting overcurrent and overheating alarms that occur in the IC used in the DO driver. [For details, see the section describing the detection of DO (output signal) alarms.] This address is fixed regardless of whether expansion module 2 or 3 is used, and it must be allocated as a work area before it can be used. When using this area, therefore, allocate DI addresses in units of 16 bytes.

Basically, I/O addresses can be allocated to the connector panel I/O modules freely. When allocating DI addresses, however, consider also the addresses that are directly supervised by the CNC, and keep the following in mind.

	7	6	5	4	3	2	1	0
X0004	SKIP	ESKIP SKIP6	–MIT2 SKIP5	+MIT2 SKIP4	–MIT1 SKIP3	+MIT1 SKIP2	ZAE SKIP8	XAE SKIP7
	SKIP	ESKIP SKIP6	SKIP5	SKIP4	SKIP3	ZAE SKIP2	YAE SKIP8	XAE SKIP7
X0005								
X0006								
X0007								
X0008				*ESP				
X0009					*DEC4	*DEC3	*DEC2	*DEC1

Fixed addresses directly supervised by the CNC (for FS21i/210i)

The upper row indicates those signals used for the T series. Those in the lower row are for the M series.

X0004		SKIPn and other fixed signals
X0005	Basic module	-
X0006		
X0007	Exponsion	
X0008	Expansion module 1	▲——*ESP fixed signal
X0009		▲ *DECn fixed signal
X0010	E.manaian	
X0011	Expansion module 2	
X0012		
X0013	Evennion	The minimum configuration consists of the basic module and
X0014	Expansion module 3	expansion module 1. Expansion modules 2 and 3 may be
X0015		added as required. This allows fixed signals, such as SKIPn
X0016 (for 1st MPG)	E.manaian	and *DECn, to always be used and the *ESP fixed signal to be
X0017 (for 2nd MPG)	Expansion module 1	allocated to an address for which the common voltage is fixed to
X0018 (for 3rd MPG)		24 V. Also, with the I series CNC, the MPG interface provided
X0019 (DO alarm detection)	Basic module	by expansion module 1 can always be used.

X0007		
X0008	Basic module	▲ *ESP fixed signal
X0009		▲ *DECn fixed signal
X0010	Expansion	
X0011	Expansion module 1	
X0012		
X0013	Expansion	
X0014	Expansion module 2	
X0015		,
X0016	Expansion	The minimum configuration consists of the basic module only.
X0017	module 3	Expansion modules 1, 2, and 3 may be added as required. In
X0018		the minimum configuration, SKIP and other fixed signals and th
X0019 (for 1st MPG)	Expansion	MGP interface of expansion module 1 cannot be used. In this
X0020 (for 2nd MPG)	module 1	case, however, the *DECn fixed signal can always be used a
X0021 (for 3rd MPG)		the *ESP fixed signal can be allocated to an address for which the common voltage is fixed to 24 V in the minimum
X0022 (DO alarm detection)	Basic module	configuration.

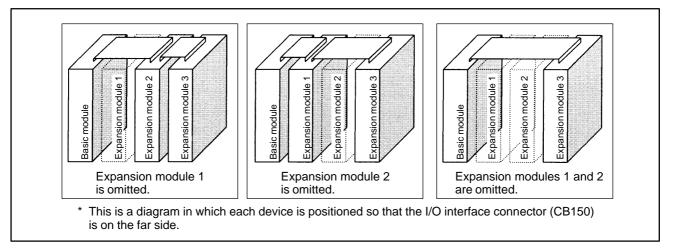
DO (output signal) alarm detection

The DO driver of the Basic and Expansion module A/B is capable of detecting an overcurrent and measuring its own temperature. If an accident, such as the connecting of the cable to ground, causes an abnormal increase in the load current or in the driver temperature, a protection circuit, which is provided for each DO driver (1 byte), is activated and keeps the DO signal for the relevant 1 byte in the OFF state until the cause of the problem is eliminated. Even if this occurs, the CNC and I/O module continue operating. The DI address (Xm+15) identifies the DO driver which has detected the alarm. The following table shows the correspondence between the DI address (Xm+15) bits and the DO addresses. Bit value "1" indicates that the corresponding DO driver has detected an alarm. The contents of the Xm+15 area can be checked by using the DGN screen of the CNC or by performing alarm processing for the area in advance by using Ladder. This helps alarm detection and recovery.

Alarm detection address and bit	DO address	Location
Xm+15.0	Yn+0	Basic module
Xm+15.1	Yn+1	Basic module
Xm+15.2	Yn+2	Expansion module 1
Xm+15.3	Yn+3	Expansion module 1
Xm+15.4	Yn+4	Expansion module 2
Xm+15.5	Yn+5	Expansion module 2
Xm+15.6	Yn+6	Expansion module 3
Xm+15.7	Yn+7	Expansion module 3

NOTE

This function is not supported by the 2A output module or analog input module.


Allocation of the 2A output module and analog input module

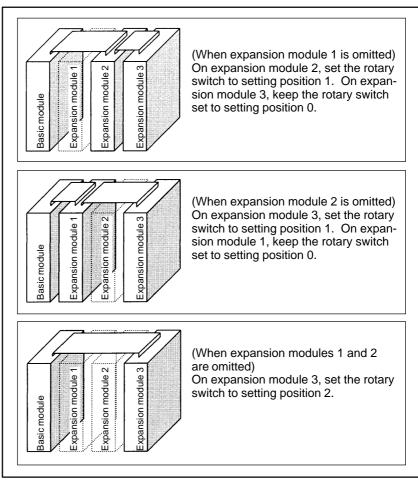
The 2A output module and analog input module can be allocated to any of the spaces for expansion modules 1, 2, and 3. In addition, up to three 2A output modules or analog input modules can be allocated to all the spaces for expansion modules 1, 2, and 3. When an MPG interface is required, the module occupies the space for expansion module 1; no 2A output module or analog input module can be allocated in the space for expansion module 1.

The 2A output module does not involve DI points, so that the DI area of the space in which a 2A output module is allocated is unusable. When a 2A output module is allocated to the space for expansion module 2, for example, the areas from Xm+6 to Xm+8 cannot be used. (The spaces for the other modules are not shifted. In this case, the DI space of expansion module 3 remains at Xm+9 through Xm+11.)

9.6.20 Distribution I/O Setting

By changing the setting (rotary switch) for the expansion modules, connections can be made by omitting some expansion modules as shown below.

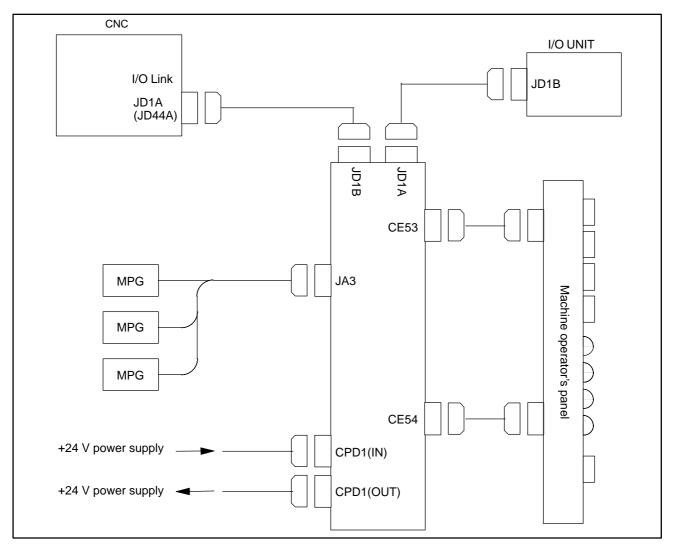
Method of setting (control and method of setting the control) As shown below, the control (rotary switch) is located on an expansion


module. To change the setting, turn the switch with a flat–bladed screwdriver with a tip width of about 2.5 mm.

Setting position	Actual indication	Meaning of setting
0	0	This is the standard setting. The rotary switch is factory–set to this position. This setting is used when no expansion module is omitted.
1	_	Set the rotary switch on an expansion module to this position when the preceding expansion module is omitted.
2	2	Set the rotary switch on an expansion module to this position when the preceding two expansion modules are omitted.
3	-	This setting is prohibited.
4 to F	4, -, 6, -, 8, -, A, -, C, -, E, -,	

The function of the rotary switch is as follows:

Examples of setting



NOTE

- 1 Expansion module A (DI/DO = 24/16, with manual pulse interface) (A03B-0815-C002) is fitted with an additional rotary switch as other types of modules are modified. However, expansion module A is always mounted at the location of expansion module 1, so that its factory setting need not be changed.
- 2 This is a diagram in which each device is positioned so that the I/O interface connector (CB150) is on the far side.

9.7 CONNECTION OF OPERATOR'S PANEL I/O MODULE (FOR MATRIX INPUT)

9.7.1 Overall Connection Diagram

NOTE

The MPG can be connected to this operator's panel I/O module only when the *i* series CNC is used. When the operator's panel I/O module is used together with a unit (connector panel I/O module) connected to the I/O Link supporting another MPG interface, only the MPG interface of the unit (module) closest to the CNC connected to the I/O Link is enabled. The following screw type connectors, newly incorporated into the *i* series main board, cannot be used to connect the I/O Link or MPG.

9.7.2

Power Connection

	Specification	Manufacturer
Connector	FI-20-CV7	Hirose Electric Co., Ltd.
Connector case and connector	FI30-20S-CV7	Hirose Electric Co., Ltd.

Connectors that cannot be used on the cable side

Provide the CPD1 (IN) connector, shown below, with the power necessary for printed circuit board operation and that for DI operation. To facilitate power division, the power is output to CPD1 (OUT) exactly as it is input from CPD1 (IN). When power division is required, use CPD1 (OUT).

CPD1(IN) 01 +24V 24 V power 02 0V supply 03 CPD1(OUT) 01 +24V 24 V power 02 0V supply 03 Recommended cable-side connector: A02B-0120-K324

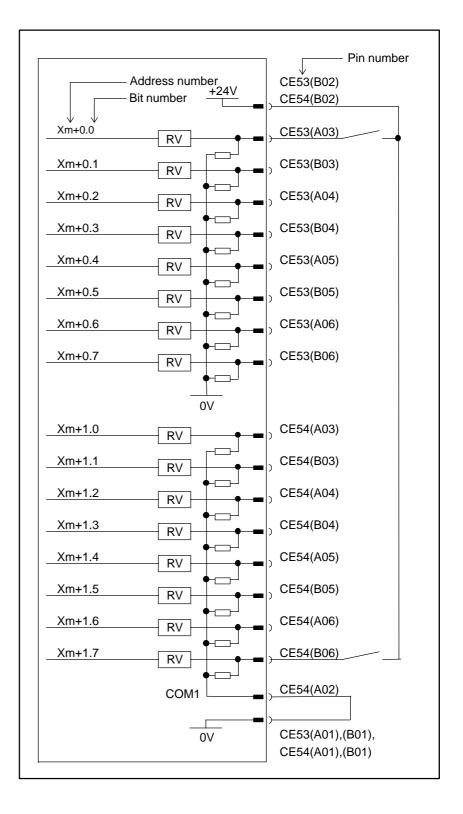
(including the following connector housing and case)

(Housing: Japan AMP 1–178288–3) (Contacts: Japan AMP 1–175218–5)

Up to 1.0 A can be supplied by branching.

NOTE

The specification of the power supply connector CPD1 (IN) is the same as that for CPD1 (OUT). There are no indications on the printed circuit board to distinguish between the IN and OUT connectors. Do not turn off the +24 V supply to the connector during operation. Turning off the +24 V supply will cause a CNC communication alarm. When turning on the power, the +24 V supply to the I/O module must be turned on before or at the same time as the power supply to the CNC. When turning off the power, the +24 V supply to the I/O module must be turned off after or at the same time as the power supply to the I/O module must be turned off after or at the same time as the power supply to the CNC.


9.7.3 DI/DO Connector Pin Arrangement

A B 1 0V 0V		CE	54
		А	В
	01	0V	0V
2 N.C. +24	V 02	COM1	+24V
3 Xm+0.0 Xm+	0.1 03	Xm+1.0	Xm+1.1
4 Xm+0.2 Xm+	0.3 04	Xm+1.2	Xm+1.3
5 Xm+0.4 Xm+	0.5 05	Xm+1.4	Xm+1.5
3 Xm+0.6 Xm+	0.7 06	Xm+1.6	Xm+1.7
7 Yn+0.0 Yn+0	.1 07	Yn+3.0	Yn+3.1
3 Yn+0.2 Yn+0	.3 08	Yn+3.2	Yn+3.3
9 Yn+0.4 Yn+0	.5 09	Yn+3.4	Yn+3.5
) Yn+0.6 Yn+0	.7 10	Yn+3.6	Yn+3.7
Yn+1.0 Yn+1	.1 11	Yn+4.0	Yn+4.1
2 Yn+1.2 Yn+1	.3 12	Yn+4.2	Yn+4.3
3 Yn+1.4 Yn+1	.5 13	Yn+4.4	Yn+4.5
4 Yn+1.6 Yn+1	.7 14	Yn+4.6	Yn+4.7
5 Yn+2.0 Yn+2	.1 15	Yn+5.0	Yn+5.1
6 Yn+2.2 Yn+2	.3 16	Yn+5.2	Yn+5.3
7 Yn+2.4 Yn+2	.5 17	Yn+5.4	Yn+5.5
3 Yn+2.6 Yn+2	.7 18	Yn+5.6	Yn+5.7
) KYD0 KYI	D1 19	Yn+6.0	Yn+6.1
) KYD2 KYI	03 20	Yn+6.2	Yn+6.3
I KYD4 KYI	21	Yn+6.4	Yn+6.5
2 KYD6 KYI	07 22	Yn+6.6	Yn+6.7
3 KCM1 KCI	M2 23	KCM5	KCM6
4 KCM3 KCI	Л4 24	KCM7	DOCOM
5 DOCOM DOC	COM 25	DOCOM	DOCOM

NOTE

An output DC voltage of +24 V at CD53 (B02) and CE54 (B02) is for DI signals. Do not supply 24 VDC to these pins from the outside.

9.7.4 DI (General–purpose Input Signal) Connection

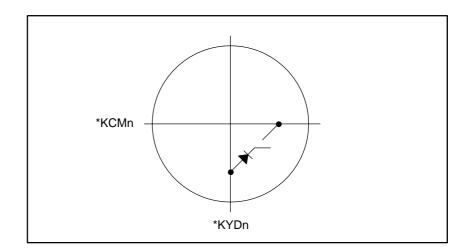
NOTE

1 Xm+1.0 through Xm+1.7 are DI pins for which a common voltage can be selected. That is, by connecting the COM1 CE54(A02) pin to the +24 V power supply, a DI signal can be input with its logical state reversed. If, however, a cable is connected to ground, it has the same effect as inputting an ON state DI signal. To prevent this from occurring, the connection of the COM1 CE54(A02) pin to the 0 V power supply is recommended whereever possible.

For safety reasons, the emergency stop signal needs to be allocated to an appropriate bit of the addresses for which the common voltage is fixed, ranging from Xm+0.0 to Xm+0.7. See "Address allocation" in Section 9.7.10 for details of how to allocate the emergency stop signal.

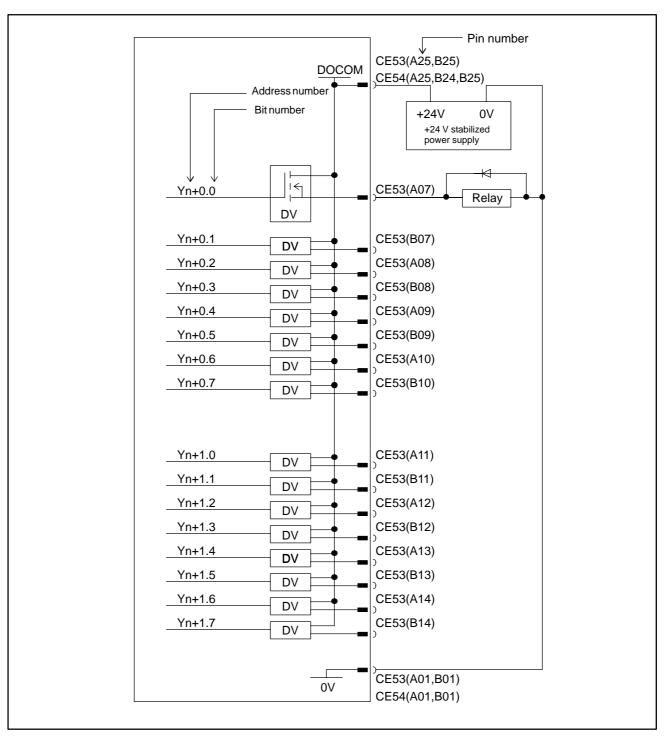
For unused DI pins allocated to the addresses for which the common voltage is fixed (from Xm+0.0 to Xm+0.7), the logic is fixed to "0". For unused pins allocated to Xm+1.0 to Xm+1.7 for which the common voltage can be selected, the logic is fixed to "0" when the COM1 CE54(A02) pin is connected to the 0 V power supply. When the COM1 CE54(A02) pin is connected to the +24 V power supply, the logic is fixed to "1". The logic of the unused pins allocated to Xm+1.0 to Xm+1.0 to Xm+1.7 is variable when the contact of the COM1 CE54(A02) pin is open.

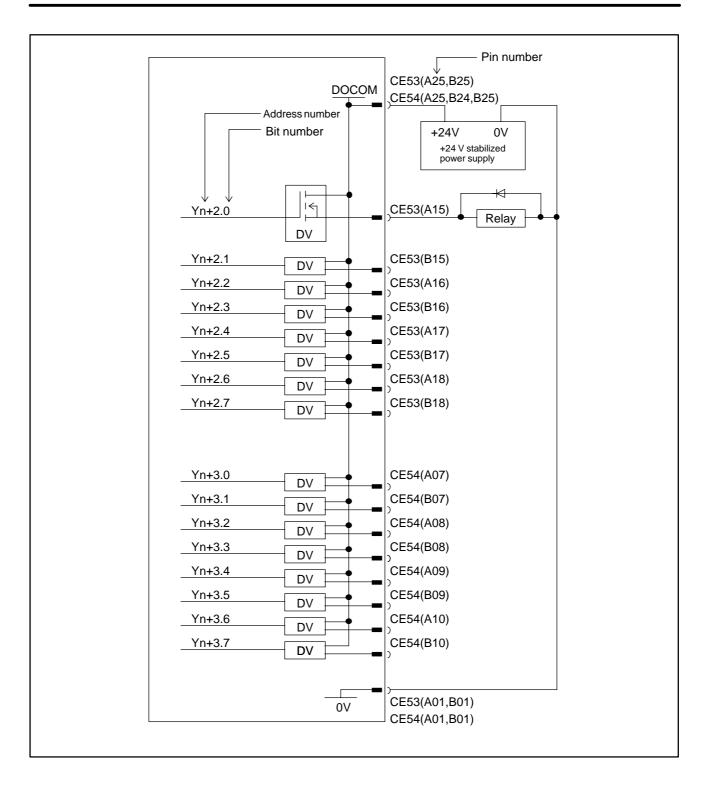
2 An output DC voltage of +24 V at CD53 (B02) and CE54 (B02) is for DI signals. Do not supply 24 VDC to these pins from the outside.


9.7.5 DI (Matrix Input Signal) Connection

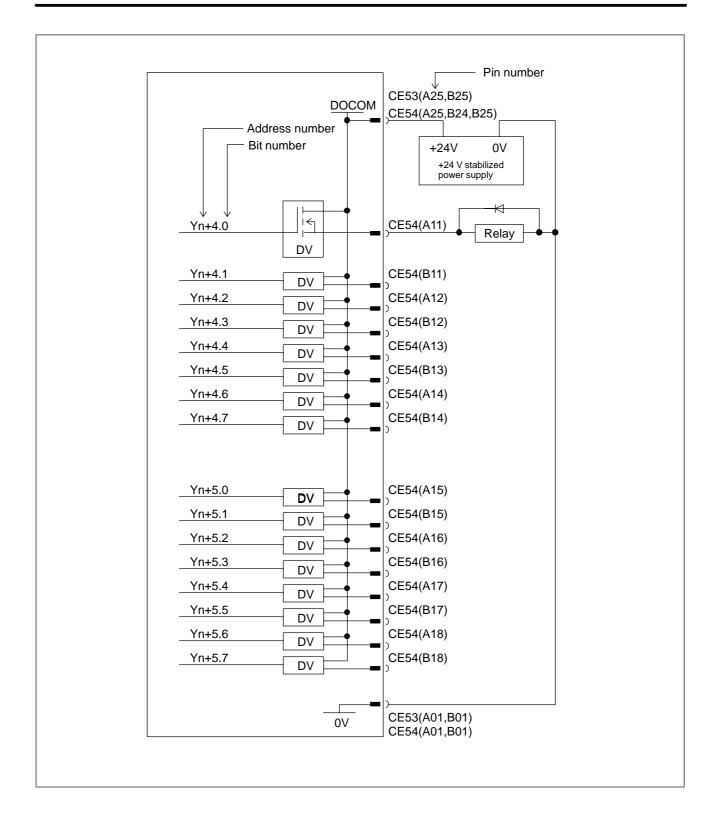
CE53(A23) An+4.0 <u>Xn+4.1</u> <u>Xn+4.2</u> <u>Xn+4.5</u> <u>_Xn+4.6</u> <u> ∆Xn+4.3</u> <u>_Xn+4.4</u> ___Xn+4.7 *KCM1 Xn+5.7 CE53(B23) Xn+5.0 Xn+5.1 Xn+5.2 Xn+5.3 Xn+5.4 Xn+5.5 Xn+5.6 *KCM2 Xn+6.0 Xn+6.1 Xn+6.2 Xn+6.3 Xn+6.4 Xn+6.5 Xn+6.6 Xn+6.7 CE53(A24) *KCM3 CE53(B24) Xn+7.2 Xn+7.3 Xn+7.4 Xn+7.5 Xn+7.6 Xn+7.0 Xn+7.1 Xn+7.7 *KCM4 CE54(A23) Xn+8.2 Xn+8.3 Xn+8.4 Xn+8.5 Xn+8.6 Xn+8.0 Xn+8.1 Xn+8.7 *KCM5 Xn+9.2 Xn+9.3 Xn+9.4 Xn+9.5 Xn+9.6 Xn+9.0 Xn+9.1 Xn+9.7 CE54(B23) *KCM6 <u>Xn+1</u>0.0 CE54(A24) Xn+10.1 Xn+10.2 Xn+10.3 Xn+10.4 Xn+10.5 Xn+10.6 Xn+10.7 *KCM7 CE53(A19) *KYD0 CE53(B19) *KYD1 CE53(A20) *KYD2 CE53(B20) *KYD3 CE53(A21) *KYD4 CE53(B21) *KYD5 CE53(A22) *KYD6 CE53(B22) *KYD7

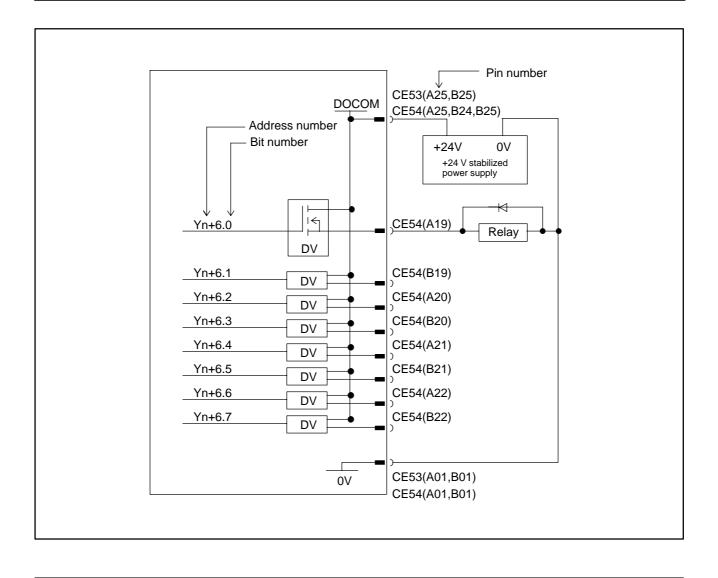
• A maximum of 56 points are provided.


NOTE


Detour prevention diodes must be incorporated for matrix signal input, as shown in the following figure. Otherwise, only two signals can be input at the same time. Inputting three or more signals simultaneously without using detour prevention diodes may result in data input errors.

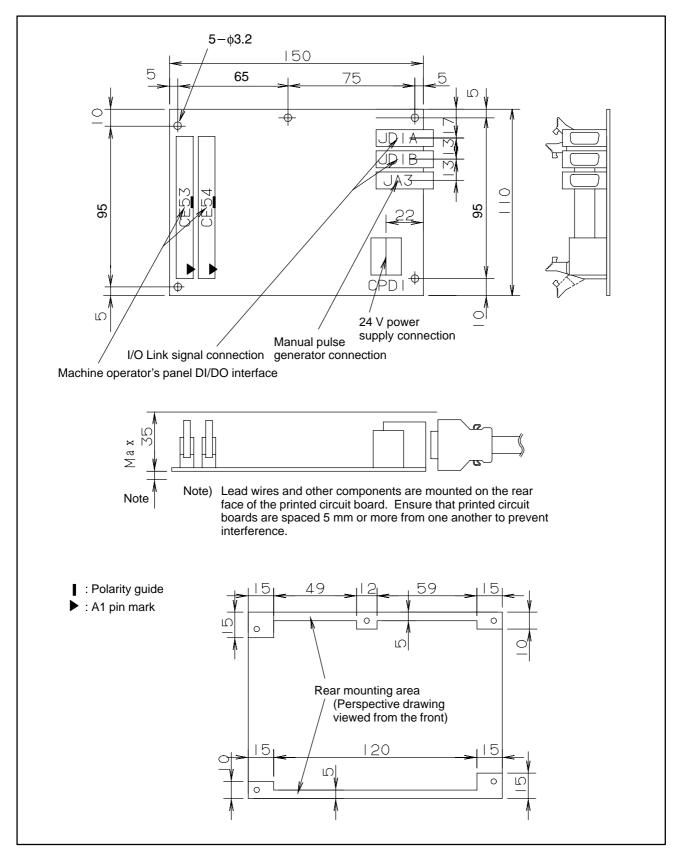
9.7.6 DO (Output Signal) Connection


• A maximum of 56 points are provided.



9. CONNECTION TO FANUC I/O Link

B-63833EN/03


B-63833EN/03

9.7.7 Manual Pulse Generator Connection

For details of the connection of the manual pulse generator, see Section 9.6.15.

9.7.8 External View

9.7.9 Specifications

Installation specifications

Ambient temperature	During operation 0°C to 58°C
	During storage and transportation –20°C to 60°C
Temperature change	Max. 1.1°C/min.
Relative humidity	Normal : 75% or less
	Short term (1 month or less) : 95% or less
Vibration	During operation : 0.5 G or less
Environment	Ordinary machining factory environment (Special consideration is required when installing the module in a dusty location or where highly concen- trated cutting lubricant or organic solvent is used.)
Other requirements	(1) Install the I/O module in a fully enclosed cabinet.

Ordering specifications

Item	Specification	Remarks
Operator's panel I/O module	A20B-2002-0470	General–purpose DI: 16 points Matrix DI: 56 points DO: 56 points MPG interface is supported.
Fuse (replacement part)	A03B-0815-K001	1 A

Module specifications

Item	Specification	Remarks
General–purpose DI	16 points	24–V input
Matrix DI	56 points (8×7)	5–V input
DO points	56 points	24 V source type output
CNC interface	FANUC I/O Link connection	Up to 16 modules can be connected as CNC slaves. Or, a maximum of 1024 points can be supported on both the input and output sides.
MPG interface	Max. 3 units	MPG interface can be used only for the <i>i</i> series CNC.

Power	supply	rating
-------	--------	--------

Module	Supply voltage	Current rating	Remarks
Operator's panel I/O module	24 VDC \pm 10% supplied from the power supply connector CPD1. The allowance of \pm 10% should include instantaneous voltage and ripple voltage.	0.35A	The total power consumption of DI points is included. (This is true when all general DI points are turned on.) The power consumption of DO points is not included.

DI (input signal) specifications

(General-purpose input signal)

Contact rating	30 VDC, 16 mA or more
Open circuit intercontact leakage current	1 mA or less (at 26.4 V)
Closed circuit intercontact voltage drop	2 V or less (including cable voltage drop)
Delay	Receiver delay: Max. 2 ms The time required for I/O Link transmission between the CNC and I/O module (max. 2 ms + CNC ladder scan cycle) must also be taken into account.

(Matrix input signal)

Contact rating	6 VDC, 2 mA or more
Open circuit intercontact leakage current	0.2 mA or less (at 6 V)
Closed circuit intercontact voltage drop	0.9 V or less (with a current of 1 mA)
Delay	The maximum matrix period of 16 ms, the maximum time of I/O Link transfer between CNC and I/O module of 2 ms, and the ladder scanning period (by CNC) must be considered.

NOTE

When detour prevention diodes are used, the voltage drop across closed contacts indicated above must be maintained, including the diode voltage drop.

DO (output signal) specifications

Maximum load current in ON state	200 mA or less (including momentary current)
Saturation voltage in ON state	Max. 1 V (when load current is 200 mA)
Withstand voltage	24 V +20% or less (including momentary values)
Leakage current in OFF state	20 μ A or less
Delay	Driver delay: Max. 50 μ s The time required for I/O Link transmission between the CNC and I/O module (max. 2 ms + CNC ladder scan cycle) must also be taken into account.

NOTE

Ensure that the maximum current per DOCOM pin (DO power supply pin) does not exceed 0.7 A.

9.7.10 Other Notes

DO signal reaction to a system alarm

If a system alarm occurs in the CNC using the operator's panel I/O module, or if I/O Link communication between the CNC and operator's panel I/O module fails, all the DO signals of the I/O module are turned off. Therefore, sufficient care is necessary when setting up the machine sequence. Also, the same phenomenon occurs if the power to the CNC or the I/O module is turned off.

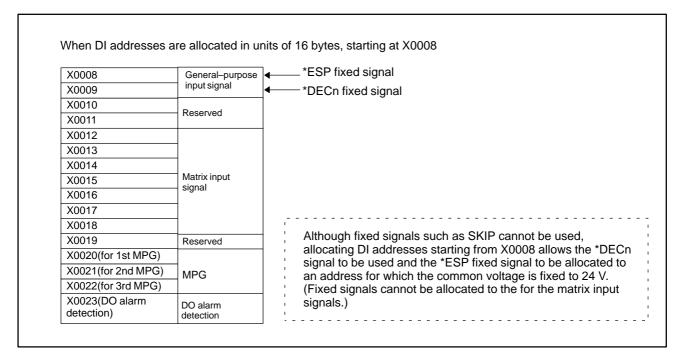
Address allocation

For the operator's panel I/O module, I/O addresses are mapped as follows.

DI space		Yn	O space map	
Xm	General-purpose			
Xm+1	input signal	Yn+1		
Xm+2	Reserved	Yn+2		
Xm+3	Reserved	Yn+3	Output signal	
Xm+4		Yn+4		
Xm+5		Yn+5		
Xm+6		Yn+6		
Xm+7	Matrix input signal	Yn+7	Reserved	
Xm+8				
Xm+9				
Xm+10				
Xm+11	Reserved			
Xm+12 (for 1st MPG)				
Xm+13 (for 2nd MPG)	MPG			
Xm+14 (for 3rd MPG)	1			
Xm+15 (DO alarm detection)	DO alarm detection			

The operator's panel I/O module is allocated a group of DI addresses (16 bytes) and a group of DO addresses (8 bytes). This address allocation is explained below.

The MPG interface (MPG counter) occupies DI space from Xm+12 through Xm+14. These addresses are fixed, and Xm+12 through Xm+14 must be allocated as a DI work area to enable the use of the MPG. Therefore, when using an MPG for the *i* series CNC, allocate DI addresses in units of 16 bytes. Do not use the DI space from Xm+12 through Xm+14 for Ladder; the CNC processes the MPG counter value directly.


DI address Xm+15 is used for detecting overcurrent and overheating alarms that may occur in the IC used in the DO driver. [For details, see the section describing the detection of DO (output signal) alarms.] This address is fixed, and must be allocated as a work area before it can be used. Therefore, when using this area, allocate DI addresses in units of 16 bytes.

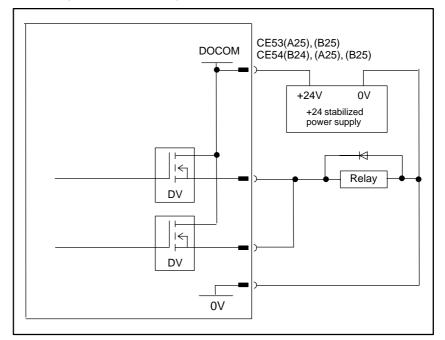
Basically, I/O addresses can be allocated to the operator's panel I/O module freely. When allocating DI addresses, however, consider also the fixed addresses that are directly supervised by the CNC, and keep the following in mind.

	7	6	5	4	3	2	1	0
	SKIP	ESKIP	–MIT2	+MIT2	-MIT1	+MIT1	ZAE	XAE
X0004		SKIP6	SKIP5	SKIP4	SKIP3	SKIP2	SKIP8	SKIP7
	SKIP	ESKIP	SKIP5	SKIP4	SKIP3	ZAE	YAE	XAE
		SKIP6				SKIP2	SKIP8	SKIP7
X0005								
X0006								
X0007								
X0008				*ESP				
X0009					*DEC4	*DEC3	*DEC2	*DEC1

Fixed addresses directly supervised by the CNC (for FS21*i*/210*i*)

The upper row indicates those signals used for the T series. Those in the lower row are for the M series.

Turning the DO (output signal) power on and off (DOCOM)


All the DO signals can be turned off simultaneously by turning off (opening) the DO (output signal) power supply pin "DOCOM". Doing so causes the DO signal status to change as shown below.

DOCON	ON OFF	
When DO is ON in the sequence	ON OFF	
When DO is OFF in the sequence	ON OFF	

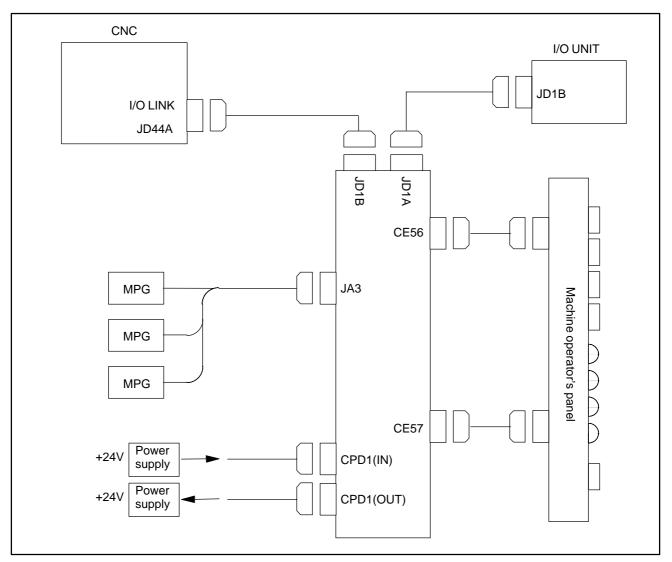
NOTE

When the DO signal is in the ON state in the sequence, the ON or OFF state of the DOCOM pin determines the state of the signal, as indicated by the dotted lines in the above figure. Do not turn off the +24 V supply, provided by the CPD1 to the I/O module, during the operation. Turning off the +24 V supply would cause a CNC communication alarm. When turning on the power, the +24 V supply to the I/O module must be turned on before or at the same time as the power supply to the CNC. When turning off the power, the +24 V supply to the I/O module must be turned off after or at the same time as the power supply to the I/O module must be turned off after or at the same time as the power supply to the CNC.

The DO load current can be doubled by connecting two DO points in parallel and turning them on and off simultaneously in sequence, as shown in the figure below. The maximum load current per DI point is 200 mA. Connecting two DO points in parallel and turning them on at the same time produces a current of 400 mA. Note that, however, when two DO points are connected in parallel, the leakage current also doubles while they are off (max. $40 \,\mu$ A).

Parallel DO (output signal) connection

DO (output signal) alarm detection


The DO driver of the I/O module is capable of detecting an overcurrent and measuring its own temperature. If an accident, such as connecting the cable to ground, causes an abnormal increase in the load current or in the driver temperature, a protection circuit, which is provided for each DO driver (1 byte), is activated which keeps the DO signal for the relevant 1 byte in the OFF state until the cause of the problem is eliminated. Even if this occurs, the CNC and the I/O module continue operating. The DI address (Xm+15) identifies which DO driver has detected an alarm. The following table shows the correspondence between the DI address (Xm+15) bits and the DO addresses. Bit value "1" indicates that the corresponding DO driver has detected an alarm. The contents of the Xm+15 area can be checked by using the DGN screen of the CNC or by performing the alarm processing for the area in advance by using Ladder. This helps alarm detection and recovery.

Alarm detection address and bit	DO address	Remarks
Xm+15.0	Yn+0	
Xm+15.1	Yn+1	
Xm+15.2	Yn+2	
Xm+15.3	Yn+3	
Xm+15.4	Yn+4	
Xm+15.5	Yn+5	
Xm+15.6	Yn+6	
Xm+15.7	Yn+7	Reserved

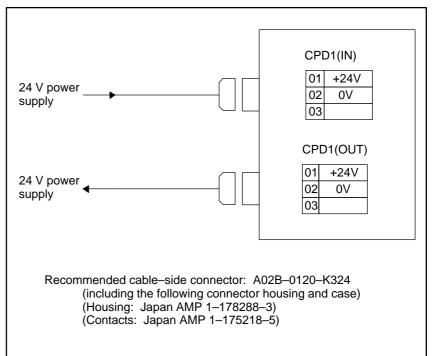
9.8 CONNECTION OF OPERATOR'S PANEL I/O MODULE AND POWER MAGNETICS CABINET I/O MODULE

The difference between the operator's panel I/O module and the power magnetics cabinet I/O module lies in whether an interface to a manual pulse generator is provided. The power magnetics cabinet does not provide an interface to a manual pulse generator.

9.8.1 Overall Connection Diagram

NOTE

The MPG can be connected to this operator's panel I/O module only when the *i* series CNC is used. When the operator's panel I/O module is used together with a unit (connector panel I/O module) connected to the I/O Link supporting another MPG interface, only the MPG interface of the unit (module) closest to the CNC connected to the I/O Link is enabled. The following screw type connectors, newly incorporated into the *i* series main board, cannot be used to connect the I/O Link or MPG.


Connectors that cannot be used on the cable side

	Specification	Manufacturer
Connector	FI-20-CV7	Hirose Electric Co., Ltd.
Connector case and connector	FI30-20S-CV7	Hirose Electric Co., Ltd.

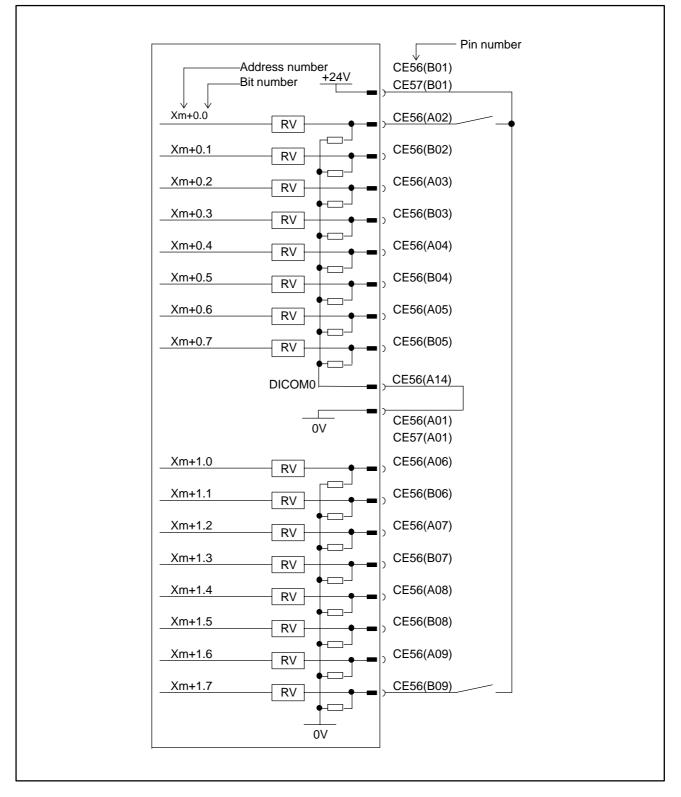
9.8.2 Power Connection

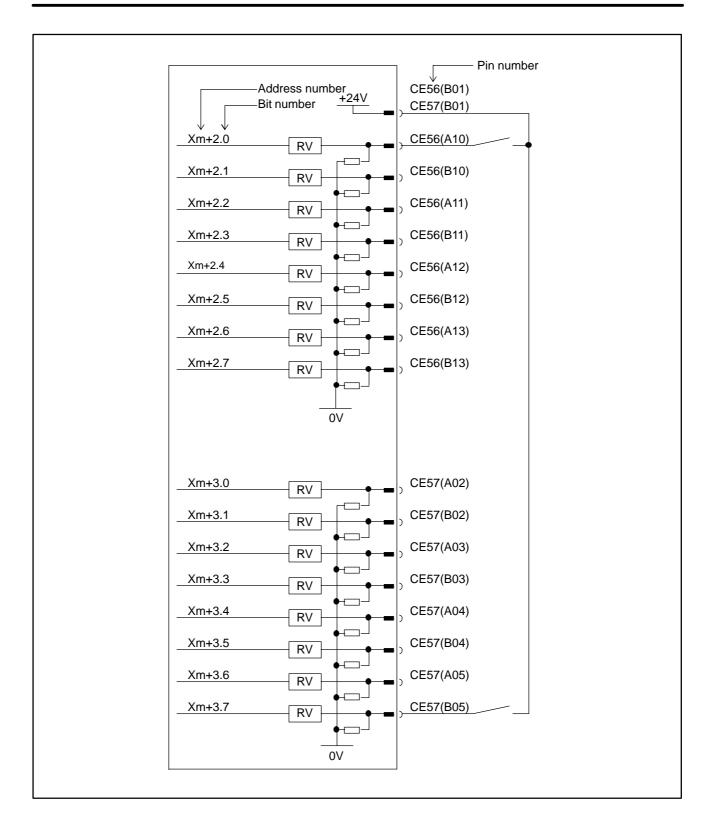
Provide the CPD1 (IN) connector, shown below, with the power necessary for the printed circuit board operation and that for DI operation. To facilitate power division, the power is output to CPD1 (OUT) exactly as it is input from CPD1 (IN). When power division is required, use CPD1 (OUT).

Up to 1.0 A can be supplied by branching.

NOTE

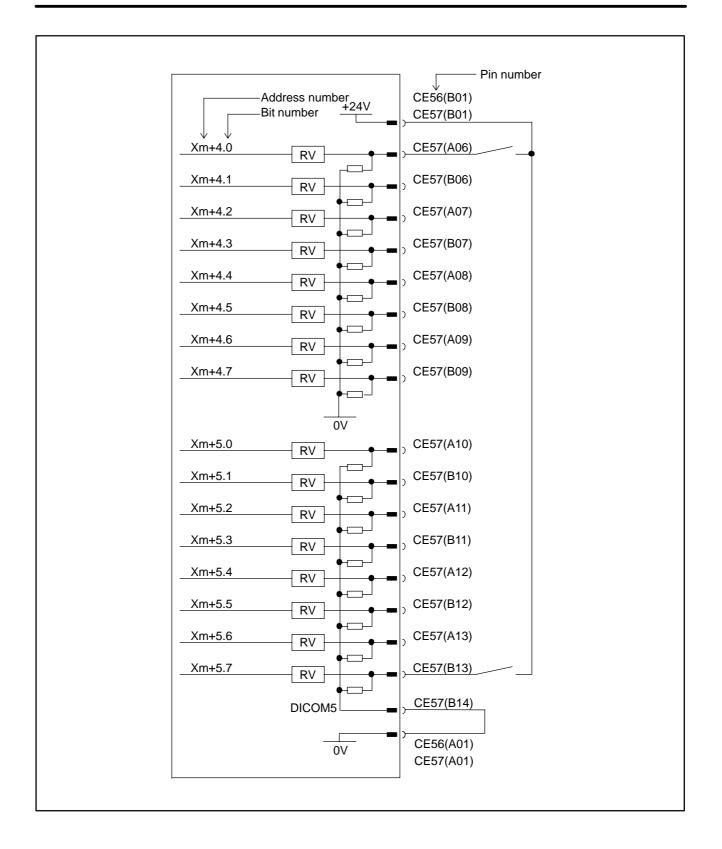
The specification of the power supply connector CPD1 (IN) is the same as that for CPD1 (OUT). There are no indications on the printed circuit board to distinguish between the IN and OUT connectors. Do not turn off the +24 V supply to the connector during operation. Turning off the +24 V supply will cause a CNC communication alarm. When turning on the power, the +24 V supply to the I/O module must be turned on before or at the same time as the power supply to the CNC. When turning off the power, the +24 V supply to the I/O module must be turned off after or at the same time as the power supply to the I/O module must be turned off after or at the same time as the power supply to the CNC.


9.8.3 DI/DO Connector Pin Arrangement


03 2 04 2 05 2 06 2 07 2 08 2 09 2 10 2	A 0V Xm+0.0 Xm+0.2 Xm+0.4 Xm+0.6 Xm+1.0 Xm+1.2 Xm+1.4 Xm+1.6	B +24V Xm+0.1 Xm+0.3 Xm+0.5 Xm+0.7 Xm+1.1 Xm+1.3 Xm+1.5		01 02 03 04 05 06	A 0V Xm+3.0 Xm+3.2 Xm+3.4 Xm+3.6	B +24V Xm+3.1 Xm+3.3 Xm+3.5 Xm+3.7
02 2 03 2 04 2 05 2 06 2 07 2 08 2 09 2 10 2	Xm+0.0 Xm+0.2 Xm+0.4 Xm+0.6 Xm+1.0 Xm+1.2 Xm+1.4	Xm+0.1 Xm+0.3 Xm+0.5 Xm+0.7 Xm+1.1 Xm+1.3		02 03 04 05	Xm+3.0 Xm+3.2 Xm+3.4	Xm+3.1 Xm+3.3 Xm+3.5
03 2 04 2 05 2 06 2 07 2 08 2 09 2 10 2	Xm+0.2 Xm+0.4 Xm+0.6 Xm+1.0 Xm+1.2 Xm+1.4	Xm+0.3 Xm+0.5 Xm+0.7 Xm+1.1 Xm+1.3	•	03 04 05	Xm+3.2 Xm+3.4	Xm+3.3 Xm+3.5
04 2 05 2 06 2 07 2 08 2 09 2 10 2	Xm+0.4 Xm+0.6 Xm+1.0 Xm+1.2 Xm+1.4	Xm+0.5 Xm+0.7 Xm+1.1 Xm+1.3		04 05	Xm+3.4	Xm+3.5
05 2 06 2 07 2 08 2 09 2 10 2	Xm+0.6 Xm+1.0 Xm+1.2 Xm+1.4	Xm+0.7 Xm+1.1 Xm+1.3		05		
06 2 07 2 08 2 09 2 10 2	Xm+1.0 Xm+1.2 Xm+1.4	Xm+1.1 Xm+1.3			Xm+3.6	Xm+3.7
07 2 08 2 09 2 10 2	Xm+1.2 Xm+1.4	Xm+1.3		06		
08 2 09 2 10 2	Xm+1.4		1		Xm+4.0	Xm+4.1
09 2 10 2		Xm+1.5		07	Xm+4.2	Xm+4.3
10	Xm+1.6		1	08	Xm+4.4	Xm+4.5
-		Xm+1.7	1	09	Xm+4.6	Xm+4.7
	Xm+2.0	Xm+2.1	1	10	Xm+5.0	Xm+5.1
11 2	Xm+2.2	Xm+2.3	1	11	Xm+5.2	Xm+5.3
12 2	Xm+2.4	Xm+2.5	1	12	Xm+5.4	Xm+5.5
13 2	Xm+2.6	Xm+2.7	1	13	Xm+5.6	Xm+5.7
14 I	DICOM0		1	14		DICOM5
15			1	15		
16 `	Yn+0.0	Yn+0.1		16	Yn+2.0	Yn+2.1
17 `	Yn+0.2	Yn+0.3		17	Yn+2.2	Yn+2.3
18 `	Yn+0.4	Yn+0.5		18	Yn+2.4	Yn+2.5
19 `	Yn+0.6	Yn+0.7		19	Yn+2.6	Yn+2.7
20 `	Yn+1.0	Yn+1.1		20	Yn+3.0	Yn+3.1
21 `	Yn+1.2	Yn+1.3	1	21	Yn+3.2	Yn+3.3
22 `	Yn+1.4	Yn+1.5]	22	Yn+3.4	Yn+3.5
23	Yn+1.6	Yn+1.7		23	Yn+3.6	Yn+3.7
24	DOCOM	DOCOM		24	DOCOM	DOCOM
25	DOCOM	DOCOM] '	25	DOCOM	DOCOM
	A (H 50 Cable ma A	e–side conn 02B–0120–ł HF3BB–50D 0 contacts aterial specif 02B–0120–ł 61–meter, 50	<342 -2.54R fication: <886	(Hir	cation: ose Electric Co	o., Ltd.))
					Electric Cable	e Co., Ltd.))

NOTE

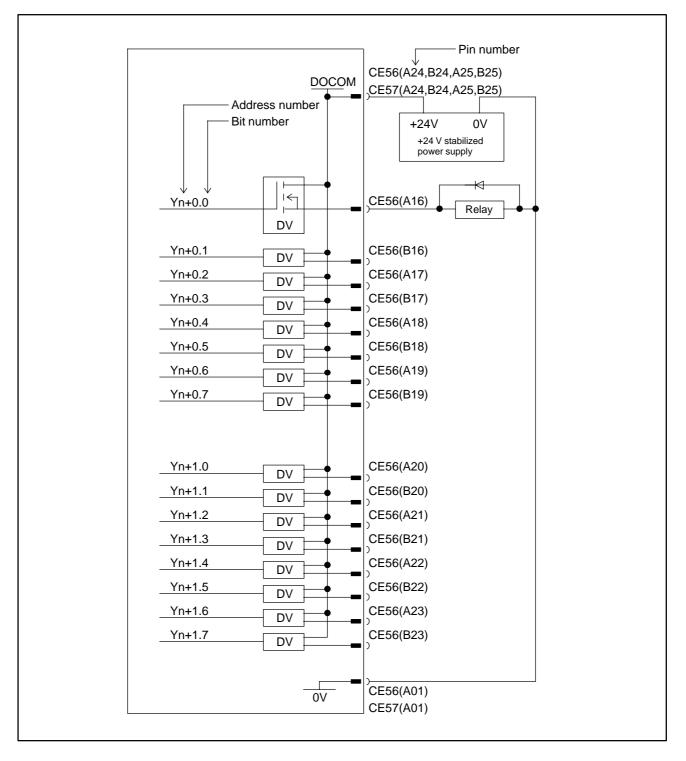
An output DC voltage of +24 V at CD56 (B01) and CE57 (B01) is for DI signals. Do not supply 24 VDC to these pins from the outside.


9.8.4 DI (General–purpose Input Signal) Connection

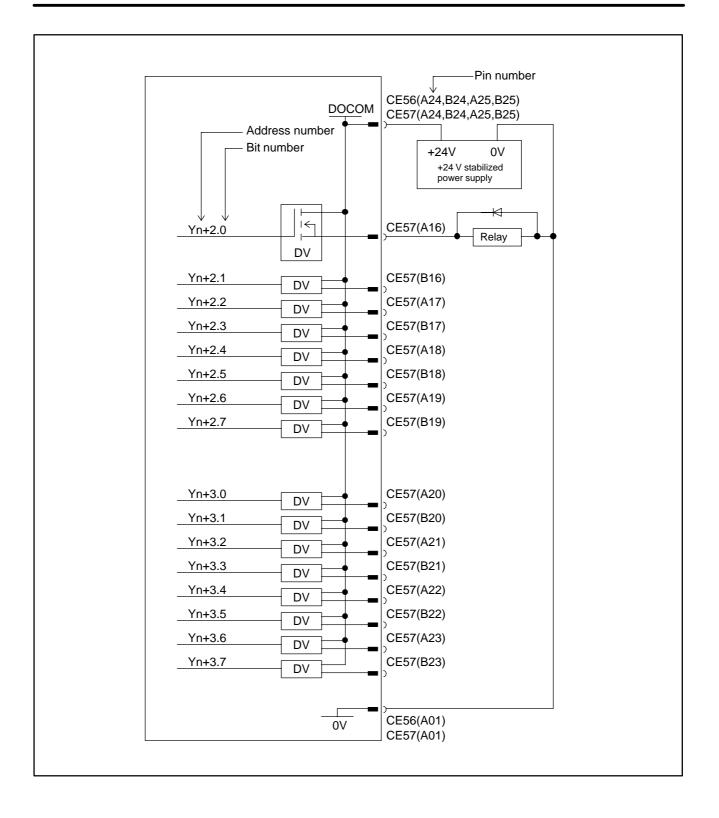
9. CONNECTION TO FANUC I/O Link

B-63833EN/03

NOTE

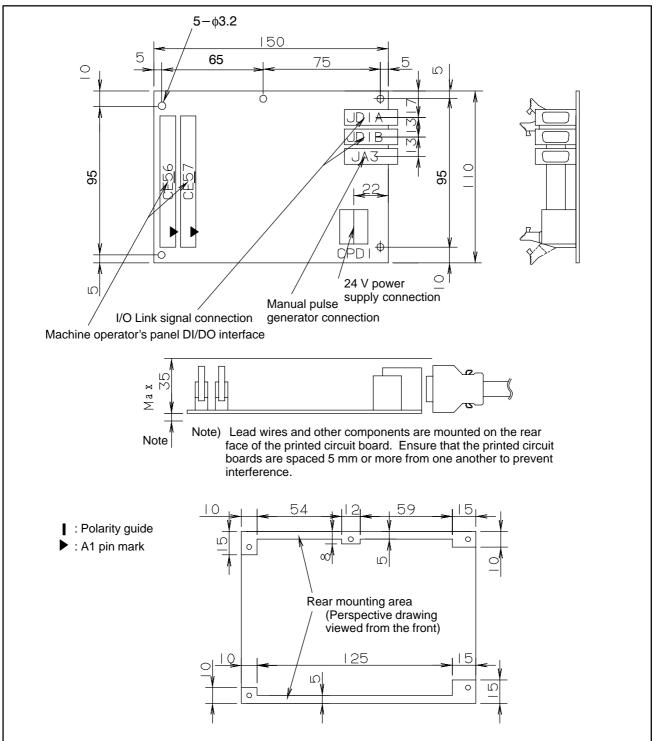

1 Xm+0.0 through Xm+0.7 and Xm+5.0 through Xm+5.7 are DI pins for which a common voltage can be selected. That is, by connecting the DICOM0 CE56(A14) or DICOM5 CE57(B14) pin to the +24 V power supply, a DI signal can be input with its logical state reversed. If, however, a cable is connected to ground, it has the same effect as inputting an ON state DI signal. To prevent this from occurring, the connection of the DICOM0 CE56(A14) and DICOM5 CE57(B14) pins to the 0 V power supply is recommended whereever possible.

For safety reasons, the emergency stop signal needs to be allocated to an appropriate bit of the addresses for which the common voltage is fixed. See "Address allocation" in Section 9.8.9 for details of how to allocate the emergency stop signal.


For unused DI pins allocated to the addresses for which the common voltage is fixed, the logic is fixed to "0". For unused pins allocated to the addresses for which the common voltage can be selected, the logic is fixed to "0" when the DICOM0 CE56(A14) or DICOM5 CE57(B14) pin is connected to the 0 V power supply. When the DICOM0 CE56(A14) or DICOM5 CE57(B14) pin is connected to the +24 V power supply, the logic is fixed to "1". The logic of the unused pins is variable when the contacts of the DICOM0 CE56(A14) and DICOM5 CE57(B14) pins are open.

2 An output DC voltage of +24 V at CE56 (B01) and CE57 (B01) is for DI signals. Do not supply 24 VDC to these pins from the outside.

9.8.5 DO (Output Signal) Connection


B-63833EN/03

9.8.6 Manual Pulse Generator Connection

For details of the connection of the manual pulse generator, see Section 9.6.15.

9.8.7 External View

9.8.8 Specifications

Installation specifications

Ambient temperature	During operation 0° to 58°C During storage and transportation –20°C to 60°C
Temperature change	Max. 1.1°C/min.
Relative humidity	Normal: 75% or less Short term (1 month or less): 95% or less
Vibration	During operation: 0.5 G or less
Environment	Ordinary machining factory environment (Special consideration is required when installing the module in a dusty place or where highly concentrated cutting lubricant or organic solvent is used.)
Other requirements	(1) Install the I/O module in a fully enclosed cabinet.

Ordering specifications

Item	Specification	Remarks
Operator's panel I/O module (with MPG interface)	A20B–2002–0520	DI: 48 points DO: 32 points MPG interface is supported.
Power magnetics panel I/O module (without MPG interface)	A20B-2002-0521	DI: 48 points DO: 32 points MPG interface is not supported.
Fuse (replacement part)	A03B-0815-K001	1 A

Module specifications

Item	Specification	Remarks
DI points	48 points	24 V input
DO points	32 points	24 V source type output
CNC interface	FANUC I/O Link connection	Up to 16 modules can be connected as CNC slaves. Or, a maximum of 1024 points can be supported on both the input and output sides.
MPG interface	Max. 3 units	MPG interface can be used only for the <i>i</i> series CNC.

Power supply rating

Module	Supply voltage	Power supply rating	Remarks
Operator's panel I/O module and power magnetics cabinet I/O module	24 VDC \pm 10% is supplied from power supply connector CPD1. The tolerance of \pm 10% includes momentary and ripple currents.	0.3 A+7.3 mA×DI	DI = number of DI points in the ON state

DI (input signal) specifications

(general-purpose input signal)

Contact rating	30 VDC, 16 mA or more
Open circuit intercontact leakage current	1 mA or less (at 26.4 V)
Closed circuit intercontact voltage drop	2 V or less (including cable voltage drop)
Delay	Receiver delay: Max. 2 ms The time required for I/O Link transmission between the CNC and I/O module (max. 2 ms + CNC ladder scan cycle) must also be taken into account.

DO (output signal) specifications

Maximum load current in ON state	200 mA or less (including momentary current)
Saturation voltage in ON state	Max. 1 V (when load current is 200 mA)
Withstand voltage	24 V +20% or less (including momentary values)
Leakage current in OFF state	20 µA or less
Delay	Driver delay: Max. 50 μ s The time for I/O Link transmission between the CNC and I/O module (max. 2 ms + CNC ladder scan cycle) must also be taken into account.

NOTE

Ensure that the maximum current per DOCOM pin (DO power supply pin) does not exceed 0.7 A.

9.8.9 Other Notes

DO signal reaction to a system alarm

If a system alarm occurs in a CNC using this 48/32–point I/O module, or if I/O Link communication between the CNC and operator's panel I/O module fails, all the DO signals of the I/O module are turned off. Therefore, due care must be taken when setting up the machine sequence. Also, the same phenomenon occurs if the power of the CNC or the I/O module is turned off.

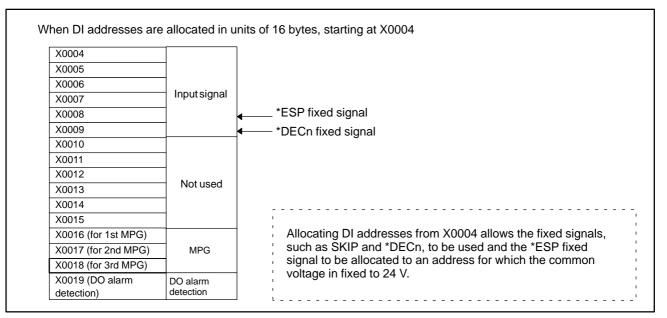
Address allocation

For the operator's panel I/O module, I/O addresses are mapped as follows.

DI space	map	DO s	space map
Xm		Yn	
Xm+1		Yn+1	
Xm+2		Yn+2	Output signal
Xm+3	Inputsignal	Yn+3	
Xm+4		L	
Xm+5			
Xm+6			
Xm+7			
Xm+8	Not used		
Xm+9			
Xm+10			
Xm+11			
Xm+12 (for 1st MPG)			
Xm+13 (for 2nd MPG)	MPG		
Xm+14 (for 3rd MPG)	7		
Xm+15 (DO alarm detection)	DO alarm detection		

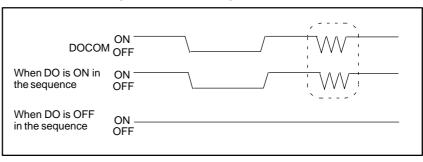
Basically, this 48/32–point I/O module is allocated a group of DI addresses (16 bytes) and a group of DO addresses (4 bytes). This address allocation is explained below.

The MPG interface (MPG counter) occupies DI space from Xm+12 through Xm+14. These addresses are fixed, and Xm+12 through Xm+14 must be allocated as a DI work area to enable the use of the MPG. Therefore, when using an MPG for the *i* series CNC, allocate DI addresses in units of 16 bytes. Do not use the DI space from Xm+12 through Xm+14 for Ladder; the CNC processes the MPG counter value directly.


DI address Xm+15 is used for detecting overcurrent and overheating alarms that occur in the IC used in the DO driver. [For details, see the section describing the detection of DO (output signal) alarms.] This address is fixed, and must be allocated as a work area before it can be used. When using this area, therefore, allocate DI addresses in units of 16 bytes.

Basically, I/O addresses can be allocated to the 48/32–point I/O module freely. When allocating DI addresses, however, consider also the fixed addresses that are directly supervised by the CNC, and keep the following in mind.

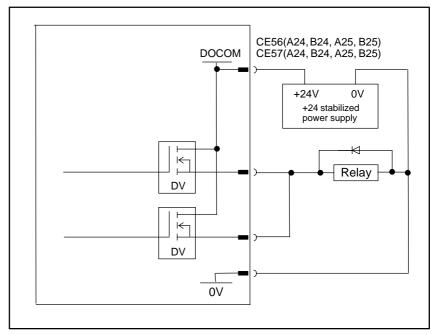
	7	6	5	4	3	2	1	0
	SKIP	ESKIP	–MIT2	+MIT2	-MIT1	+MIT1	ZAE	XAE
X0004		SKIP6	SKIP5	SKIP4	SKIP3	SKIP2	SKIP8	SKIP7
	SKIP	ESKIP	SKIP5	SKIP4	SKIP3	ZAE	YAE	XAE
		SKIP6				SKIP2	SKIP8	SKIP7
X0005								
X0006								
X0007								
X0008				*ESP				
X0009					*DEC4	*DEC3	*DEC2	*DEC1


Fixed addresses directly supervised by the CNC (for FS21*i*/210*i*)

The upper row indicates those signals used for the T series. Those in the lower row are for the M series.

Turning the DO (output signal) power on and off (DOCOM)

All the DO signals can be turned off simultaneously by turning off (opening) the DO (output signal) power supply pin "DOCOM". Doing so causes the DO signal status to change as shown below.



NOTE

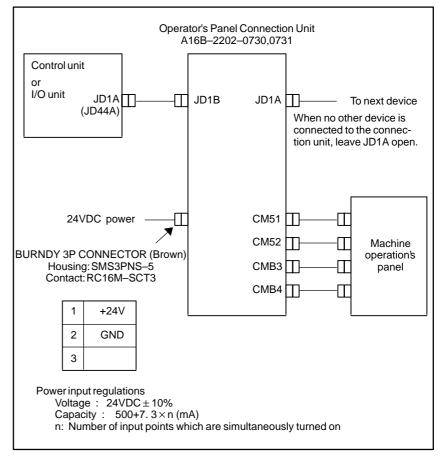
When the DO signal is in the ON state in the sequence, the ON or OFF state of the DOCOM pin determines the state of the signal, as shown within dotted lines in the above figure. Do not turn off the +24 V supply provided by the CPD1 to the I/O module during the operation. Turning off the +24 V supply causes a CNC communication alarm. When turning on the power, the +24 V supply to the I/O module must be turned on before or at the same time as the power supply to the CNC. When turning off the power, the +24 V supply to the I/O module must be turned off after or at the same time as the power supply to the CNC.

Parallel DO (output signal) connection

The DO load current can be doubled by connecting two DO points in parallel and turning them on and off simultaneously in sequence, as shown in the figure below. The maximum load current per DI point is 200 mA. Connecting two DO points in parallel and turning them on at the same time produces a current of 400 mA. Note that, however, when two DO points are connected in parallel, the leakage current also doubles when they are off (max. $40 \,\mu$ A).

DO (output signal) alarm detection

The DO driver of the I/O module is capable of detecting an overcurrent and measuring its own temperature. If an accident, such as the connecting of the cable to ground, causes an abnormal increase in the load current or in the driver temperature, a protection circuit, which is provided for each DO driver (1 byte), is activated and keeps the DO signal for the relevant 1 byte in the OFF state until the cause of the problem is eliminated. Even if this occurs, the CNC and I/O module continue operating. The DI address (Xm+15) identifies the DO driver which has detected the alarm. The following table shows the correspondence between the DI address (Xm+15) bits and the DO addresses. Bit value "1" indicates that the corresponding DO driver has detected an alarm. The contents of the Xm+15 area can be checked by using the DGN screen of the CNC or by performing alarm processing for the area in advance by using Ladder. This helps alarm detection and recovery.


Alarm detection address and bit	DO address	Remarks
Xm+15.0	Yn+0	
Xm+15.1	Yn+1	
Xm+15.2	Yn+2	
Xm+15.3	Yn+3	
Xm+15.4	Yn+4	Reserved
Xm+15.5	Yn+5	Reserved
Xm+15.6	Yn+6	Reserved
Xm+15.7	Yn+7	Reserved

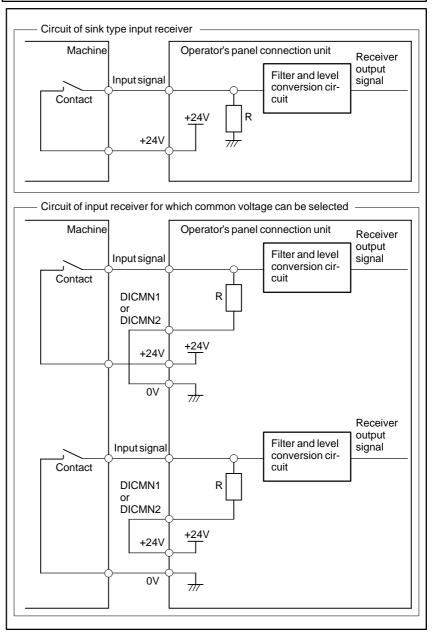
9.9 CONNECTION OF SOURCE OUTPUT TYPE CONNECTION UNIT

The operator's panel connection unit (A16B–2202–0730, 0731), which connects to the control unit via the FANUC I/O Link, acts as an interface with the machine operator's panel.

Connectors CM51, CM52, CMB3, and CMB4, used to interface with the operator's panel, feature an electrical interface and pin assignment which are fully compatible with those of the source type output operator's panel connection unit for the Series 15. The following two units are available with different numbers of I/O points:

Specifications	No. of input points	No. of output points
A16B-2202-0730	96	64
A16B-2202-0731	64	32

CAUTION


Use 30/0.18 (0.75 mm²) or heavier wire as the power cable.

9.9.1 Input Signal Specifications for Source Output Type Connection Unit

Most input signals for the source output type connection unit support a sink type non-isolated interface. For some input signals, however, either sink or source type can be selected. (European safety standards demand the use of sink types.)

The machine's contacts shall conform to the following specifications:

Capacity: 30 VDC, 16 mA or higher Intercontact leakage current in closed circuit: 1 mA or less (at 26.4 V) Intercontact voltage drop in closed circuit: 2 V or less (including the voltage drop in the cables)

Fig. 9.9.1 (a) Receiver circuit

Always connect both DICMN1 and DICMN2 to 24 V or 0 V. Do not leave them open.

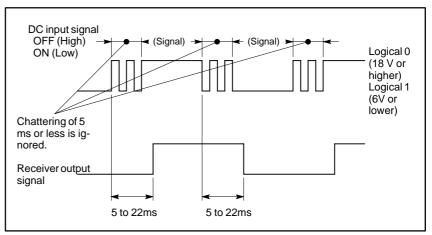


Fig. 9.9.1 (b) Signal width and delay of input signal

In the above figure, logical 0 corresponds to open contacts, while logical 1 corresponds to closed contacts.

WARNING

When a source interface is used, a ground fault in an input signal has the same effect as closing the contacts. From the viewpoint of safety, therefore, FANUC does not recommend the use of such an interface for input signals.

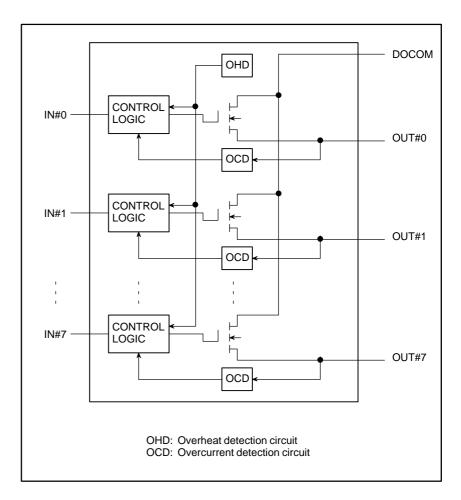
9.9.2 Output Signal Specifications for Source Output Type Connection Unit The output signals shall satisfy the following:

Maximum load current when driver is on: 200 mA (including momentary values) Saturation voltage when driver is on: 1.0 V max. Withstand voltage: 24 V +20% (including momentary values) Leakage current when driver is off: 100 μA

Prepare the following external power supply for the output signals:

Supply voltage: +2 Supply current (per	
At	least total maximum load current
(ir	ncluding momentary values) + 100 mA
Power-on timing:	At the same time as or before turning on
	the power to the control unit
Power–off timing:	At the same time as or after turning on the
	power to the control unit

	CAUTION A power supply which satisfies the above specifications shall be connected to the DOCOM and 0V power supply terminals for the output signals. The maximum current that can be carried by the DOCOM pin is 2.0 A. The total load current must not exceed this value, therefore.
Output signal driver	The output signal driver used with the operator's panel connection unit can output up to eight signals.
	The driver element monitors the current of each output signal. If an overcurrent is detected, the output of that signal is turned off. Once a signal has been turned off, the overcurrent will no longer exist, such that the driver turns the signal on again. Therefore, in the case of a ground fault or overload, the output of a signal will be repeatedly turned on and off. This also occurs when a load which causes a high surge current is connected.
	The driver element contains an overheat detector, which turns off all eight output signals if the temperature in the device exceeds the set value as a result of an overcurrent caused by a ground fault or some other failure. This off state is held. To restore signal output, logically turn the output off then back on again, for each signal, after the temperature falls below the set value. Signal output can also be restored by turning the system power off then back on again.
	On the PCB, a red LED beside the driver element lights once the overheat detection circuit operates.
	NOTE The overheat detection circuit also causes a system alarm to be issued to the CNC. (When setting pins CP1 on the PCB are closed (jumpered), this alarm is not issued to the CNC.)
Correspondence	


Correspondence					
between red LEDs and					
DO signals					

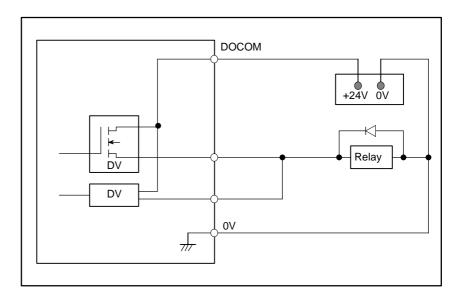
Red LED name	DO signals	Remarks
DAL1	Y q + 0.0 to Y q + 0.7	
DAL2	Y q + 1.0 to Y q + 1.7	
DAL3	Y q + 2.0 to Y q + 2.7	
DAL4	Y q + 3.0 to Y q + 3.7	
DAL5	Y q + 4.0 to Y q + 4.7	
DAL6	Y q + 5.0 to Y q + 5.7	
DAL7	Y q + 6.0 to Y q + 6.7	
DAL8	Y q + 7.0 to Y q + 7.7	

NOTE

The above red LED and alarm transfer to the CNC are supported by PCBs of version 03B and later.

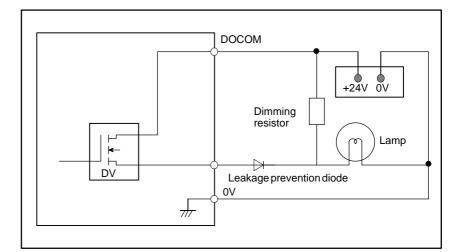
If the output of a signal cannot be turned on even though the CNC diagnostic indicates that the signal is on, that signal or another signal being handled by the same element may be overloaded, thus causing the eight output signals to be turned off. In such a case, turn the system power off and eliminate the cause of the overload.

The power for operating this driver element is supplied from DOCOM (24 VDC).


Driver element block diagram

Notes on output signals

CAUTION


Observe the following precautions when connecting output signals:

Output pins shall not be connected in parallel, as shown below.

CAUTION

When using a dimming resistor, connect a diode to prevent leakage.

9.9.3 Connector Pin Layout for Source Output Type Connection Unit

1	D100			33	DICMN1
2	DI03	19	DI01	34	DI02
3	DI06	20	DI01	35	D105
4	DI11	20	DI04	36	DI10
5	DI14	21	DI07	37	DI13
6	DI17	22	DI12	38	DI16
7	DI22	23	DI15	39	DI21
8	DI25	24	DI20	40	DI24
9	DI27	25	DI23	41	DI26
10	DI32			42	DI31
11	DI35	27	DI33	43	DI34
12	DI40	28	DI36	44	DI37
13	DI43	29	DI41	45	DI42
14	DI46	30	DI44	46	DI45
15	DI51	31	DI47	47	DI50
16	DI54	32	DI52	48	DI53
17	DI56			49	DI55
18	+24V			50	DI57
СМВЗ					
1	DO00			33	0V

		-			
1	DO00			33	0V
2	DO03	19	DO01	34	DO02
3	DO06		DO01	35	DO05
4	DO11	20		36	DO10
5	DO14	21	DO07	37	DO13
6	DO17	22	DO12	38	DO16
7	DO22	23	DO15	39	DO21
8	DO25	24	DO20	40	DO24
9	DO27	25	DO23	41	DO26
10	DO32	26	DO30	42	DO31
11	DO35	27	DO33	43	DO34
12	DO40	28	DO36	44	DO37
13	DO43	29	DO41	45	DO42
14	DO46	30	DO44	46	DO45
15	DO51	31	DO47	47	DO50
16	DO54	32	DO52	48	DO53
17	DOCOM	1		49	DO55
18	DICMN2	1		50	DOCOM

CM52		_			
1	DI60			33	0V
2	DI63	19	DI61	34	DI62
3	DI66	20	DI64	35	DI65
4	DI71	20	DI67	36	DI70
5	DI74		DI87	37	DI73
6	DI77	22		38	DI76
7	DI82	23	DI75	39	DI81
8	DI85	24	DI80	40	DI84
9	DI87	25	DI83	41	DI86
10	DI92	26	DI90	42	DI91
11	DI95	27	DI93	43	DI94
12	DIA0	28	DI96	44	DI97
13	DIA3	29	DIA1	45	DIA2
14	DIA6	30	DIA4	46	DIA5
15	DIB1	31	DIA7	47	DIB0
16	DIB1	32	DIB2	47	DIB3
17	DIB4	1		40	DIB5
		-			
18	+24V			50	DIB7

CMB4

		1			
1	DO61		DO0 0	14	DO60
2	DO64	8	DO62	15	DO63
2	DO67	9	DO65	10	DOcc
3	DO67	10	DO70	16	DO66
4	D072	10		17	D071
E	D075	11	D073	10	0074
5	D075	40	0070	18	D074
6	DO56	12	D076	19	D077
7	0V	13	DO57	20	DOCOM

NOTE

When the operator's panel connection unit having 64 DIs and 32 DOs is selected, connector CMB4 is not mounted on the PCB.

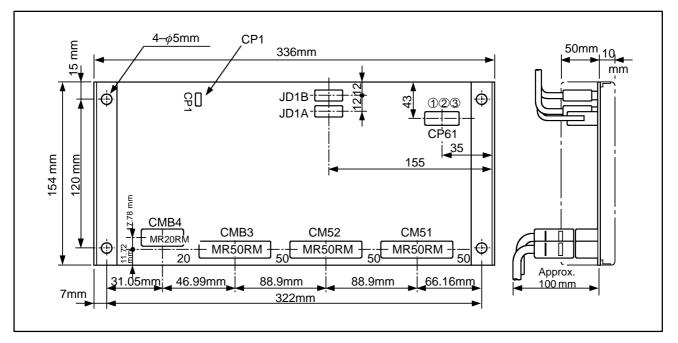
DICMN1, DICMN2:	Pins used to switch the DI common. Usually,
	jumper these pins with 0V. (input)
+24V:	+24 VDC output pin. This pin shall be used only
	for DI signals input to the operator's panel
	connection unit. (output)
DOCOM:	Power supply for the DO driver. All DOCOM pins
	are connected in the unit. (input)

I/O addresses

The following PMC addresses are assigned to the operator's panel connection unit, depending on the number of I/O points (DI/DO = 96/64 or 64/32):

[DI address]			_	7	6	5	4	3	2	1	0
			Хр	D107	DI06	DI05	DI04	DI03	DI02	DI01	D100
	DI: 96	DI: 64	X p+1	DI17	DI16	DI15	DI14	DI13	DI12	DI11	DI10
	points		X p+2	DI27	DI26	DI25	DI24	DI23	DI22	DI21	DI20
			X p+3	DI37	DI36	DI35	DI34	DI33	DI32	DI331	DI30
			X p+4	DI47	DI46	DI45	DI44	DI43	DI42	DI41	DI40
			X p+5	DI57	DI56	DI55	DI54	DI53	DI52	DI51	DI50
			X p+6	DI67	DI66	DI65	DI64	DI63	DI62	DI61	DI60
			X p+7	DI77	DI76	DI75	DI74	DI73	DI72	DI71	DI70
			X p+8	DI87	DI86	DI85	DI84	DI83	DI82	DI81	DI80
			X p+9	D197	DI96	DI95	DI94	DI93	DI92	DI91	D190
			X p+10	DIA7	DIA6	DIA5	DIA4	DIA3	DIA2	DIA1	DIA0
			X p+11	DIB7	DIB6	DIB5	DIB4	DIB3	DIB2	DIB1	DIB0

- Address p is determined by the machine tool builder.
- The common voltage can be selected for the DIs assigned to the following 20 addresses:

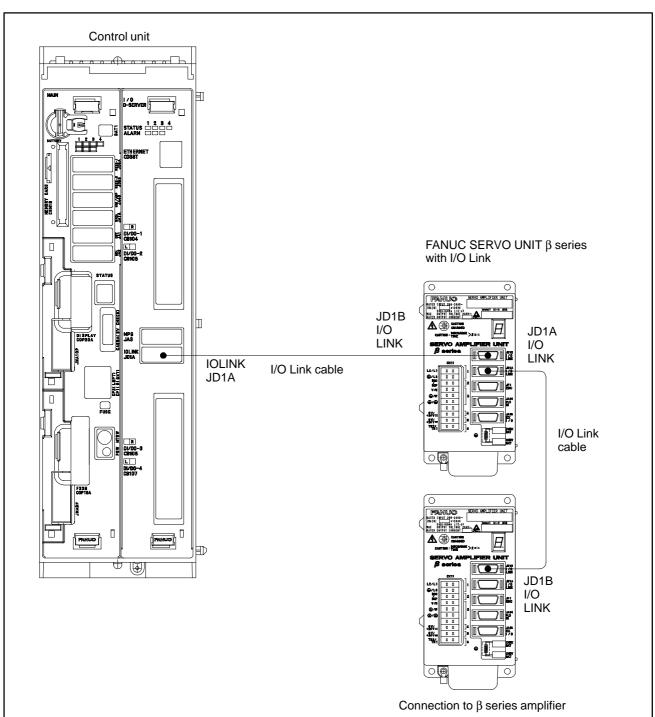

Address	Common signal to correspond
Xp+0.0, Xp+0.1, Xp+0.2, Xp+0.7 Xp+1.0, Xp+1.1, Xp+1.2, Xp+1.7	DICMN1
Xp+4.0 to Xp+4.7	DICMN2
Xp+11.4, Xp+11.5, Xp+11.6, Xp+11.7	DICMN1

[DO address]			7	6	5	4	3	2	1	0
		Υq	DO07	DO06	DO05	DO04	DO03	DO02	DO01	DO00
	DO: 64	DO: Yq+1 32	DO17	DO16	DO15	DO14	DO13	DO12	DO11	DO10
	points	points Y q+2	DO27	DO26	DO25	DO24	DO23	DO22	DO21	DO20
		Y q+3	DO37	DO36	DO35	DO34	DO33	DO32	DO31	DO30
		Y q+4	DO47	DO46	DO45	DO44	DO43	DO42	DO41	DO40
		Y q+5	DO57	DO56	DO55	DO54	DO53	DO52	DO51	DO50
		Y q+6	DO67	DO66	DO65	DO64	DO63	DO62	DO61	DO60
		Y q+7	D077	DO76	D075	D074	D073	DO72	D071	DO70

Address q is determined by the machine tool builder.

For details of address assignment, refer to the FANUC PMC Programming Manual (Ladder Language) (B–61863E).

9.9.4 Dimensions of Source Output Type Connection Unit


The following LEDs, fuses, variable resistors, and setting pins are mounted on the PCB:

[LEDs]

	:	Lights while the power to the PCB is on. Lights if an error occurs in the PCB or CNC. See Subsec. 9.9.2
[Variable resistors]		
VR1 and VR2	:	Factory–set by FANUC. The machine tool builder need not adjust these resistors.
[Setting pin]		
CP1	:	Used to specify whether the CNC will be notified of a DO signal error as a system alarm (see Subsec. 9.9.2).

9.10 CONNECTING THE FANUC SERVO UNIT β SERIES WITH I/O Link

9.10.1 Overview	The FANUC servo unit β series with I/O Link (called the β amplifier with I/O Link) is a power motion control servo unit that can be easily connected to a CNC control unit via the FANUC I/O Link. The β amplifier with I/O Link can be connected to the Series 0 <i>i</i> using the FANUC I/O Link.
	FANUC I/O Link. However, this cannot be used with the Series 0 <i>i</i> Mate.

9.10.2The β amplifier with I/O Link is connected to the Series 0i using the usual
FANUC I/O Link connection.

9.10.3 Maximum Number of Units that can be Connected	The maximum number of β amplifiers with I/O Link that can be connected to a control unit depends on the maximum number of FANUC I/O Link points provided by that control unit, as well as their assignments. For the Series 0 <i>i</i> , the maximum number of FANUC I/O Link DI and DO points are 1024 and 1024, respectively. One β amplifier with I/O Link occupies 128 DI/DO points in the FANUC I/O Link. If no units other than the β amplifiers with I/O Link are connected to the control unit, up to eight β amplifiers can be connected.	
9.10.4 Address Assignment by Ladder	If the β amplifier with I/O Link is used as an I/O Link slave, I/O addresses are assigned in the PMC in the CNC. Because data output from the slave is made in 16–byte units, the number of input/output points must be set to 128.	
	The module names are PM16I (input) and PM16O (output). The BASE is always 0, and the SLOT is 1.	

EMERGENCY STOP SIGNAL

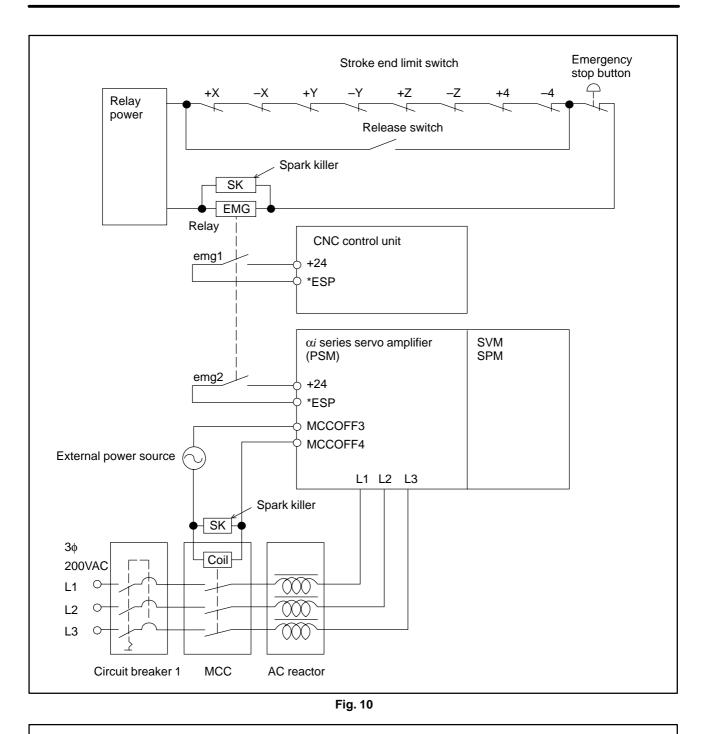
WARNING

Using the emergency stop signal effectively enables the design of safe machine tools. See "Cautions for configuring emergency stop circuit in compliance with safety standards."

The emergency stop signal is provided to bring a machine tool to an emergency stop. It is input to the CNC controller, servo amplifier, and spindle amplifier. An emergency stop signal is usually generated by closing the B contact of a pushbutton switch.

When the emergency stop signal (*ESP) contact is closed, the CNC controller enters the emergency stop released state, such that the servo and spindle motors can be controlled and operated.

When the emergency stop signal (*ESP) contact opens, the CNC controller is reset and enters the emergency stop state, and the servo and spindle motors are decelerated to a stop.


Shutting off the servo amplifier power causes a dynamic brake to be applied to the servo motor. Even when a dynamic brake is applied, however, a servo motor attached to a vertical axis can move under the force of gravity. To overcome this problem, use a servo motor with a brake.

While the spindle motor is running, shutting off the motor-driving power to the spindle amplifier allows the spindle motor to continue running under its own inertia, which is quite dangerous. When the emergency stop signal (*ESP) contact opens, it is necessary to confirm that the spindle motor has been decelerated to a stop, before the spindle motor power is shut off.

The FANUC servo amplifier αi series products are designed to satisfy the above requirements. The emergency stop signal should be input to the power supply module (called the PSM). The PSM outputs a motor power MCC control signal, which can be used to switch the power applied to the power supply module on and off.

The CNC controller is designed to detect overtravel by using a software limit function. Normally, no hardware limit switch is required to detect overtravel. If the machine goes beyond a software limit because of a servo feedback failure, however, it is necessary to provide a stroke end limit switch, connected so that the emergency stop signal can be used to stop the machine.

Fig. 10 shows an example showing how to use the emergency stop signal with this CNC controller and αi series servo amplifier.

WARNING

To use a spindle motor and amplifier produced by a manufacturer other than FANUC, refer to the corresponding documentation as well as this manual. Design the emergency stop sequence such that, if the emergency stop signal contact opens while the spindle motor is rotating, the spindle motor is decelerated until it stops.

Cautions for configuring an emergency stop circuit in compliance with safety standards To configure an emergency stop circuit in compliance with JIS safety standards(*), observe the following cautions. Compliance with these JIS safety standards is a prerequisite for complying with the EC Machine Instructions.

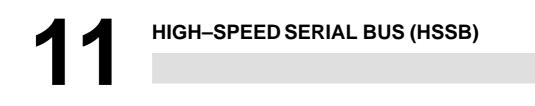
The method for shutting off the motor power section in the amplifier is based on an IGBT (transistor) rather than an electromechanical scheme. When configuring an emergency stop circuit, therefore, install a line contactor on the power input line for motor power in the power supply module in order to ensure electromechanical shut–off, and apply voltage to the control coil of the contactor via the contactor control output of the power supply module.

A failure in the amplifier may disable the output relay of the power supply module from going off, thus preventing the line contactor from shutting off the power, even when the emergency stop command input (*ESP) of the amplifier becomes low.

To secure motor power shut-off, design the emergency stop circuit in a redundancy configuration. To be specific, the emergency stop circuit must have a direct line contactor shut-off route based on an emergency stop switch that is independent of the shut-off function of the amplifier.

If a spindle amplifier module is used, shutting off the motor power line during spindle rotation disables the spindle from stopping quickly because the power regenerative function does not work, allowing the spindle to coast. So, provide the redundancy circuit mentioned above with a delay function based on an off-delay timer that allows a usual stop time.

Refer to the following material for detailed descriptions about cautions related to safety circuits.


A–71429–S13J: About Requirements for Safety Circuits and Configuration Samples

To get a copy of this material, contact your FANUC sales representative.

NOTE

Examples of important safety standards. Enclosed in parentheses are corresponding European standards.

JIS/TR B 008 and 009 (EN292–1/2)				
General matter related to machine safety				
JIS B 9960–1	(EN60204–1)	Stop categories		
JIS B 9705–1:2000	(EN954–1)	Safety categories		
JIS B 9703:2000	(EN418)	Emergency stop		

11.1 OVERVIEW

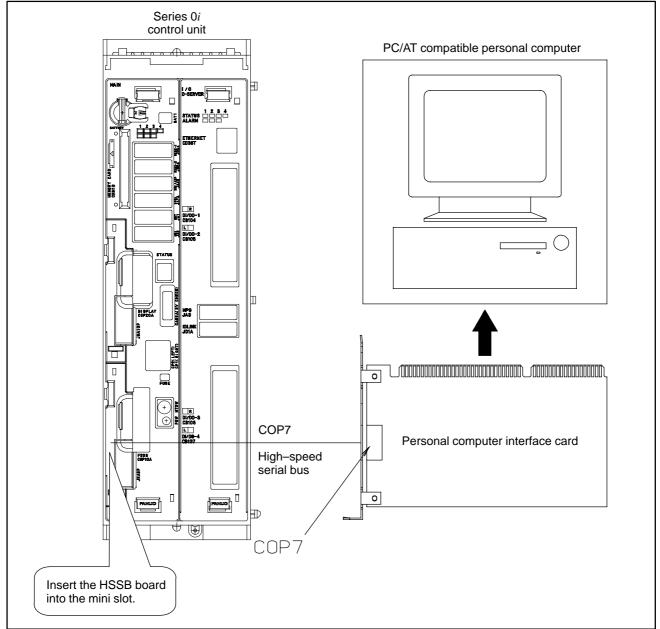
The high–speed serial bus (HSSB) enables the high–speed transfer of large amounts of data between a commercially available IBM PC or compatible personal computer and a CNC, by connecting them via a high–speed optical fiber.

On the CNC, the HSSB interface board is installed in a minislot. On the personal computer, an appropriate interface board is installed.

11.2 CAUTIONS

The use of the HSSB requires an IBM PC/AT compatible computer or FANUC intelligent terminal. The machine tool builder or end user is required to procure and maintain the personal computer.

To enable the use of the HSSB, Windows 95/Windows NT4.0 must have been installed on the personal computer.


FANUC owns the copyright for the HSSB device driver.

The software mentioned above and the contents of the related manuals may not be used or reproduced in part or whole without the prior written permission of FANUC.

NOTE

- 1 IBM is a registered trademark of IBM Corp. of the US.
- 2 Windows is registered trademarks of Microsoft Corp. of the US.
- 3 The company and product names mentioned in this manual are trademarks or registered trademarks of the respective companies.

11.3 CONNECTION DIAGRAM

Order specification for each board

			Order specification	PCB drawing No.
Interface board for CNC		A02B-0207-J203	A20B-2002-0211	
Interface board for PC	For ISA bus	1ch	A20B-8001-0583	
		2ch	A20B-8001-0582	
	For PCI bus	1ch	A20B-8001-0961	
		2ch	A20B-8001-0960	

11.4 PERSONAL COMPUTER SPECIFICATION

CAUTION

- 1 FANUC requires the customer to buy and maintain the personal computer itself.
- 2 FANUC is not responsible for the proper working about the personal computer itself and any troubles caused by using the personal computer.
- (1) Specification of Personal Computer in Case that the Interface Board of ISA Type are Used
 - This interface board for the personal computer is based on the ISA specifications and it can be used into IBM–PC/AT or full compatible computer. (CPU of the computer must be more than 486.)
 - The HSSB interface board uses 16 bytes of I/O space defined with rotary switch as mentioned in "MAINTENANCE Setting of Switched". The other ISA extension boards that use the same resource with HSSB board can not be used.
 - Driver installation is required for using HSSB interface board. The driver for the HSSB interface board is included in "Open CNC Driver Libraries Disk (order specification is A02B–0207–K730).
 - Please examine the connection test including the communication between the personal computer and CNC controller sufficiently.
 - Following shows the required power of the interface board for ISA type.

1ch version	+5VDC, 1A
2ch version	+5VDC, 1.5A

(2) Specification of Personal Computer in Case that the Interface Board of PCI Type are Used

- This interface board for the personal computer is based on the PCI specifications and it can be used into a computer with PCI slot (5V, ISA slot type).
- Driver installation is required for using HSSB interface board. The driver for the HSSB interface board is included in "Open CNC Driver Libraries Disk (order specification is A02B–0207–K730). The revision of the driver must be Edition 1.6 or later for the board of PCI type.
- Please examine the connection test including the communication between the personal computer and CNC controller sufficiently.
- Following shows the required power of the interface board for PCI type.

1ch version	+5VDC, 0.8A
2ch version	+5VDC, 1.0A

11.6 HANDLING PRECAUTIONS

(1) Personal computer interface boards

The same environmental conditions as those for the installation of the personal computer must be satisfied.

(2) CNC interface board

The same environmental conditions as those for the installation of the CNC must be satisfied.

(1) Personal computer interface board

(A) Electrostatic interference

The personal computer interface board is shipped in an anti–static bag. To store or transport the interface board, always place it in the anti–static bag. Before removing the interface board from the anti–static bag, ground your body.

(B) Protection of card edge terminals

When handling the personal computer interface board, do NOT touch its card edge terminals (the gold–plated contacts which engage with a mating connector). If you accidentally touch any card edge terminal, wipe it gently with clean or ethyl alcohol–dipped tissue paper or absorbent cotton. Do not use any organic solvent other than ethyl alcohol.

(2) Optical connector and fiber cable See Appendix D.

11.7 PROCEDURE FOR INSTALLING PERSONAL COMPUTER INTERFACE BOARDS

WARNING

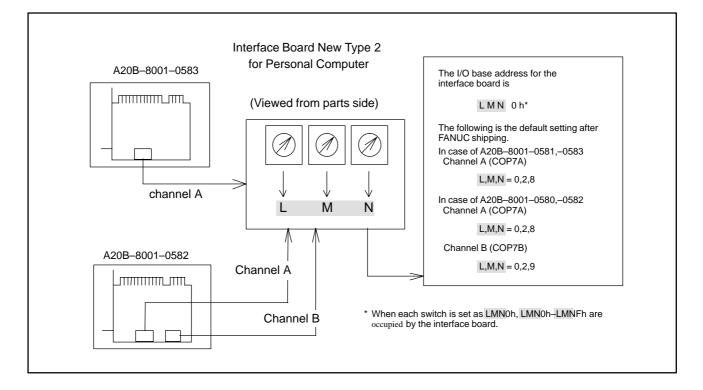
Before starting to mount or remove a personal computer interface board, switch off the personal computer and its peripheral devices, and disconnect their power supply cables. Otherwise, there is a serious danger of electric shock.

(1) Mounting Method

- 1. Remove the covering plate of ISA extension slot on the personal computer.
- 2. Set the I/O base address of the interface board (in only case of ISA type).

Before mounting the interface board of ISA type, set the I/O address not to conflict with the I/O address areas that are used by the personal computer and other ISA extension boards. Refer to "MAINTENANCE – Setting of Switches". Set the I/O address not to conflict with each other in case that two or more interface boards for the personal computer are used (HSSB multi–connection). The interface board of PCI type is setting free.

- 3. Insert the interface board for the personal computer to the ISA connector tightly or PCI connector.
- 4. Screw the plate of interface board to the computer.
- 5. Confirm connection (in only case of HSSB multi–connection) Confirm following items for installing drivers of HSSB interface board in case of HSSB multi–connection.
 - In case of ISA type I/O port address set to HSSB channel Correspondence between HSSB channel and CNC
 - In case of PCI type PCI slot number which HSSB board is mounted (slot number is marked to PCB normally). Correspondence between HSSB channel and CNC
- 6. Restore the covering plate.


CAUTION

Do not touch the edge terminals (the contacts that engage with a mating connector) of the interface board.

Setting the rotary switch on the interface board in the personal computer

Using the rotary switch on the interface board in the personal computer, set the base address of the I/O space for use by this HSSB board.

1. Setting of I/O Base Address in Case of Interface Board new Type 2 For Personal computer (A20B–8001–0580, –0581, –0582, –0583)

Installing Drivers

Refer to README.TXT in Driver/Library disks for details of installing drivers.

Supplementary Explanations in Case of Windows95

1. Installing Drivers

The way of installing drivers depends on whether the board is ISA type or PCI type.

- In case of ISA type Install a Driver at a time per channel manually.
- In case of PCI type The board is detected automatically and its driver is installed automatically too.
- 2. Setting of Correspondence between HSSB Channel and CNC Define correspondence between HSSB channel and connected CNC at Control Panel Device Manager after some drivers are installed .
 - In case of ISA type Input I/O port address set to the channel, CNC type and its name connected to the channel at Device Manager.

• In case of PCI type

In case that two or more same PCI type boards are mounted to PCI slots, some devices of same boards are registered to Device Manager as "HSSB Type 2 PCI 1(2) channel" in item of "FANUC Open CNC".

The upper device registered to Device Manage is correspond to the board which mounted to the slot which slot number is smaller. Check connections between HSSB channel and CNC, input CNC type and its name connected to the channel for a channel at Device Manager.

3. Node Number

Node numbers are allotted as follows.

When some ISA type boards and PCI bus boards are installed, nodes are allotted to the ISA type board at first. The node is allotted every time the driver for ISA type board is installed.

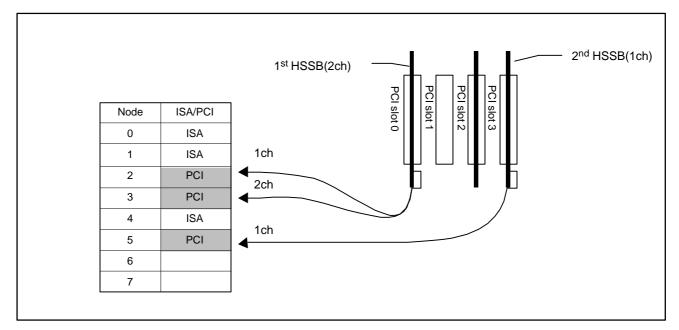
Nodes for PCI type board are allotted next to the number of time which driver is installed allotted to ISA bus board.

Nodes are allotted in order to PCI type board which inserted in lower PCI slot number.

Confirm correspondence between the node and CNC at status display by NCBOOT32.EXE.

Supplementary Explanations in Case of WindowsNT

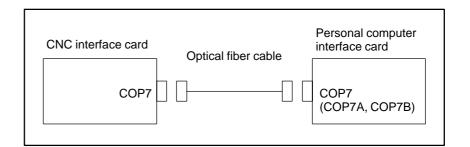
1. Installing Drivers


Install manually the driver which is common to PCI/ISA.

- 2. Setting of Correspondence between HSSB Channel and CNC Installing the driver makes 8 nodes automatically. Define node information at Control Panel –HSSB every a HSSB channel exists.
 - In case of ISA type Input I/O port address set to the channel, CNC type and its name connected to the channel.

• In case of PCI type

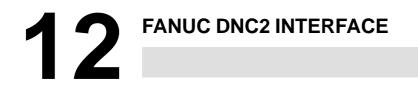
Select "Use PCI" at I/O port address. Then input CNC type and its name connected to the channel.


The node which is selected as "Use PCI" is allotted in order to PCI type board which inserted in lower PCI slot number, as follows.

3. Node Number

Node number is allotted manually as stated above.

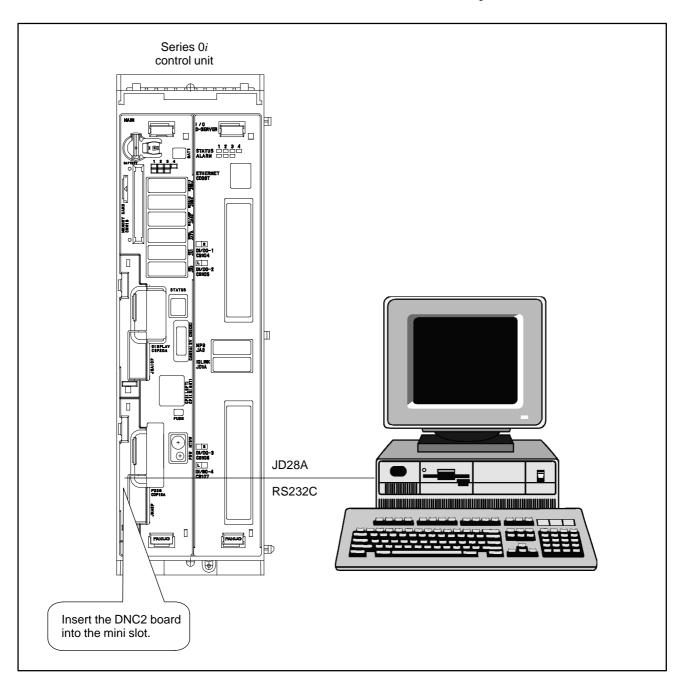
11.8 RECOMMENDED CABLES

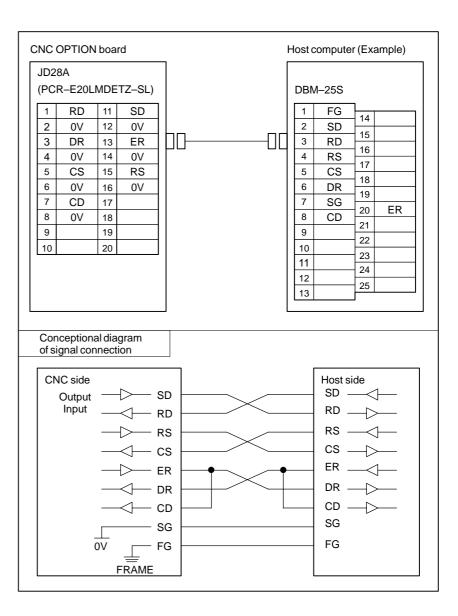


Usable Optical Fiber Cable (The FSSB optical fiber cable to be used outside of the cabinet.)

```
A66L-6001-0026#L1R003 : Cable Length = 1 m
A66L-6001-0026#L3R003 : Cable Length = 3 m
A66L-6001-0026#L5R003 : Cable Length = 5m
A66L-6001-0026#L7R003 : Cable Length = 7m
A66L-6001-0026#L10R03 : Cable Length = 10m
A66L-6001-0026#L15R03 : Cable Length = 15m
A66L-6001-0026#L20R03 : Cable Length = 20m
A66L-6001-0026#L30R03 : Cable Length = 30m
A66L-6001-0026#L50R03 : Cable Length = 50m
A66L-6001-0026#L100R3 : Cable Length = 100 m
```

NOTE


- 1 The optical fiber cables for the FANUC I/O Link cannot be used with the HSSB.
- 2 Optical fiber cables cannot be cut or connected without specialized equipment, usually not available to machine tool builders. Therefore, use only the cables listed above.


12.1 GENERAL

FANUC DNC2 is a communication protocol that provides an RS–232–C interface between the CNC and a personal computer (PC). This interface enables the CNC and PC to exchange data with each other. The hardware used to connect the CNC and PC is the same as that used for remote buffer connection.

For information about the specifications and other details of FANUC DNC2, refer to "FANUC DNC2 Description (B–61992E)."

12.2 DNC2 INTERFACE (RS-232-C)

Connect CS to RS when CS is not used.

Connect DR to ER when DR is not used.

Always connect CD to ER.

NOTE

When an IBM PC/AT is used, the RS signal goes low in the reception phase. In this case, connect CS on the host side to ER on the same side.

13 CONNECTION TO OTHER NETWORKS

The Series 0i can be connected to the following networks. For an explanation of how to make the connection, refer to the manuals listed below:

Manual title	Manual code
FANUC Data Server Operator's Manual	B–62694EN
FANUC Ethernet Board Operator's Manual	B–63354EN
FANUC Profibus-DP Board Operator's Manual	B–62924EN
FANUC DeviceNet Board Operator's Manual	B–63404EN
FANUC FL-net Board Operator's Manual	B–63434EN

14. CNC DISPLAY UNIT WITH PC FUNCTIONS

B-63833EN/03

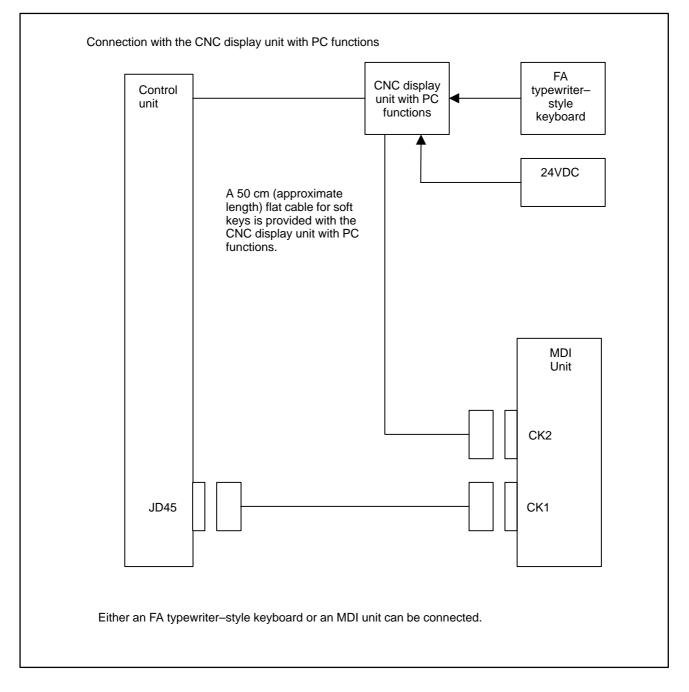
14.1 OVERVIEW

14.2 CAUTIONS

The CNC display unit with PC functions is on an IBM PC compatible panel computer. Connecting the CNC display unit with PC functions to an Series 0*i* system via a high–speed optical fiber (high–speed serial bus) provides the system with personal computer functions.

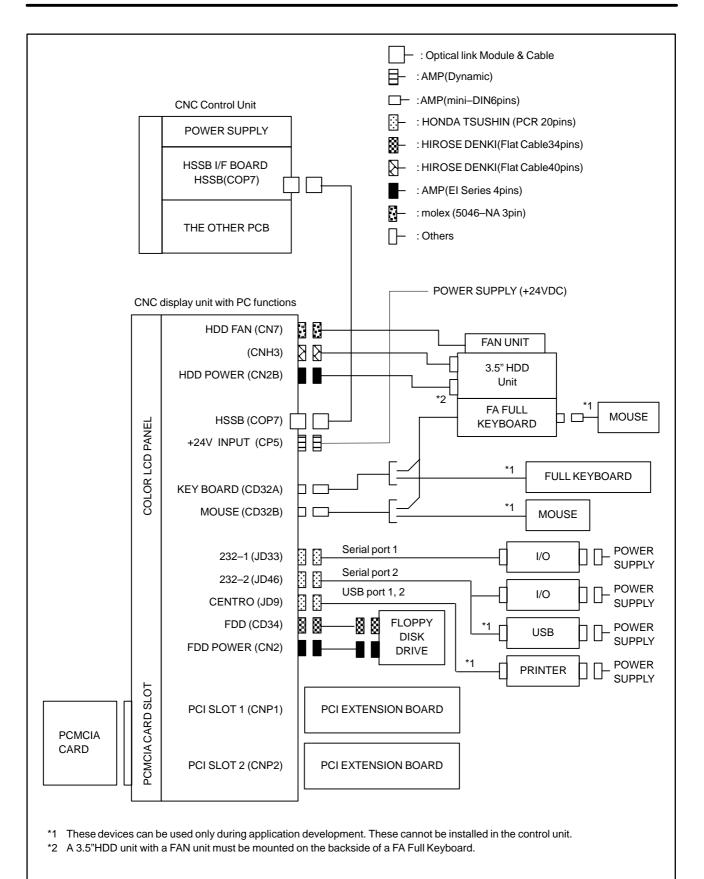
- The copyright of Windows 2000 and other software provided with the CNC display unit with PC functions is owned by Microsoft Corporation (USA), NeoMagic Inc., Phoenix Technologies Ltd., PFU Co.,Ltd, and FANUC LTD.
 - No part of the software described above, or its manuals, may be used or reproduced without permission.
 - No part of the software described above, or its manuals, may be sold independently of the CNC display unit with PC functions.
 - The software described above, and its manual, must be used under the conditions described in the attached license agreement.
 - The use of the CNC incorporating the CNC display unit with PC functions shall imply that the user agrees to the conditions of the license agreement described above.

*Windows2000 is a registered trademark of Microsoft corporation, USA

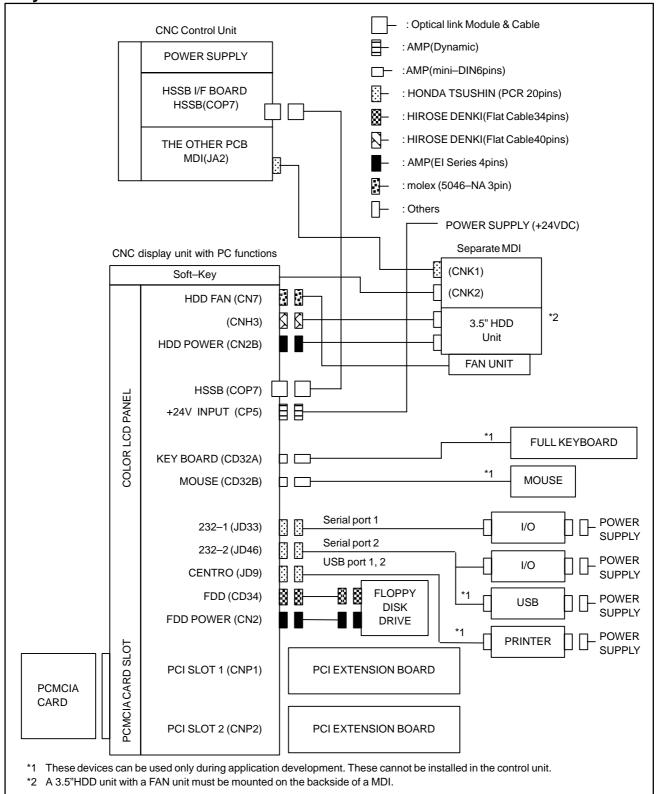

*Company name and product name mentions in this manual are (registered) trademark of each company.

CAUTION

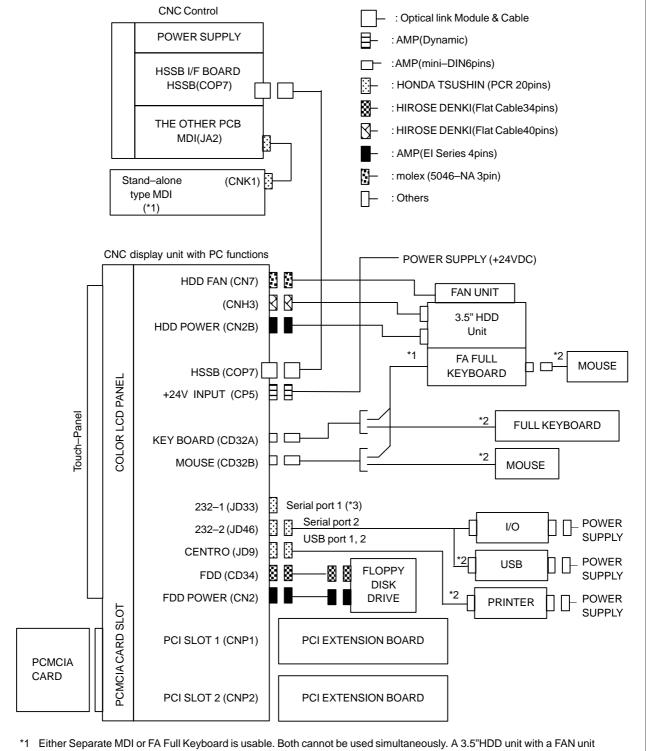
1 If an operation error or mishap occurs, the data on the hard disk may be lost, even if all the installation conditions are satisfied. Therefore, always maintain a backup copy of the data on the hard disk in case the stored data is lost or damaged.


Especially, the power–off on accessing the hard disk must not be done because that possibility is very high. Please concern for the end–users.

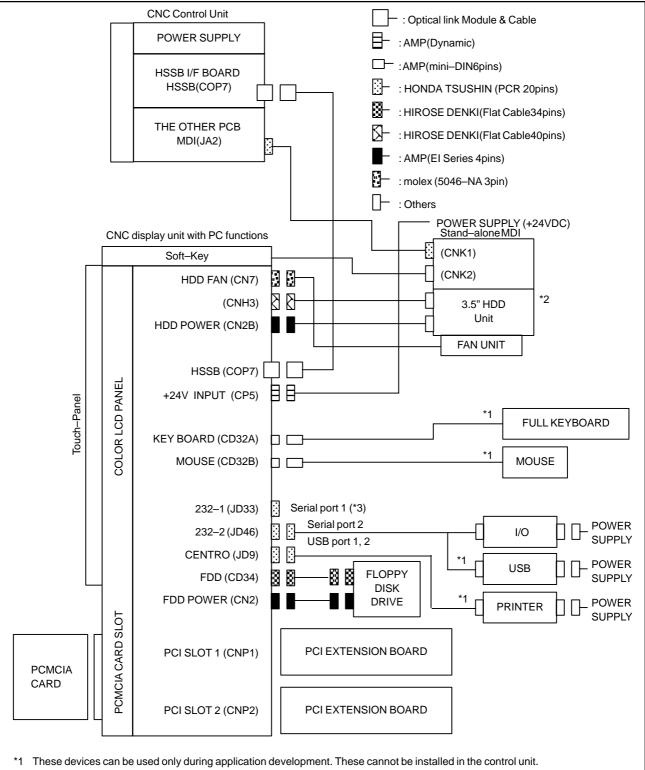
2 Be sure to finish the OS and the applications through the proper operation of shutdown before turning the power off. Without the above-mentioned operation, there is no assurance of the following action. At worst, the command of initializing the HDD will not work.



14.4 GENERAL CONNECTION DIAGRAMS


14.4.1 CNC Display Unit with PC Functions Having Neither Soft Keys nor a Touch Panel

14.4.2 CNC Display Unit with PC Functions Having Soft Keys but No Touch Panel



14.4.3 CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key

- must be mounted on the backside of a FA Full Keyboard or a MDI.
- *2 These devices can be used only during application development. These cannot be installed in the control unit.
- *3 RS232-C channel 1 is not usable because it is used by the Touch-Panel.

14.4.4 CNC Display Unit with PC Functions Having a Touch Panel and Soft Key

- *2 A 3.5"HDD unit with a FAN unit must be mounted on the backside of a MDI.
- *3 RS232-C channel 1 is not usable because it is used by the Touch-Panel.

14.5 SPECIFICATIONS

14.5.1 Installation Environmental Conditions When CNC display unit with PC functions is used, the following environmental conditions (as measured top of the CNC display unit with PC functions inside the cabinet) must be ensured for the CNC display unit with PC functions unit installation.

Ambienttemperature	Operating: +5 to +45°CNon-operating: - 20 to +60°C
Change in temperature	Up to 20 °C/hour
Ambient relative humidity	Standard : 10 to 75% (non–condensing) Short–term : 10 to 90% (non–condensing) (within one month)
Vibration	Operating : Up to 0.5G Non–operating : Up to 1.0G
Environment	Installed in a hermetically sealed cabinet
Altitude	Operating : - 60m to 1000m Non-operating : - 60m to 12000m

*1 Ambient temperature during operation :

The temperature sensor on the CNC display unit with PC functions PCB monitors whether the temperature is within the specified range.

1) If the temperature at power-on is beyond the allowable range only CNC/PMC is started. After that if the temperature becomes to within the allowable range, CNC display unit with PC functions automatically starts.

This function is disable when Option for Non–Connecting with CNC is ordered. CNC display unit with PC functions starts up irrespective of the temperature. Therefore, the temperature around CNC display unit with PC functions should be watched by the other method.

- 2) If the temperature drifts out of the allowable range after normal activation, an error occurs when the hard disk is next accessed.
- *2 Vibration :

The CNC display unit with PC functions unit and built–in hard disk drive may suffer resonance at certain frequencies. Careful checking is required on the CNC display unit with PC functions unit has been mounted on a machine.

CAUTION

If an operation error or mishap occurs, the data on the hard disk may be lost, even if all the installation conditions are satisfied. Therefore, always maintain a backup copy of the data on the hard disk in case the stored data is lost or damaged.

Especially, the power–off on accessing the hard disk must not be done because that possibility is very high. Please concern for the end–users. Some development or maintenance options may not satisfy the above specifications.

*3 Measure for Noise :

Please measure for noise sufficiently referring to Section 3.5.

14.5.2 Power Supply Specification

(1) Input power

(a) Specification

To use the CNC display unit with PC functions, prepare a power supply that satisfies the requirements listed below:

Input power supply voltage	+24 VDC ±10%				
	Max: 7A (10.4"/12.1" LCD type) Max: 0A (15.0" LCD type)				

NOTE

Use of the FANUC I/O unit also requires +1 A.

(b) Timing

Input power can be turned on/off without relation to CNC power on/off.

(2) Supply power

The CNC display unit with PC functions can supply power, as listed below, to peripheral equipment. Check the amount of current drawn by each unit you want to use.

Voltage	Equipment	Max. Current			
+5V	FDD, Keyboard, Mouse HDD(secondary) or ATAPI device PCI extension board USB device PCMCIA card	4000mA	Max.500mA/port		
+3.3V	PCI extension board	1000mA			
10.00		TOOOTIA			
+12V	PCI extension board PCMCIA card HDD(secondary) or ATAPI device	1700mA			
-12V	PCI extension board	140mA			

(3) Power Consumption

10.4"/12.1" LCD type : about 40W

15.0" LCD type : about 52W

Above operating includes the following devices.

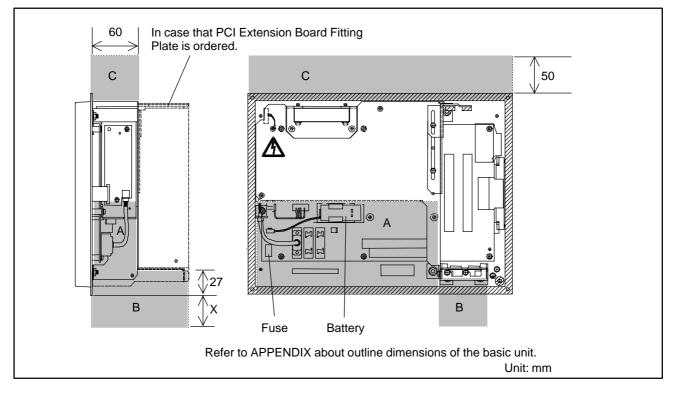
 CNC display unit with PC functions, HDD Unit, FAN for HDD, FDD Unit, Full Keyboard, and Mouse.

Above operating does not include the following devices.

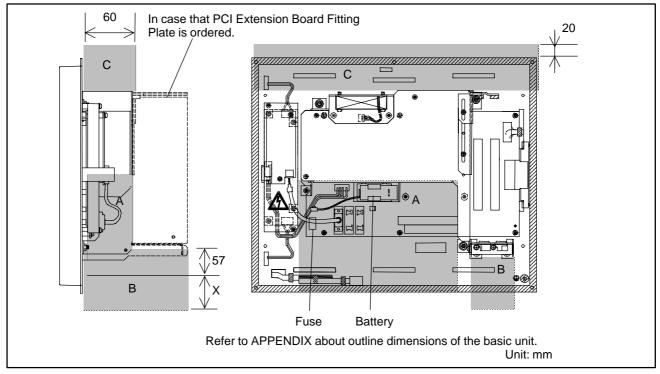
 PCMCIA Card, PCI Extension board, and Devices to connect by Serial or Parallel Interface.

NOTE

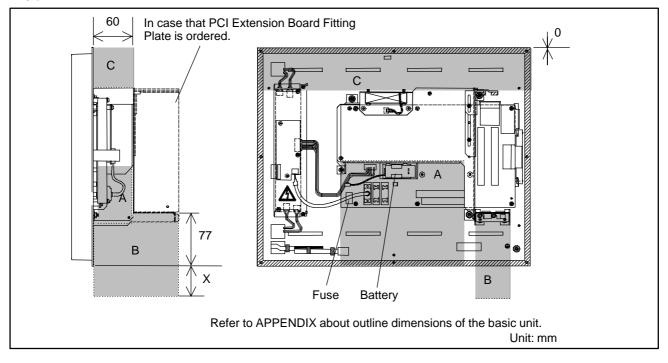
Above power consumption is reference. If peripherals are connected or PCI extended boards are mounted, the power consumption will increase. Also, please consider the cabinet design and the cooling method which is most suitable to the total power consumption.


14.5.3 Shutdown

Before switching off the CNC display unit with PC functions, terminate all applications and the OS according to the normal shutdown procedure. If the CNC display unit with PC functions is switched off while an application or the OS is still running, the CNC display unit with PC functions may fail to operate normally next time it is switched on. In the worst case, the initialization command for the hard disk drive may become inoperable.

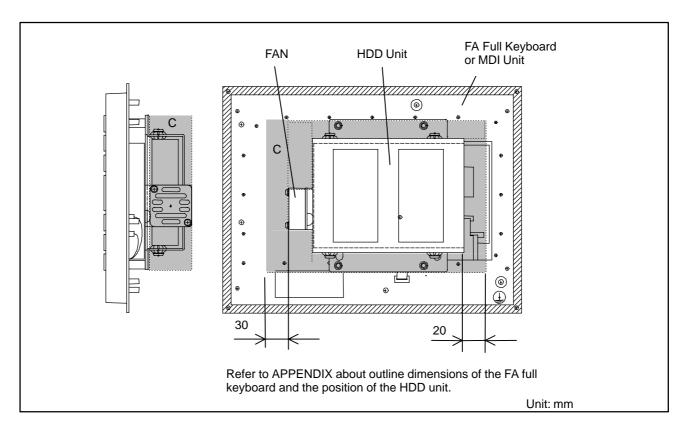

14.6 INSTALLATION	The following three spaces are required around the CNC display unit with PC functions.
SPACE	A: Space for connecting cables. Also, If you wish to exchange a battery or a fuse without removing CNC display unit with PC functions from the machine panel, this space A is required and it is necessary to be able to access to the battery or the fuse from the rear side of the CNC display unit with PC functions.
	B: If PCI extension board exists, this space B is required for cable connection. The dimension X depends on cables connected to the PCI Extension board.
	C: This space is required for airflow.

CNC display unit with PC functions consumes the power described at "14.5.2. Power Specification" item 3) . Therefore, please install cooling system in the cabinet with keeping space C.


14.6.1 Basic Unit 10.4″ LCD Type

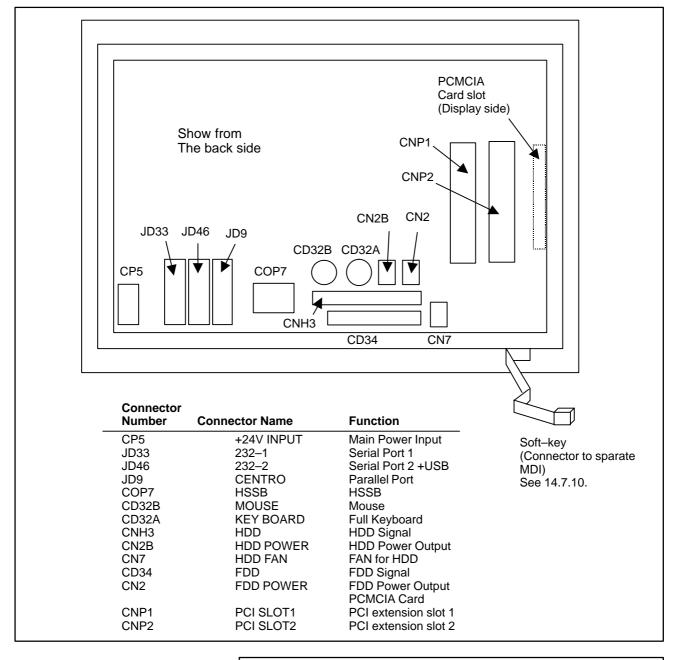
14.6.2 Basic Unit 12.1″ LCD Type

14.6.3 Basic Unit 15.0″ LCD Type


14.6.4 HDD Unit

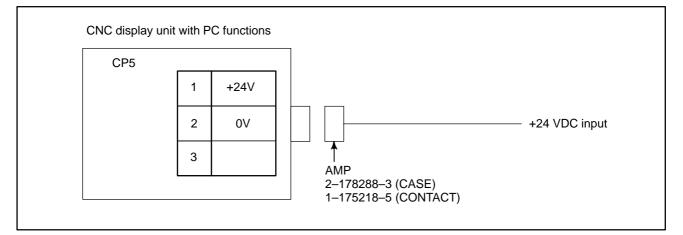
The HDD unit is mounted on the backside of the MDI or the FA Full-Keyboard.

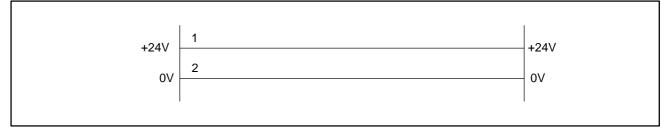
Reserve space C in the above figure.


And reserve space for connecting cables of HDD signal, HDD power, FAN power , and MDI/FA full keyboard signal too.

The HDD unit itself also generates heat. Consider heat removal for both the HDD unit and basic unit.

14.7 PERIPHERAL EQUIPMENT AND CONNECTION

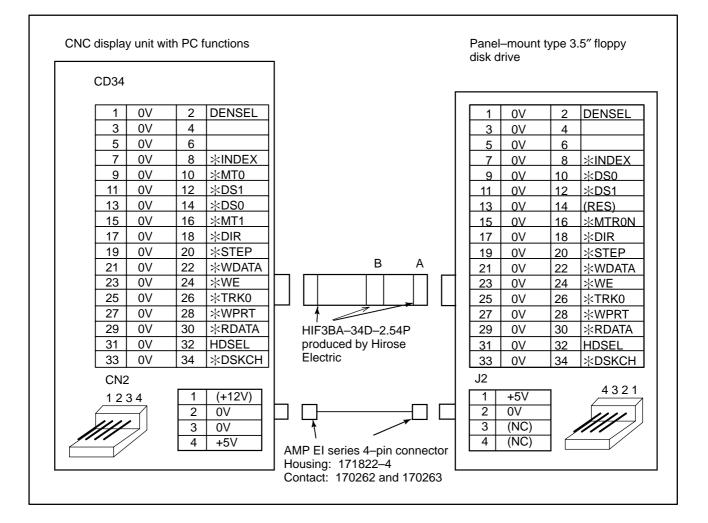

14.7.1 Connector Layout Diagram


NOTE

The Soft–Key only exists in the CNC display unit with PC functions with Soft–Key.

14.7.2 Main Power Supply Input

(1) Cable connection


(2) Recommended cable conductor

Use a cable whose conductor is not smaller than AWG16 (1.3 mm²).

NOTE

This power supply cable should be routed away from the signal lines of the CNC display unit with PC functions.

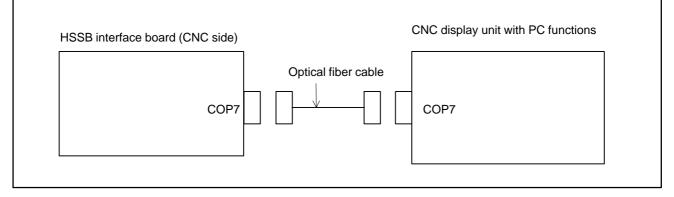
14.7.3 Floppy Disk Drive (Signal and Power Supply)

NOTE

- 1 This is a standard interface for the IBM PC compatible. Note the following:
 - Only two floppy disk density modes (720 Kbytes and 1.44 Mbytes) are supported.
 - The DENSEL signal level is fixed to low.
 - Can not used floppy disk drive unit that needs 12V.
- 2 Commercial floppy disk drives are prone to compatibility problems with personal computers to some degree. It is not guaranteed that the CNC display unit with PC functions can operate with every commercial floppy disk drive. Machine tool builders are requested to check the operability of the floppy disk drives they select. Keep in mind that commercial floppy disk drives are neither dust-proof nor moisture-resistant.
- 3 The interface on the drive side shown above is only an example. Design an interface cable according to the specification of the drive with which it is used.

	0V	1		<u> </u>	1	0V			
	DENSEL	2		2	2	DENSEL			
	0V	3		3	3	0V			
	(NC)	4		4 '	4	(NC)			
		5	1	5 ¦	5				
	0V	6	1	6	6	0V			
	(NC)	7	1	7 '	7	(NC)			
	V0	8	1	8	8	0V			
	*INDEX	9	1	9	9	*INDEX			
	0V	10	1	10	16	0V			
	*MT0	11	I		15	*0S0			
	0V	12		12	14	0V			
	*DS1	13		13	13	*DS1			
	0V	14	i		13	0V			
	*DS0	14		<u>14</u> 15 ¦	12	(RES)			
	0V		1			0V			
	*MT1	16	I I	16	10	*MTRON			
	0V	17		17	17	0V	Panel-mount type		
CNC	*DIR	18		18	18	*DIR	3.5" floppy disk unit		
CD34	0V	19	1	19	19	0V	J1		
• - • ·	*STEP	20	1	20	20	*STEP			
	0V	21	1	21	21	0V	51		
	*WDATA	22	-	22	22	*WDATA			
		23		23	23	0V			
*WE		24	1	24	24	*WE			
		25	1	25	25	0V			
		26	1	26	26				
	*TRK0	27		27	27	*TRK0			
	0V	28		28	28	0V			
	*WPRT	29	1	29	29	*WPRT			
	0V	30	<u> </u>	30	30	0V	•		
	*RDATA	31		31	31	*RDATA	<u> </u>		
	0V	32	1	32 '	32	0V	Pin assignment for		
	HDSEL	33			33	HDSEL	connector A on the		
	0V	34		0.4	34	0V	previous page (see Note)		
	*DSKCH	54		<u> </u>	54	*DSKCH	NOLE)		
	L								
			Pin assignment for						
CN2	CN2		on the previous page	ge (see N	lote)	J2	J2		
+5V 4 🗆	+5V	1			1	+5V	□ 1 +5V		
0V 3 □		2			2	+3 v 0V			
0V 3 □ 0V 2 □	0V 0V	3			3	(NC)	□ 2 0V		
+12V 1 🗆	+12V	4			4	(NC)	$\square 4 (NC)$		
	7121					(110)			

(1) Cable connection

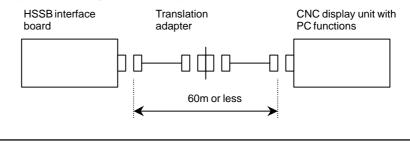

This is the standard interface for the IBM PC compatible. Commercially available cables are cross–connected between pins 10 and 16 (between the CNC and drive A) as shown above. In this case, "drive No. setting pin" on drive A should be set to 1 (second drive).

(2) Specification of the recommended cable

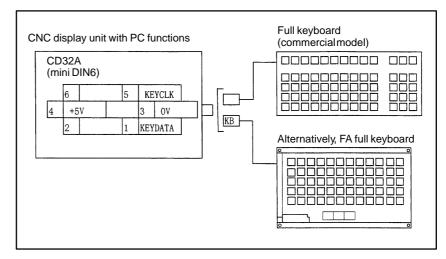
A02B–0207–K801: Signal cable and power supply cable (1.0 m long)

14.7.3.1 Operating environment	 When using this unit on the machine, observe the following cautions: (1) Dust Because the CNC display unit with PC functions is not covered with panels, except for the front door section, it must be enclosed in a sealed cabinet. While the door is open, dust can enter the floppy disk unit and cabinet via the disk insertion slot. If the CNC display unit with PC functions is installed in a dusty environment, more floppy disk failures than normal may occur.
	 (2) Temperature +5°C to +45°C (operating) The operating temperature range for this unit is stricter than ordinary units because of the restrictions imposed by the floppy disk. So, pay special attention to the way it is cooled. Avoid blowing air directly from a cooling fan, as dust in the air may stick to the components of the unit.
14.7.3.2 Handling precautions	Do NOT switch on the power to CNC display unit with PC functions while a floppy disk is inserted, and especially when the floppy disk is being accessed (LED is on). Machine tool builders are requested to provide this information to their end users.

14.7.4 High–speed Serial Bus (HSSB)


1) Recommended cables (optical fiber cables)

	A66L-6001-0026#L1R003:	Cable length $= 1 \text{ m}$
	A66L-6001-0026#L3R003:	Cable length $= 3 \text{ m}$
	A66L-6001-0026#L5R003:	Cable length $= 5 \text{ m}$
	A66L-6001-0026#L7R003:	Cable length $= 7 \text{ m}$
	A66L-6001-0026#L10R03:	Cable length $= 10 \text{ m}$
	A66L-6001-0026#L15R03:	Cable length = 15 m
	A66L-6001-0026#L20R03:	Cable length = 20 m
	A66L-6001-0026#L30R03:	Cable length = 30 m
	A66L-6001-0026#L50R03:	Cable length = 50 m
	A66L-6001-0026#L100R3:	Cable length = 100 m
2)	Junction-only low-loss optic	al fiber cables
	A66L-6001-0029#L1R003:	
	A66L-6001-0029#L3R003:	Cable length $= 3m$
	A66L-6001-0029#L5R003:	Cable length $= 5m$
	A66L-6001-0029#L7R003:	Cable length $= 7m$
	A66L-6001-0029#L10R003	: Cable length = $10m$
	A66L-6001-0029#L15R003	: Cable length = $15m$
	A66L-6001-0029#L20R003	: Cable length = $20m$
	A66L-6001-0029#L30R003	: Cable length = $30m$
	A66L-6001-0029#L40R003	: Cable length = $40m$
	A66L-6001-0029#L50R003	: Cable length = $50m$
-		


3) Low–loss optical junction adapter A63L–0020–0004

NOTE

- 1 The high–speed serial bus cannot use an optical fiber cable designed for the FANUC I/O link, FSSB extension line, or serial spindle.
- 2 Machine tool builders cannot cut or extend optical fiber cables. Select an appropriate type from the above list.
- 3 No FANUC I/O link junction adapter other than the low–loss optical junction adapter can be used.
- 4 When using a low–loss optical junction adapter, be sure to use a junction–only low–loss optical fiber cable together with it.
- 5 Keep the total length of the junction adapter and junction–only low–loss optical fiber within 60 m.

14.7.5 Full Keyboard

1) Recommended full keyboard

- A86L–0001–0210 : 101 type (in the market) Only for application development or maintenance
- A86L–0001–0211 : 106 type (in the market) Only for application development or maintenance

A02B-0236-C131#JC :

FA Full Keyboard (Japanese) for 10.4" LCD type

A02B-0236-C131#EC :

FA Full Keyboard (English) for 10.4" LCD type

A02B-0236-C132#JC:

FA Full Keyboard (Japanese) for 12.1" LCD type

A02B-0236-C132#EC :

FA Full Keyboard (English) for 12.1" LCD type

A08B-0082-C150#JC :

FA Full Keyboard (Japanese) for 15.0" LCD type

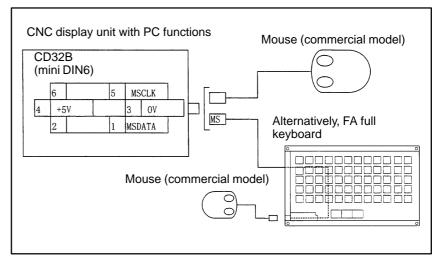
A08B-0082-C150#EC:

FA Full Keyboard (English) for 15.0" LCD type

A08B-0082-C151#JC :

FA Full Keyboard (Japanese) for 15.0" LCD type (punch panel built-in)

A08B-0082-C151#EC :


FA Full Keyboard (English) for 15.0" LCD type (punch panel built-in)

NOTE

1 Commercial full keyboards are prone to compatibility problems with personal computers to some degree. It is not guaranteed that the intelligent terminal type 2 can operate with every commercial full keyboard. Machine tool builders are requested to check the operability of the full keyboards they select. Keep in mind that general commercial full keyboards are neither dust-proof nor moisture-resistant.

2 If an FA full keyboard is incorporated into the system, clamp its cable at a point as close to it as possible so that the weight of the cable is not applied directly to the connector.

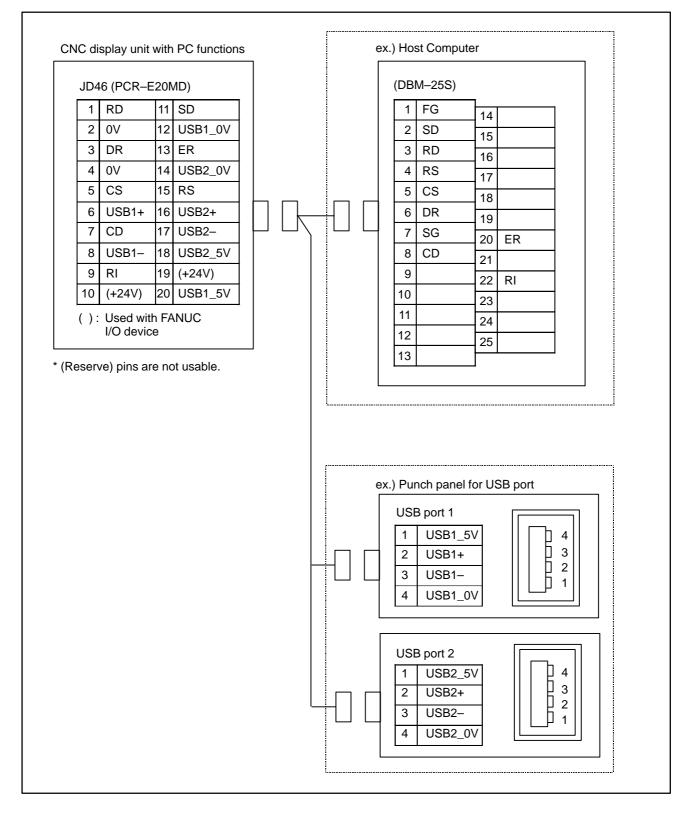
14.7.6 Mouse

1) Recommended mouse

A86L–0001–0212 Standard PS/2 mouse (commercial model): for development and maintenance use only

NOTE

- 1 Commercial mice are prone to compatibility problems with personal computers to some degree. It is not guaranteed that the intelligent terminal type 2 can operate with every commercial mouse. Machine tool builders are requested to check the operability of the mice they select. Keep in mind that general commercial mice are neither dust-proof nor moisture-resistant.
- 2 If an FA typewriter-style keyboard is incorporated into the system, clamp its cable at a point as close to it as possible so that the weight of the cable is not applied directly to the connector.
- 3 The Mouse and The Touch–Panel can not be used simultaneously.


14.7.7 Centronics Parallel Port

	splay unit v		C functions	1	Ex	ample	e) Printer		
JD9 (PCF	R-E20MD)								
1	STD0	11	*STB			1	*STB	19	0V
2	STD1	12	0V			2	STD	20	0V
3	STD2	13	*AFD			3	STD1	21	0V
4	STD3	14	0V			4	STD2	22	0V
5	STD4	15	*INIT	\vdash \sqcup		5	STD3	23	0V
6	STD5	16	0V			7	STD5	25	0V
7	STD6	17	*SLIN			6	STD4	24	0V
8	STD7	18	*ACK			8	STD6	26	0V
9	PE	19	*ERROR			9	STD7	27	0V
10	SLCT	20	BUSY			10	*ACK	28	0V
						11	BUSY	29	0V
						12	PE	30	0V
				-		13	SLCT	31	*INIT
						14	*AFD	32	*ERROR
						15		33	0V
Reco	mmended	cable	conductor			16	0V	34	
466L	-0001-028	34#10	P: 10 pairs of	of 0.08 mm ² wires		17	FG	35	
) Recommended cable–end connectors (JD9 side) PCR–E20FA (Honda Tsushin Kogyo Co., Ltd.) FI30–20S (Hirose Electric Co., Ltd.)				18		36	*SLIN		

NOTE

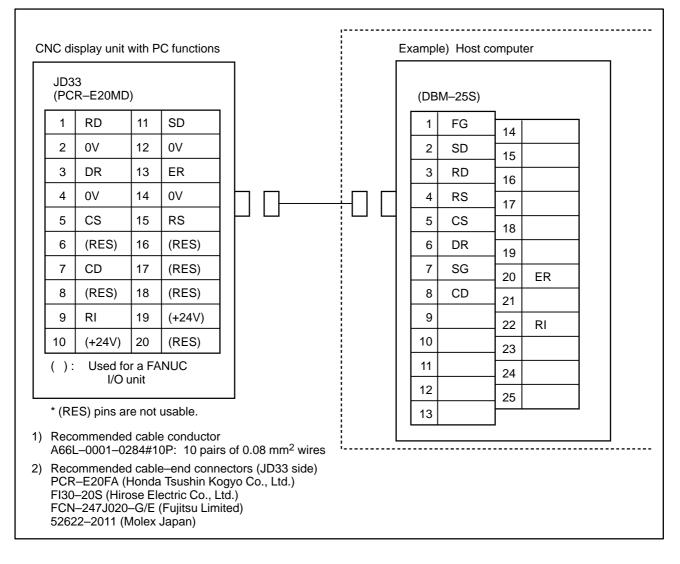
- 1 The interface on the printer side shown above is only an example. Design an interface cable according to the specification of the printer with which it is used.
- 2 Commercial printers are prone to compatibility problems with personal computers to some degree. It is not guaranteed that intelligent terminal type 2 can operate with every commercial printer. Machine tool builders are requested to check the operability of the printers they select. Keep in mind that general commercial printers are neither dust–proof nor moisture–resistant.

14.7.8 Serial Port 2 + USB

NOTE

- 1 The figure shows a sample host computer interface and USB. Design the cable to suit the interface of the actual device to be connected.
- 2 The +24V pins of the interface for CNC display unit with PC functions shown above can be used only with the FANUC I/O unit (FANUC CASSETTE, FANUC Handy File, etc.). Do not use these pins for other purposes. Also, do not attempt to simultaneously connect two or more FANUC I/O units to one CNC display unit with PC functions.
- 3 Commercial USB devices cannot be guaranteed its proper work with CNC display unit with PC functions. Careful checking by the customer will be required. And please be aware that those devices in the market are not almost considered about waterproof and dustproof.

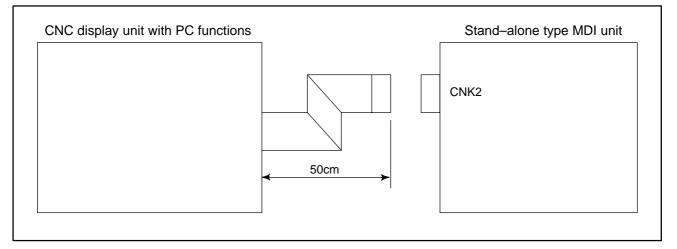
CAUTION

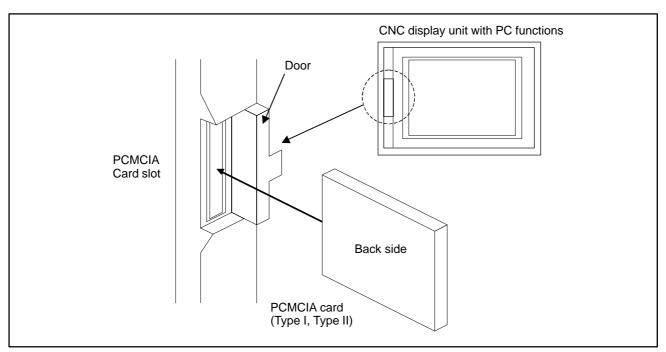

The standard punch panel for CNC cannot be used in CNC display unit with PC functions.

- Recommended cable specifications For RS-232C signals : A66L-0001-0284#10P (0.08 mm², 10 pairs) For USB ports : Use dedicated cables.
- 2) RECOMMENDED CONNECTOR FOR CABLE and HOUSING (JD46 side)

CONNECTOR	HOUSING	MAKER
PCR-E20FA	PCR-V20LA/PCS-E20LA	(Honda Tsushin Kogyo)
FI30-20S	FI-20-CV2/FI-20-CV7	(Hirose Electric)
FCN-247J020-G/E	FCN-240C020-Y/S	(Fujitsu)
52622–2011	52624–2015	(Molex Japan)

14.7.9 Serial Port 1


For an CNC display unit with PC functions having a touch panel, the touch panel controller uses serial port 1. So this connector cannot be used for any other purpose. The touch panel controller is connected, using a dedicated connector rather than JD33.

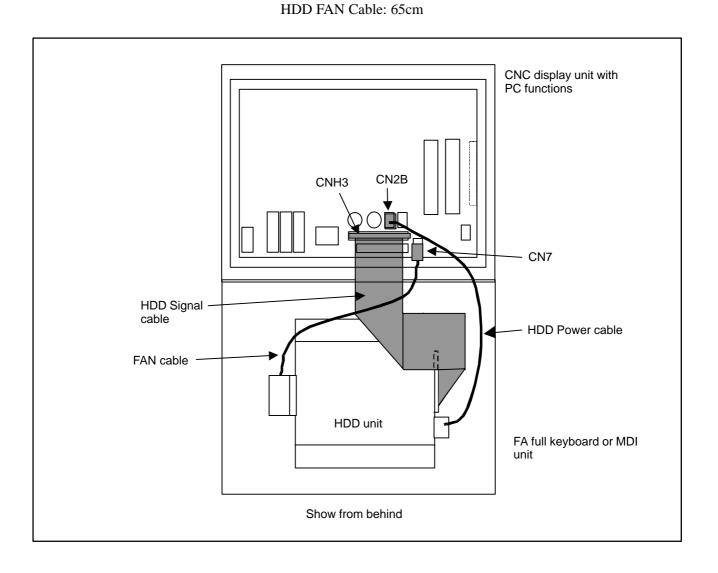

NOTE

- 1 he interface on the host computer side shown above is only an example. Design an interface cable according to the specification of the host computer with which it is used.
- 2 The +24 V lines in the interface on the CNC display unit with PC functions interface connection unit side shown above can be used only for FANUC I/O units (such as the FANUC cassette and FANUC Handy File). Do not use these lines for any other purpose. Also, do not connect more than one of these units to one CNC control unit. Otherwise, the +24 V power supply capacity may be exceeded.
- 3 Do not connect anything to those pins that are not labeled.
- 4 The standard punch panel for CNC cannot be used in CNC display unit with PC functions.

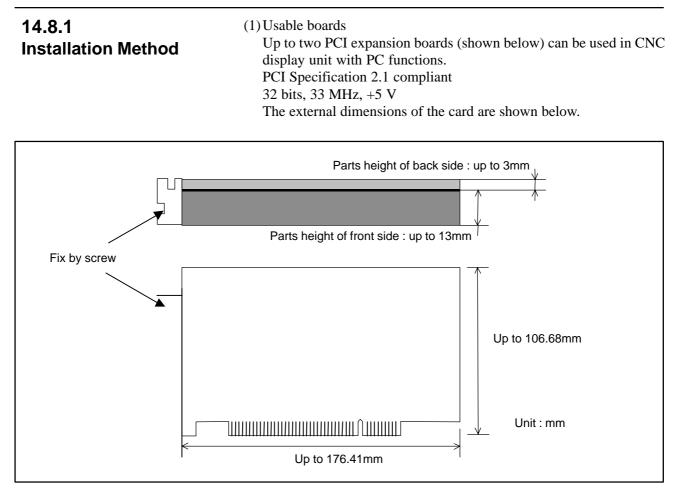
14.7.10 Soft Keys

(1) Cable length: 50 cm

14.7.11 PCMCIA Card

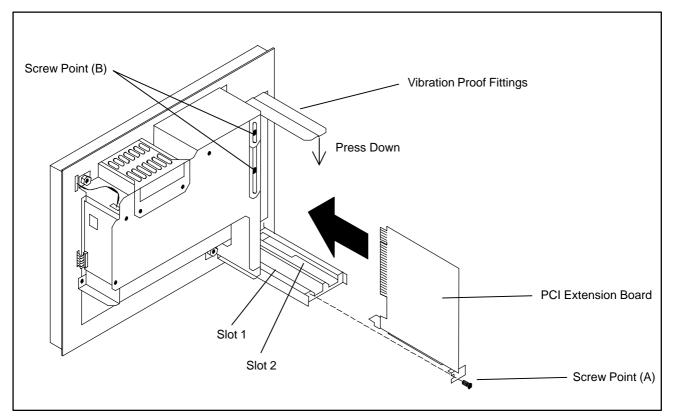

NOTE

- 1 Only Type I or Type II PCMCIA card is usable. The following card cannot be used.
 - Card-bus card
 - Dual mode card (Card-bus mode/PCMCIA mode) with Card-bus mode
 - Type III card
- 2 Care about the direction of the card, and insert certainly.
- 3 No card designed for use on +3.3 V can be used in the basic units (A08B–0082–B001 to –B023).


CAUTION

If the door is opened, dust or coolant would enter and might cause any troubles. Please pay attention.

14.7.12Hard Disk Unit1) Cable Connection
Connect HDD Signal cable to CNH3.
Connect HDD Power cable to CN2B.
Connect FAN cable to CN7.
Each cables are connected to HDD unit at exfactory.2) Cable Length
HDD Power Cable: 50cm
HDD Signal Cable: 40cm



14.8 PCI EXPANSION BOARD

(2) Method of mounting PCI extension board

- a) Release vibration-proof fittings by loosening the screw at point (B).
- b) Push the board fully into the PCI connector.
- c) Tighten the screw at point (A).
- d) Press down vibration-proof fittings to the PCI extension board and tighten the screw at point (B).
- * In the case of mounting two boards, the height of board mounted in slot 1 must be lower than the height of the board mounted in slot 2 for holding both board with each vibration-proof fittings.
- * If the fittings do not fit these extension boards, please change the screw (B) positions.

(3) Method of mounting PCI extension board

Refer to the specifications of PCI extension board for the environmental conditions for installation of it. If the PCI extension board specifications impose harder environmental conditions than the conditions described in "14.5.1. Environment", these environmental conditions for the PCI extension board are given priority.

NOTE

Fanuc does not guarantee the proper workings or maintenance of any PCI extension boards. And is not liable to any trouble or damage incurred by use of any PCI extended boards.

APPENDIX

A

EXTERNAL DIMENSIONS OF EACH UNIT

Name Series 0 <i>i</i> Mate–B basic unit (1–slot)		Specification A02B-0301-B801	Fig., No.
			Fig. U1
Series 0 <i>i</i> –B basic unit (2–slot)		A02B-0299-B802	Fig. U2
9″ monochrome CRT/MDI unit (small size)	English display MDI Symbol display MDI English and symbol display MDI English display MDI Symbol display MDI English and symbol display MDI	A02B-0299-C041#M A02B-0299-C041#MS A02B-0299-C041#MB A02B-0299-C041#T A02B-0299-C041#TS A02B-0299-C041#TS A02B-0299-C041#TB	- Fig. U3
7.2″ STN monochrome LCD/MDI unit	English display MDI Symbol display MDI English and symbol display MDI English display MDI Symbol display MDI English and symbol display MDI	A02B-0299-C071, C076#M A02B-0299-C071, C076#MS A02B-0299-C071, C076#MB A02B-0299-C071, C076#T A02B-0299-C071, C076#TS A02B-0299-C071, C076#TB	- Fig. U4
8.4″ TFT color LCD/MDI unit (small size, color)	English display MDI Symbol display MDI English and symbol display MDI English display MDI Symbol display MDI English and symbol display MDI	A02B-0299-C081#M A02B-0299-C081#MS A02B-0299-C081#MB A02B-0299-C081#T A02B-0299-C081#T A02B-0299-C081#TS A02B-0299-C081#TB	- Fig. U5
8.4" TFT color LCD unit		A02B-0299-C080	Fig. U6
10.4" TFT color LCD unit		A02B-0299-C060	Fig. U7
Stand–alone type MDI unit (small size) (for 8.4″ LCD, horizonatal type)	English display MDI Symbol display MDI English and symbol display MDI English display MDI Symbol display MDI English and symbol display MDI	A02B-0279-C120#MA A02B-0279-C120#MAS A02B-0279-C120#MB A02B-0279-C120#TA A02B-0279-C120#TA A02B-0279-C120#TAS A02B-0279-C120#TB	- Fig. U8
Stand–alone type MDI unit (full–key) (for 10.4″ LCD, vertical type)	English display MDI Symbol display MDI English and symbol display MDI English display MDI Symbol display MDI English and symbol display MDI	A02B-0279-C122#MA A02B-0279-C122#MAS A02B-0279-C122#MB A02B-0279-C122#TA A02B-0279-C122#TA A02B-0279-C122#TAS A02B-0279-C122#TB	- Fig. U9
CNC display unit with PC functions	10.4" TFT color	A08B-0082-B001 to -B004 A08B-0082-B031 to -B038 A08B-0193-B031 to -B038	Fig. U10(a)
	12.1" TFT color	A08B-0082-B011 to -B014 A08B-0082-B041 to -B048 A08B-0193-B041 to -B048	Fig. U10(b)
	15.0" TFT color	A08B-0082-B021 to -B023 A08B-0082-B051 to -B057 A08B-0193-B051 to -B057	Fig. U10(c)
Stand–alone type standard MDI unit for CNC display unit with PC functions	For 10.4" (vertical type) For 10.4"	A02B–0281–C327#TBR, MBR, TBS, MBS A02B–0281–C320#TBR,	Fig. U11(a)
	(horizontarl type)	MBR, TBS, MBS	Fig. U11(b)
FA full keyboard	For 10.4" LCD unit For 12.1" LCD unit For 15.0" LCD unit	A02B-0236-C131#EC, JC A02B-0236-C132#EC, JC A08B-0082-C150#EC, JC	Fig. U12(a) Fig. U12(b) Fig. U12(c)

Name		Specification	Fig., No.	
Full keyboard (for debugging purposes)		A86L-0001-0210, 0211	Fig. U13	
Mouse (for debugging purposes)			A86L-0001-0212	Fig. U14
Floppy disk unit (for c	lebugging purposes)	1	A02B-0207-C008	Fig. U15
HSSB interface board type 2 (1CH) on the personal computer side (ISA)		A20B-8001-0583	— Fig. U16	
HSSB interface board type 2 (2CH) on the personal computer side (ISA)		A20B-8001-0582		
HSSB interface board type 2 (1CH) on the personal computer side (PCI)		A20B-8001-0961	— Fig. U16	
HSSB interface board type 2 (2CH) on the personal computer side (PCI)		A20B-8001-0960		
α position coder		10000min ⁻¹	A860-0309-T302	Fig. U17
Manual pulse generator		A860-0202-T001	Fig. U18	
			A860-0202-T004	Fig. U19
Pendant type manual pulse generator		A860-0202-T005		
		A860-0202-T007		
		A860-0202-T010		
		A860-0202-T012		
			A860-0202-T013	-
Separate detector interface unit			A02B-0236-C205, C204	Fig. U20
Battery case for separate detector interface unit (ABS)		ce unit (ABS)	A06B-6050-K060	Fig. U21
CNC battery unit for external installation		A02B-0236-C281	Fig. U22	
Punch panel		Cable length : 1m	A02B-0120-C181	Fig. U23
	Wide width type	Cable length : 2m	A02B-0120-C182	
		Cable length : 5m	A02B-0120-C183	
	Narrow width type	Cable length : 1m	A02B-0120-C191	Fig. U24
		Cable length : 2m	A02B-0120-C192	
		Cable length : 5m	A02B-0120-C193	
Machine operator's	Main panel B	•	A02B-0236-C231	Fig. U25
	Sub panel A		A02B-0236-C232	Fig. U26
	Sub panel B1		A02B-0236-C235	Fig. U27
7.2" STN monochrome LCD unit			A02B–0299–C070, C075	Fig. U28
Stand–alone type MDI unit (full–key) (for 7.2″ LCD and 8.4″ LCD, common to vertical type and horizonatal type)		English display MDI Symbol display MDI English and symbol display MDI	A02B-0210-C122#MA A02B-0210-C122#MAS A02B-0210-C122#MB	— Fig. U29
		English display MDI Symbol display MDI English and symbol display MDI	A02B-0210-C122#TA A02B-0210-C122#TAS A02B-0210-C122#TB	
Stand–alone type MDI unit (full–key)		English display MDI Symbol display MDI English and symbol display MDI English display MDI Symbol display MDI English and symbol display MDI	A02B-0279-C121#MA A02B-0279-C121#MAS A02B-0279-C121#MB A02B-0279-C121#MB A02B-0279-C121#TA A02B-0279-C121#TAS A02B-0279-C121#TB	— Fig. U30

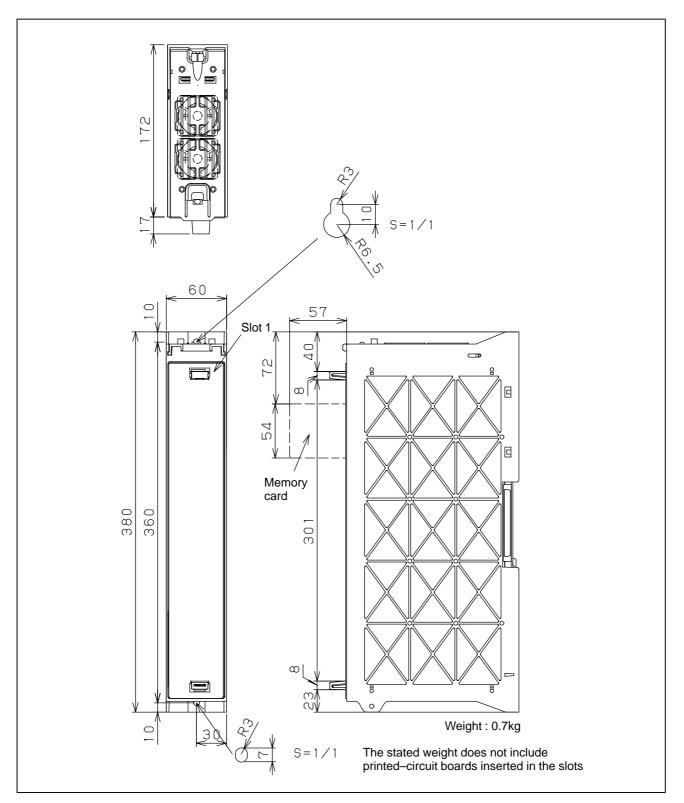


Fig.U1 Series 0*i* Mate–B basic unit (1–slot) Specification No. : A02B–0301–B801

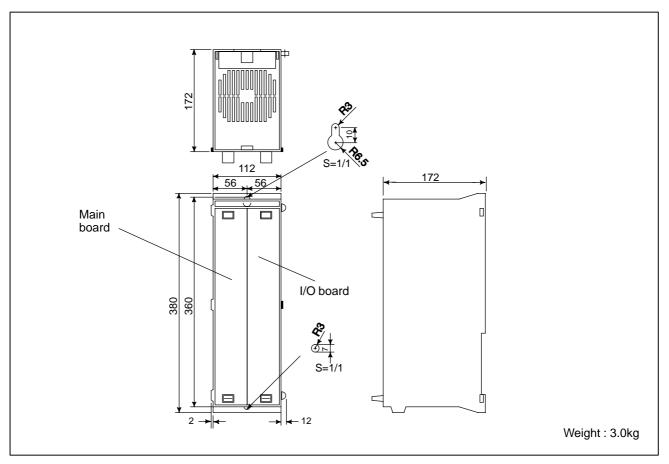


Fig.U2 Series 0*i*–B basic unit (2–slot) Specification No. : A02B–0299–B802

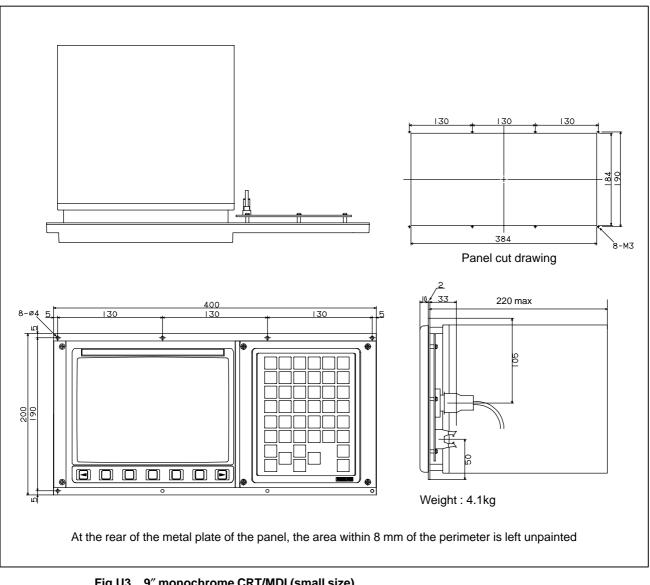


Fig.U3 9[″] monochrome CRT/MDI (small size) Specification No. : A02B–0299–C041#M, #T (English display MDI) A02B–0299–C041#MS, #TS (Symbol display MDI) A02B–0299–C041#MB, #TB (English and symbol display MDI)

A. EXTERNAL DIMENSIONS OF EACH UNIT

B-63833EN/03

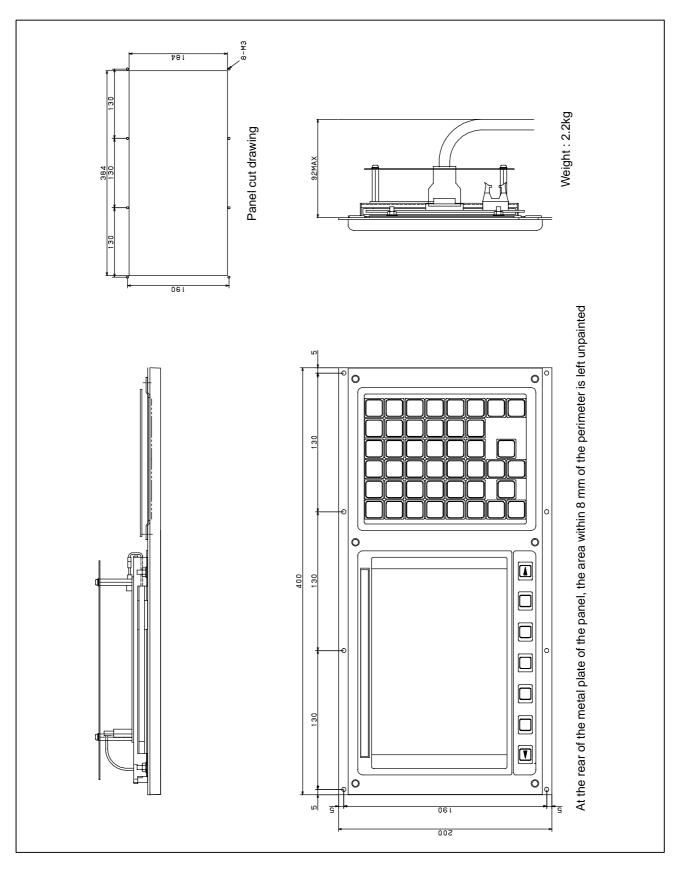


Fig.U4 7.2" STN monochrome LCD/MDI unit Specification No. : A02B–0299–C071, C076#M, #T (English display MDI) A02B–0299–C071, C076#MS, #TS (Symbol display MDI) A02B–0299–C071, C076#MB, #TB (English and symbol display MDI)

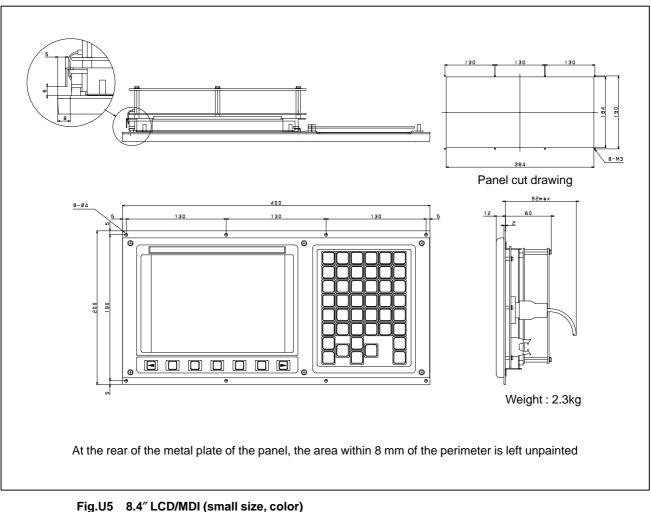


Fig.U5 8.4″ LCD/MDI (small size, color) Specification No. : A02B–0299–C081#M, #T (English display MDI) A02B–0299–C081#MS, #TS (Symbol display MDI) A02B–0299–C081#MB, #TB (English and symbol display MDI)

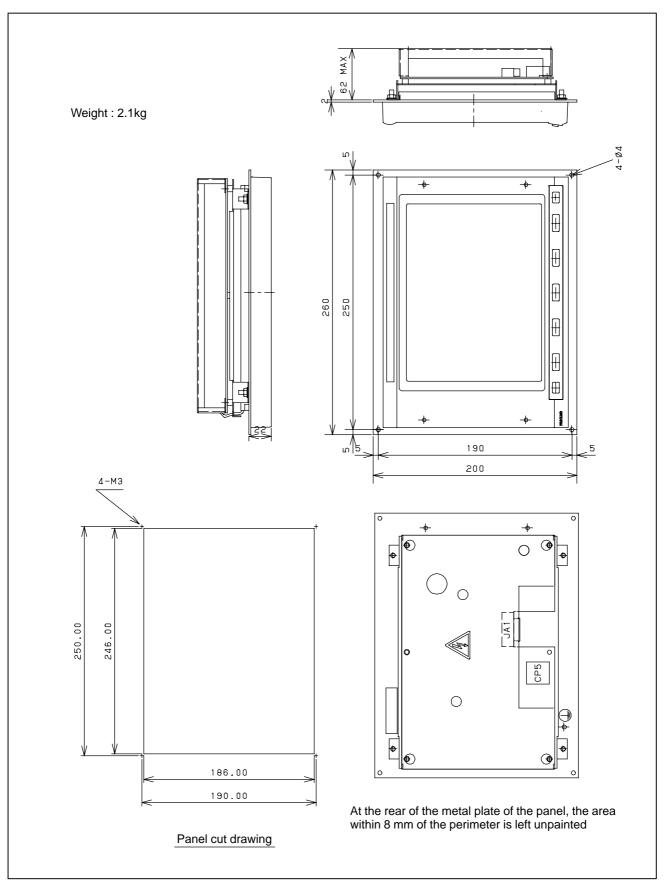


Fig.U6 8.4" TFT color LCD unit Specification No. : A02B–0299–C080

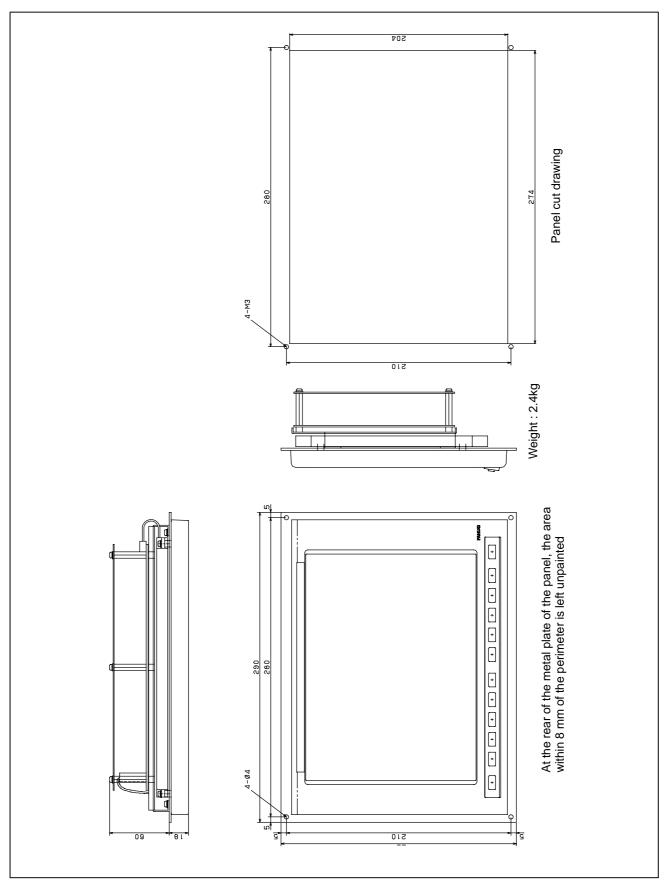


Fig.U7 10.4" TFT color LCD unit Specification No. : A02B–0299–C060

A. EXTERNAL DIMENSIONS OF EACH UNIT

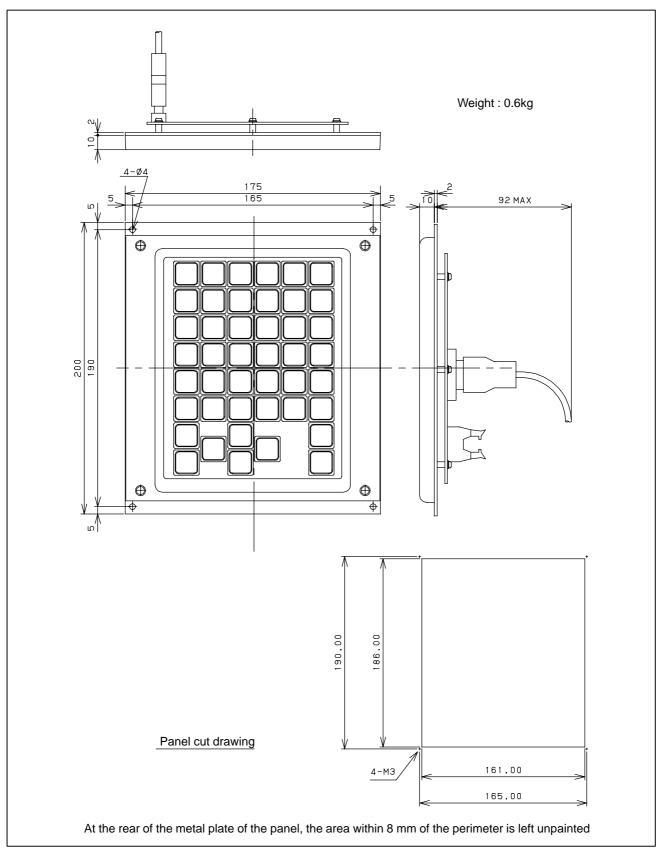


Fig.U8 Stand–alone type MDI unit (small size) Specification No. : A02B–0279–C120#MA, #TA (English display MDI) A02B–0279–C120#MAS, #TAS (Symbol display MDI) A02B–0279–C120#MB, #TB (English and symbol display MDI)

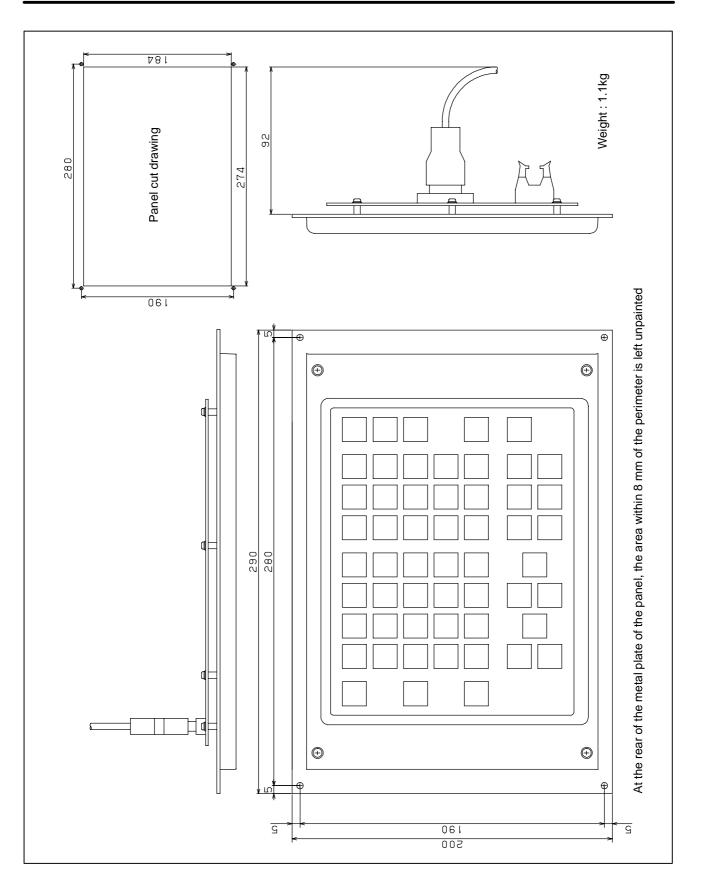
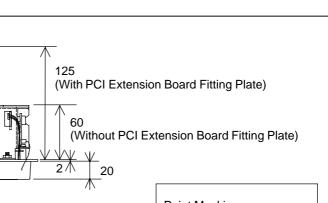



Fig.U9 Stand–alone type MDI unit (full–key) Specification No. : A02B–0279–C122#MA, #TA (English display MDI) A02B–0279–C122#MAS, #TAS (Symbol display MDI) A02B–0279–C122#MB, #TB (English and symbol display MDI)

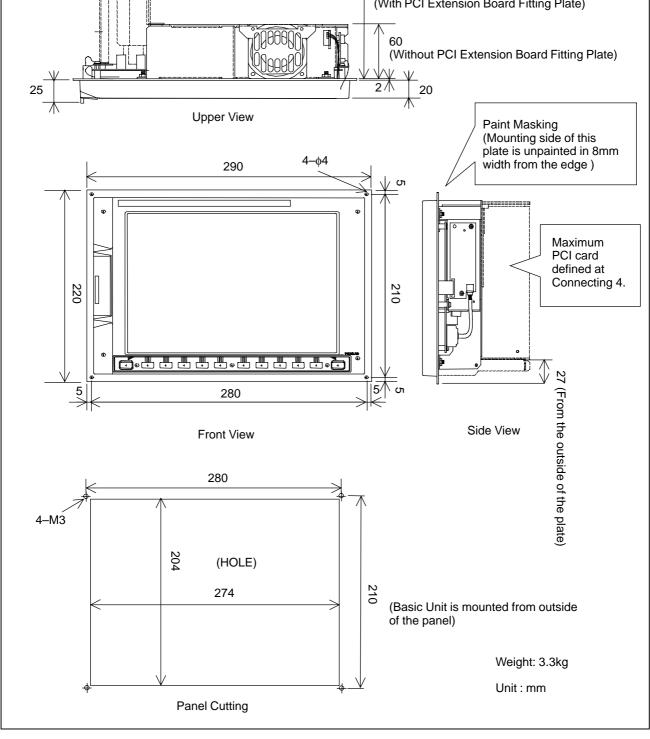


Fig.U10 (a) 10.4" TFT color LCD of CNC display unit with PC functions

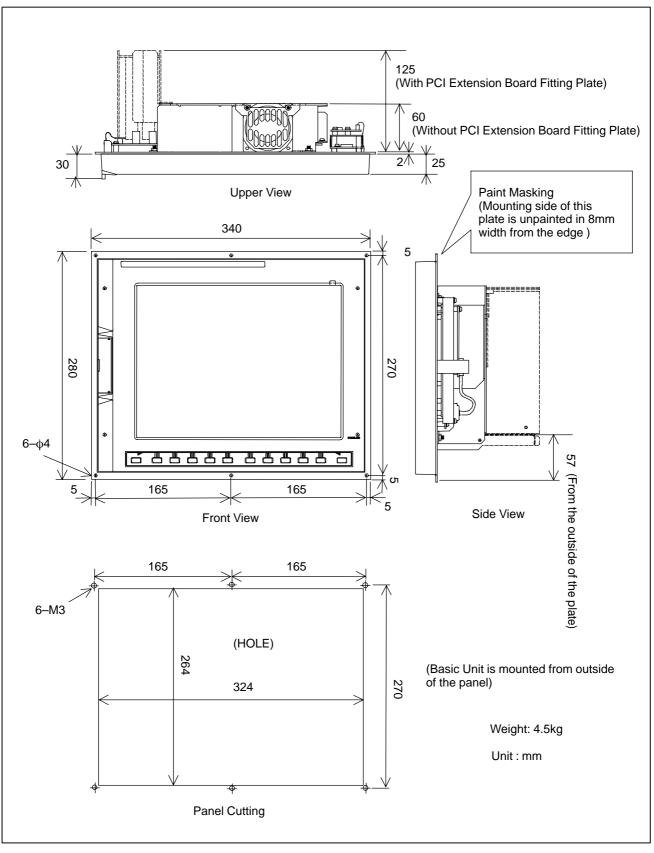


Fig.U10 (b) 12.1" TFT color LCD of CNC display unit with PC functions



Fig.U10 (c) 15.0" TFT color LCD of CNC display unit with PC functions

Fig.U11 (a) Stand-alone type standard MDI unit for CNC display unit with PC functions (10.4" LCD, vertical type)

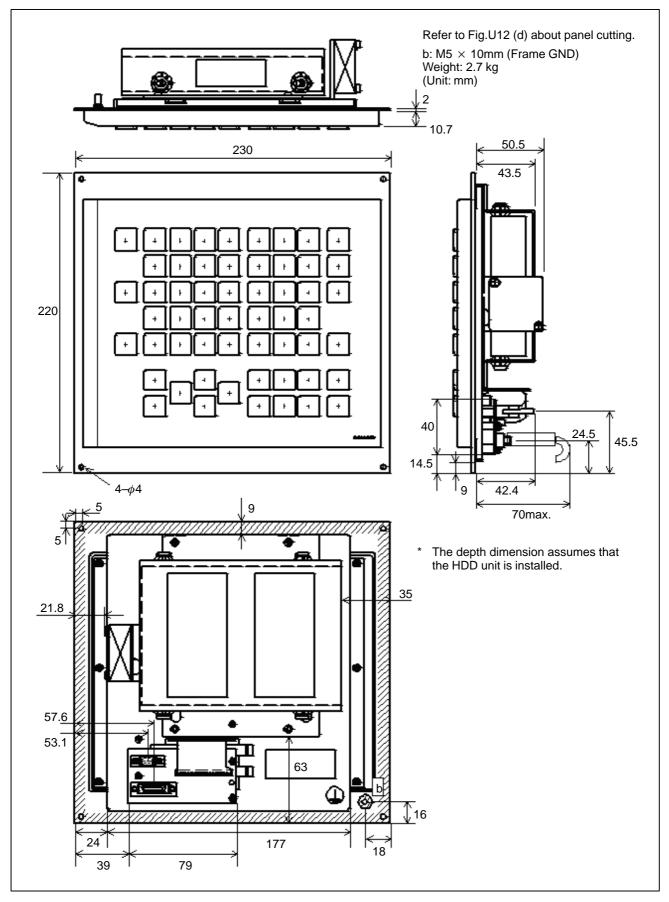


Fig.U11 (b) Stand-alone type standard MDI unit for CNC display unit with PC functions (10.4" LCD, horizontal type)

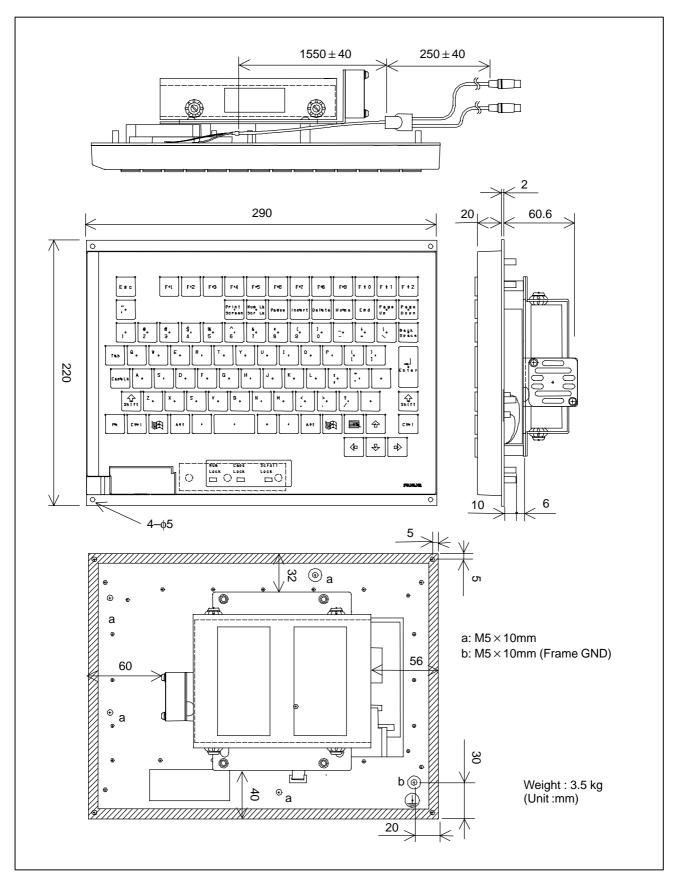


Fig.U12 (a) FA Full Keyboard 10.4" LCD Type Specification No. : A02B-0236-C131#JC,A02B-0236-C131#EC

A. EXTERNAL DIMENSIONS OF EACH UNIT

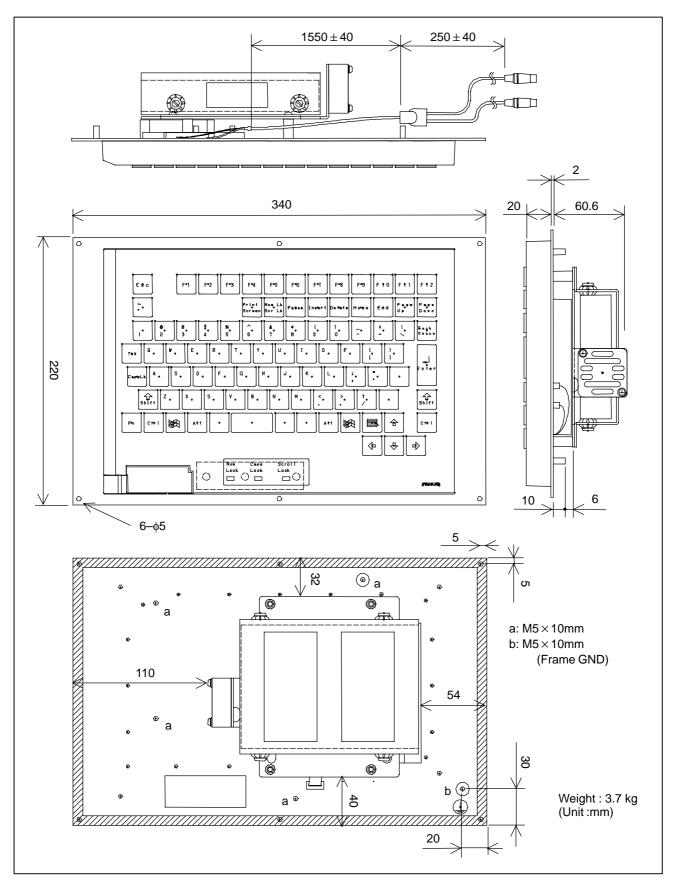


Fig.U12 (b) FA Full Keyboard 12.1" LCD Type Specification No. : A02B-0236-C132#JC,A02B-0236-C132#EC

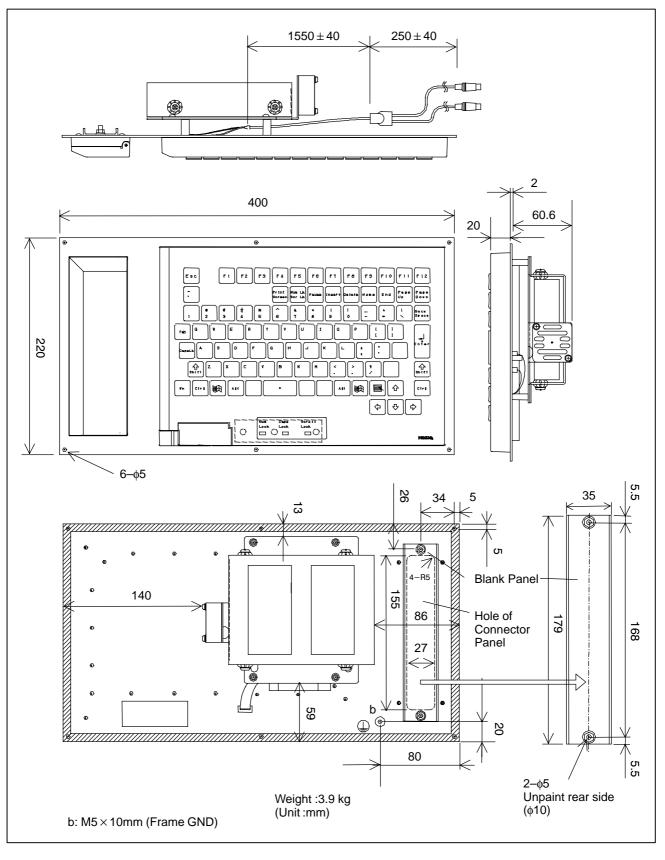


Fig.U12 (c) FA Full Keyboard 15.0" LCD Type Specification N. : A08B-0082-C150#JC, A08B-0082-C150#EC

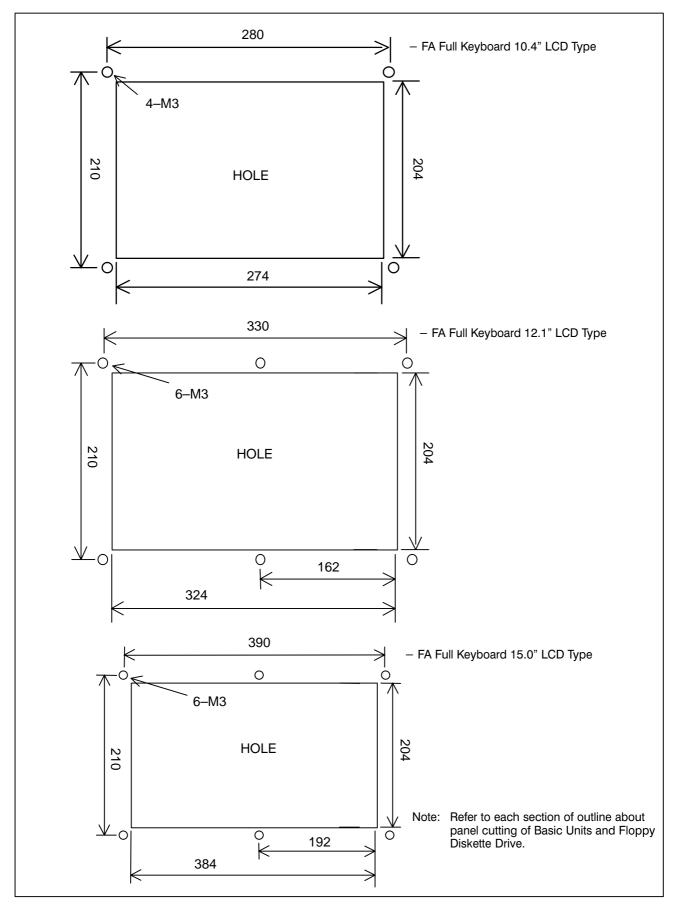


Fig.U12 (d) Panel Cutting

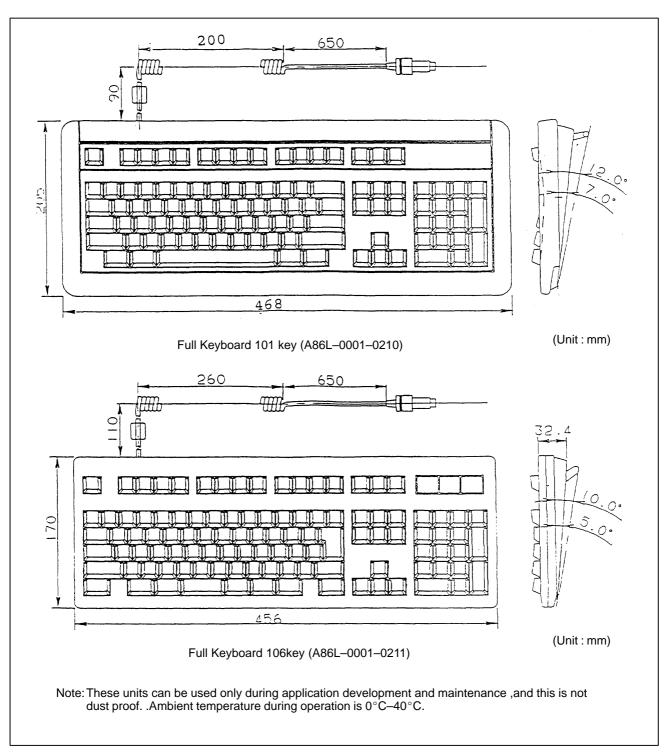


Fig.U13 Full Keyboard 101/106key

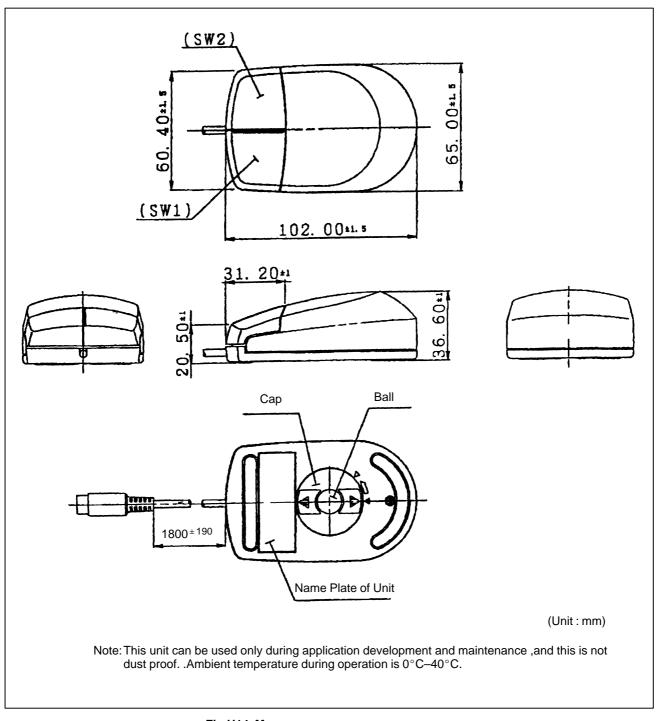


Fig.U14 Mouse Specification No. : A86L-0001-0212

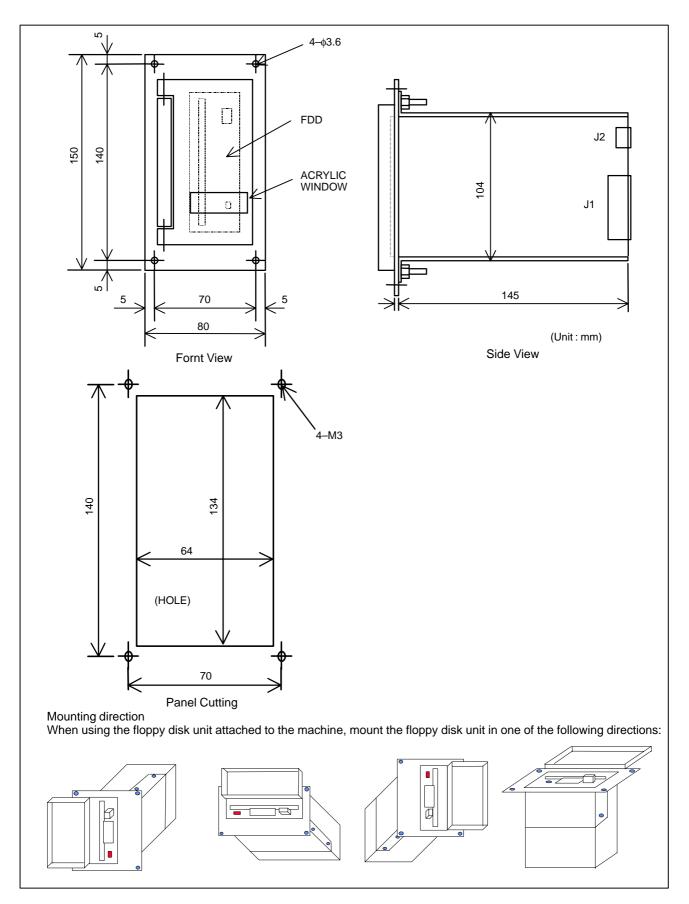


Fig.U15 Floppy disk unit Specification No. : A20B–0207–C008

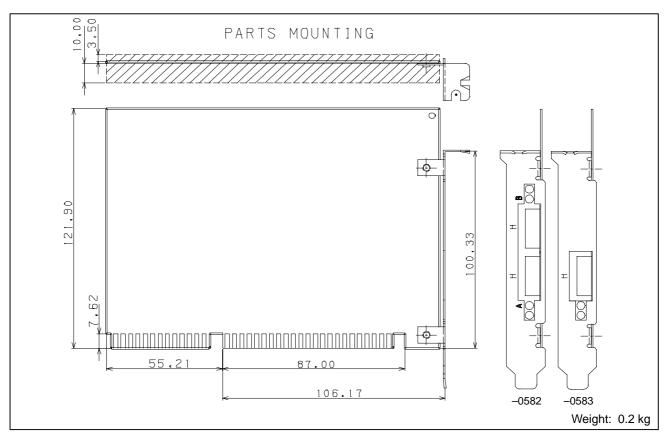


Fig.U16 (a) High-speed serial bus interface board type 2 (PC) (ISA bus version) Specification No. : A20B-8001-0583 (1 CH) A20B-8001-0582 (2 CH)

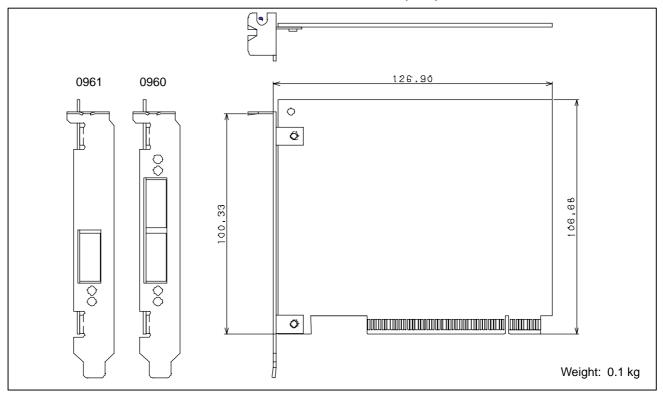


Fig.U16 (b) Interface Board for Personal Computer (PCI bus version) Specification No. : A20B–8001–0960 (2 CH) A20B–8001–0961 (1 CH)

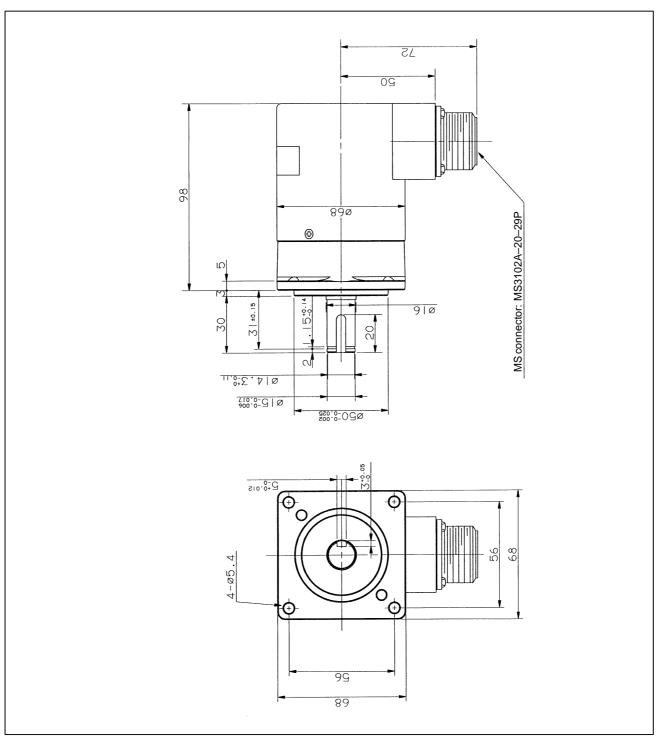


Fig.U17 $\,\alpha$ position coder Specification No.: A860–0309–T302 (10000 min^1 maximum)

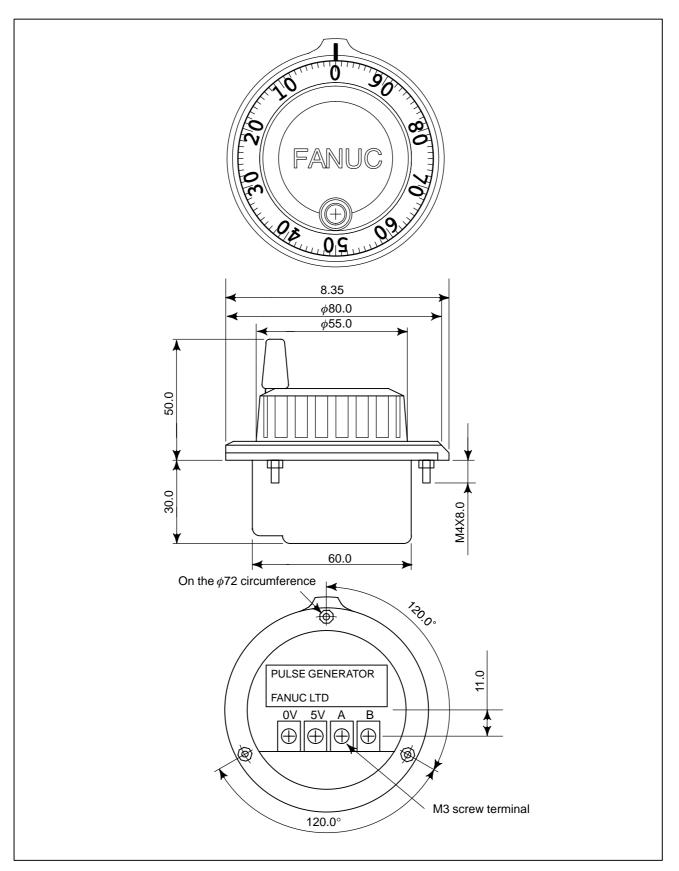


Fig.U18 Manual pulse generator Specification No. : A860–0202–T001

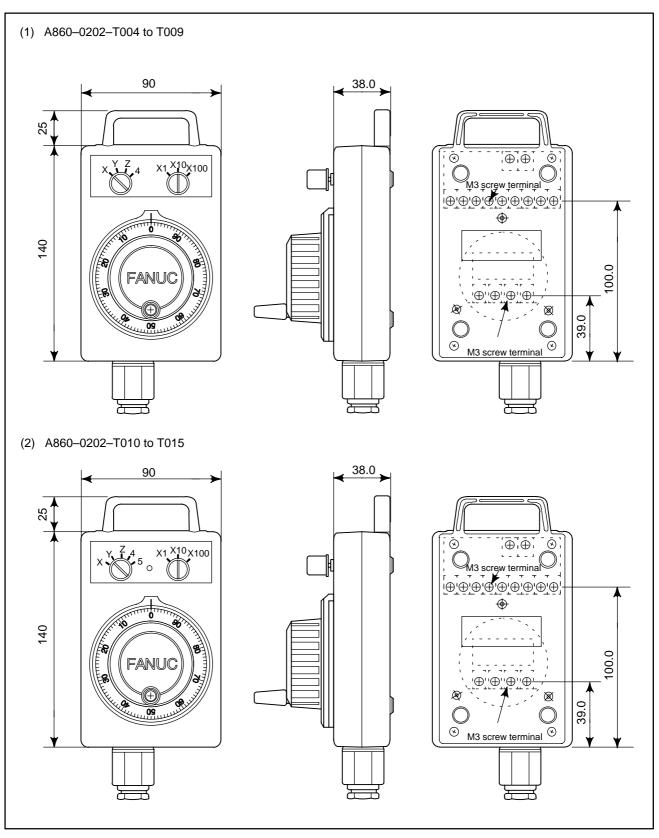


Fig.U19 Pendant type manual pulse generator Specification No. : A860–0202–T004 to T015

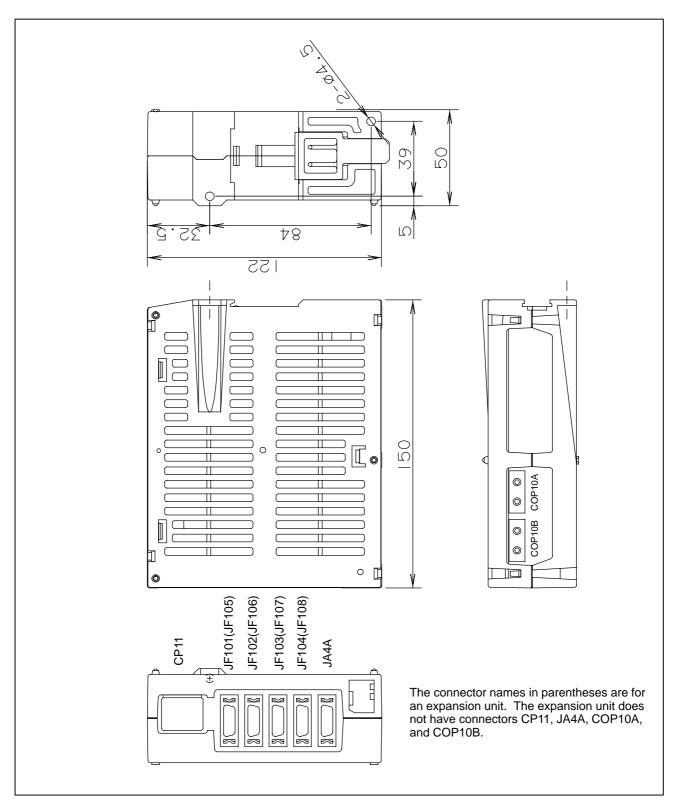


Fig.U20 External dimensions of separate detector interface unit

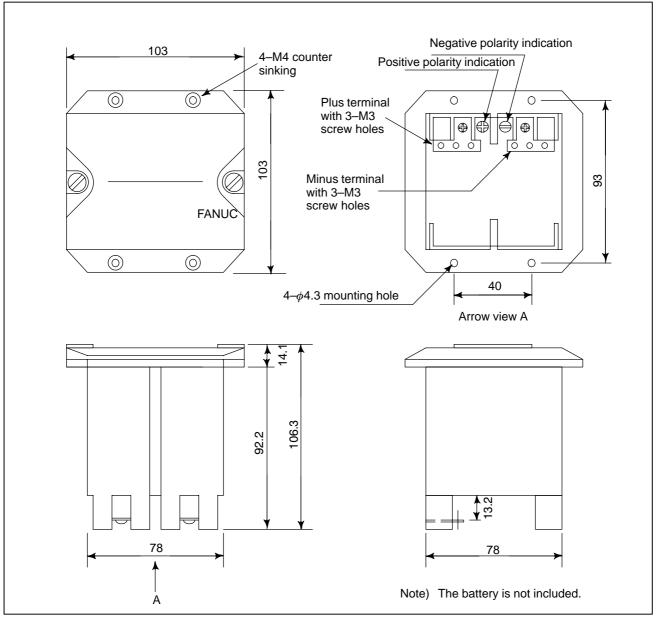


Fig.U21 External dimensions of ABS battery case for separate detector Specification No. : A06B–6050–K060

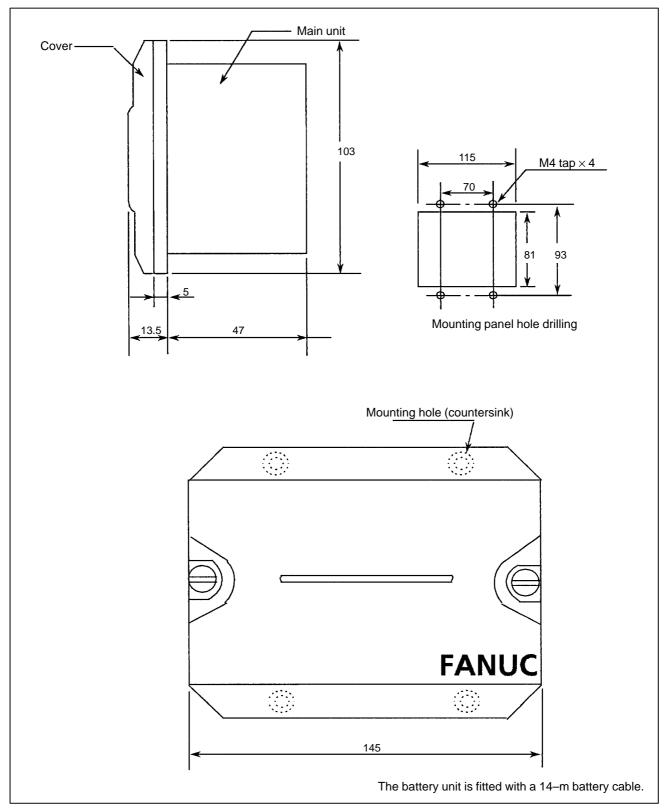


Fig. U22 External dimensions of external CNC battery unit

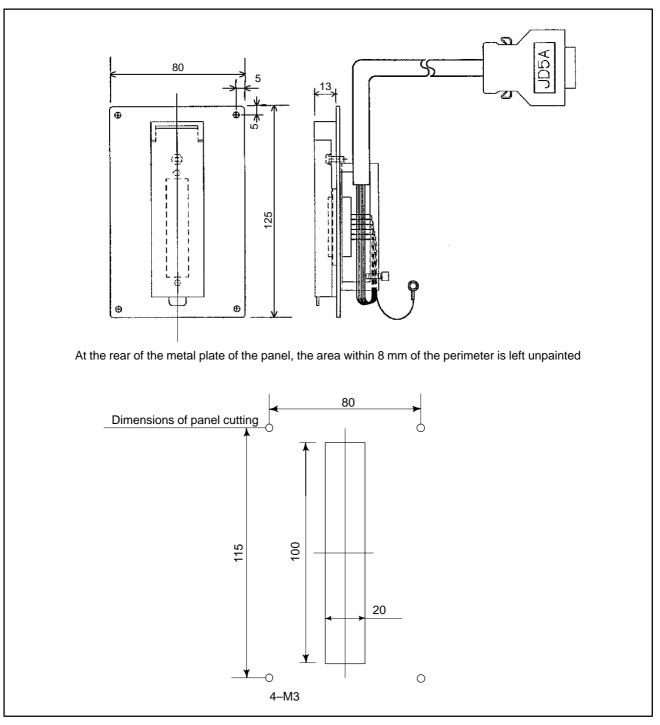


Fig.U23 Punch panel (wide width type) Specification No. : A02B–0120–C181 (Cable length : 1m) A02B–0120–C182 (Cable length : 2m) A02B–0120–C183 (Cable length : 5m)

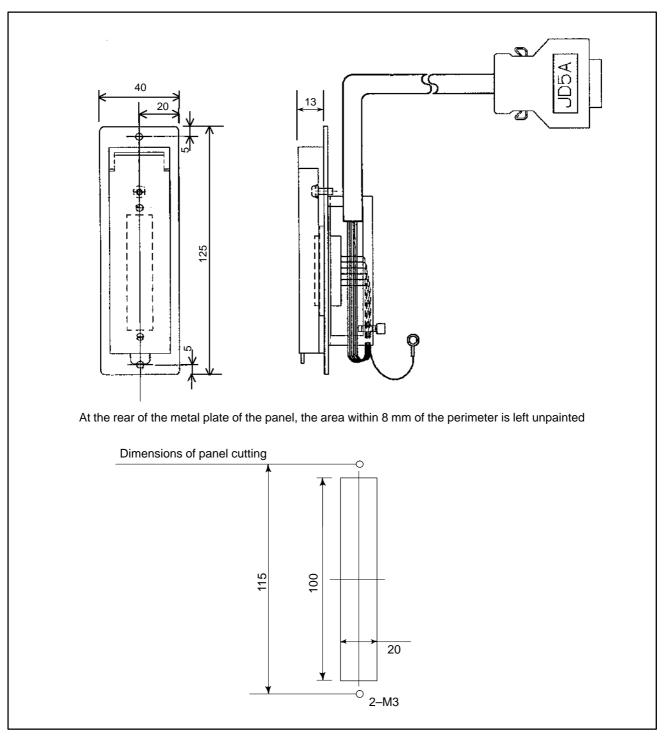


Fig.U24 Punch panel (narrow width type) Specification No. : A02B–0120–C191 (Cable length : 1m) A02B–0120–C192 (Cable length : 2m) A02B–0120–C193 (Cable length : 5m)

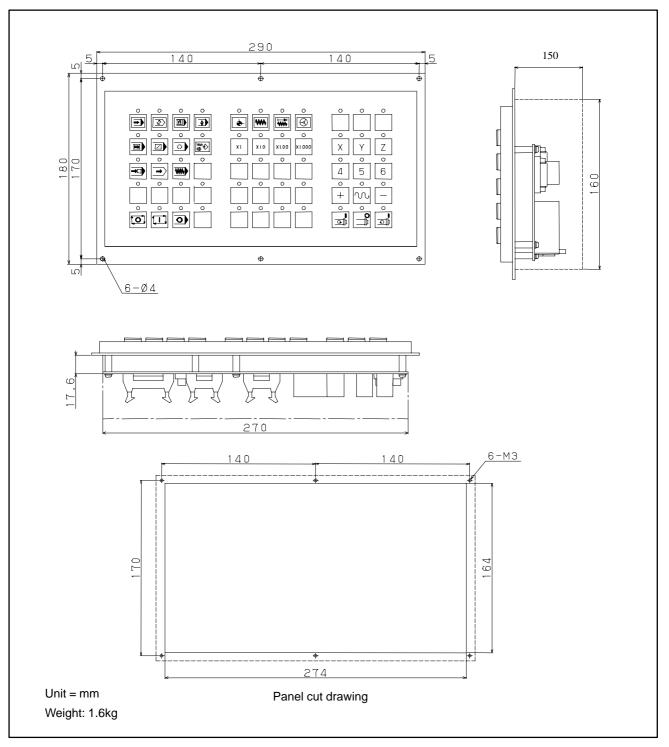


Fig.U25 Machine operator's panel (Main panel B) Specification No. : A02B–0236–C231

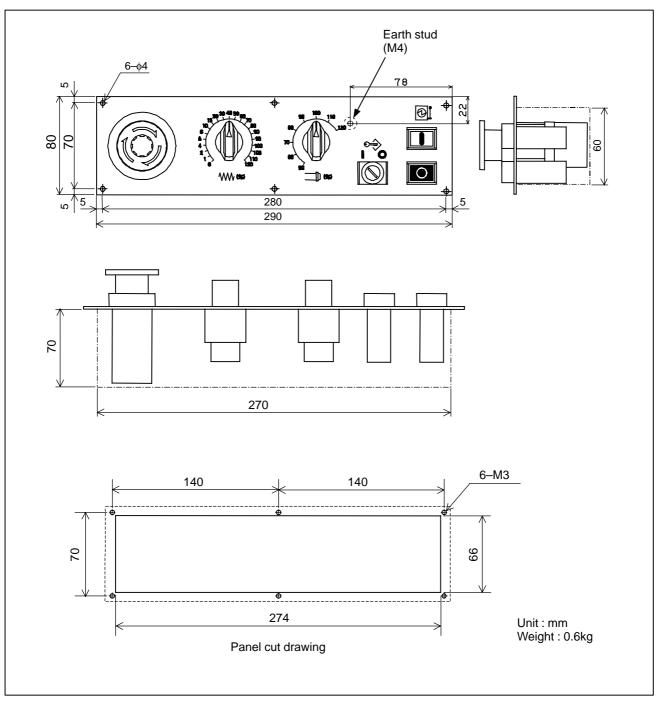
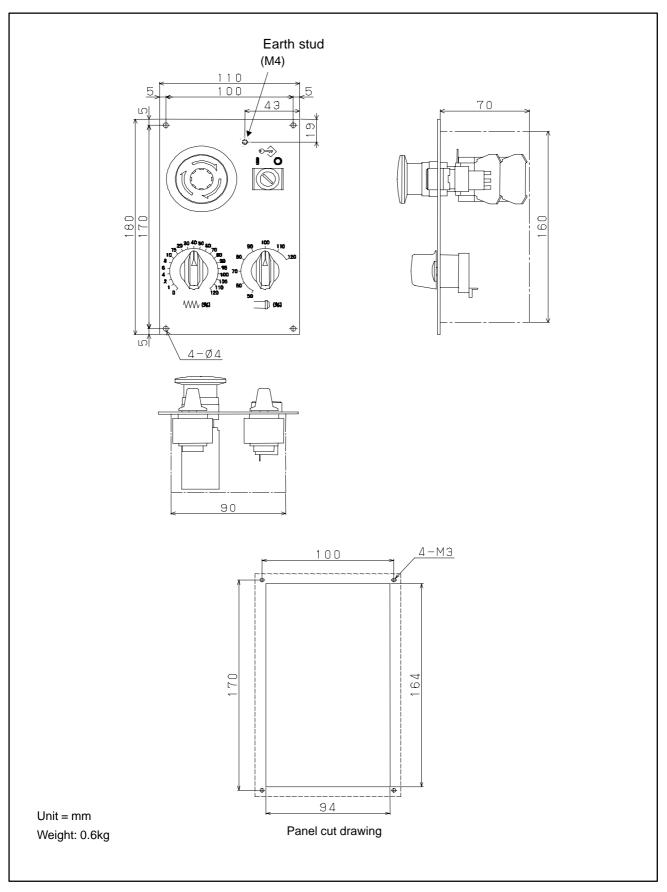
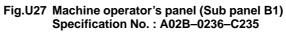




Fig.U26 Machine operator's panel (Sub panel A) Specification No. : A02B–0236–C232

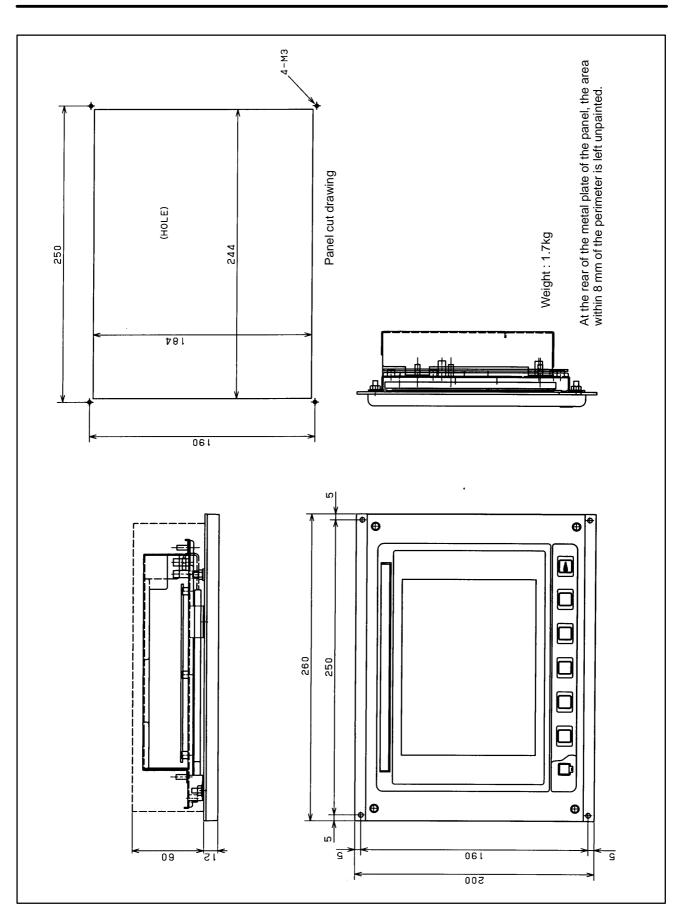
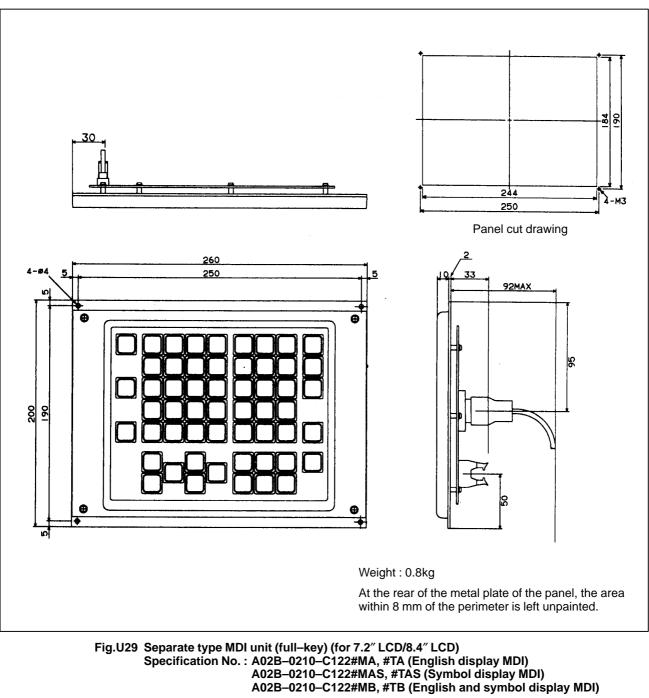



Fig.U28 7.2" STN monochrome LCD unit Specification No. : A02B–0299–C070, C075

B-63833EN/03

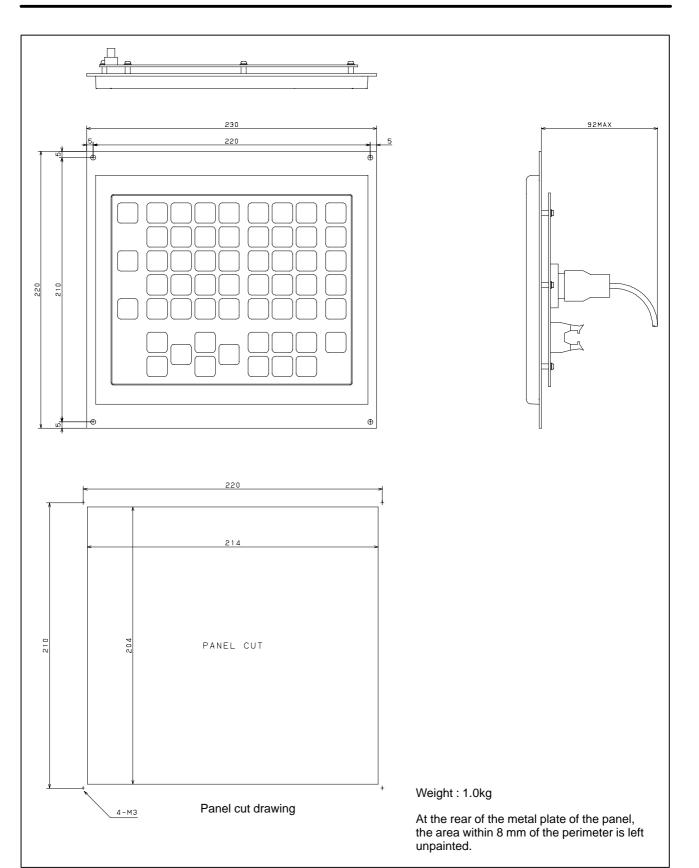


Fig.U30 Separate type MDI unit (full–key) Specification No. : A02B–0279–C121#MA, #TA (English display MDI) A02B–0279–C121#MAS, #TAS (Symbol display MDI) A02B–0279–C121#MB, #TB (English and symbol display MDI)

Connectors

Fig. title	Specification No.	Fig. No.
PCR connector (soldering type)	PCR-E20FS	Fig.C1 (a)
FI40 connector	FI40-2015S	Fig.C1 (b)
Connector case (HONDA PCR type)	PCR-V20LA/PCR-V20LB	Fig.C2 (a)
Connector case (HIROSE FI type)	FI-20-CV	Fig.C2 (b)
Connector case (FUJITSU FCN type)	FCN-240C20-Y/S	Fig.C2 (c)
Connector case (HIROSE PCR type)	FI-20-CV7	Fig.C2 (d)
AMP connector (1) for servo side	AMP1-178128-3	Fig.C3 (a)
AMP connector (2) for servo side	AMP2-178128-3	Fig.C3 (b)
AMP connector (3) for +24 V power supply	AMP1-178288-3	Fig.C3 (c)
AMP connector (4) for +24 V power supply	AMP2-178288-3	Fig.C3 (d)
Contact for AMP connector	AMP1–175218–2/5 AMP1–175196–2/5	Fig.C3 (e)
HONDA connector (case)		Fig.C4 (a)
HONDA connector (angled case)		Fig.C4 (b)
HONDA connector (male)		Fig.C4 (c)
HONDA connector (female)		Fig.C4 (d)
HONDA connector (terminal layout)		Fig.C4 (e)
Connector (FCI Japan)(6 pins/brown)	SMS6PN-5	Fig.C5
Connector for HIROSE flat cable	HIF3BB–50D–2.54R HIT3BB–34D–2.54R	Fig.C6
Connector (Japan Aviation Electronics)(for MDI)	LY10-DC20	Fig.C7 (a)
Contact (Japan Aviation Electronics)(for MDI)	LY10-C2-3	Fig.C7 (b)
Punch panel connector for reader/punch interface		Fig.C8 (a)
Locking plate for reader/punch interface connector		Fig.C8 (b)
Honda connector (for distribution I/O connection printed circuit board)	MRH–50FD	Fig. C9

B-63833EN/03

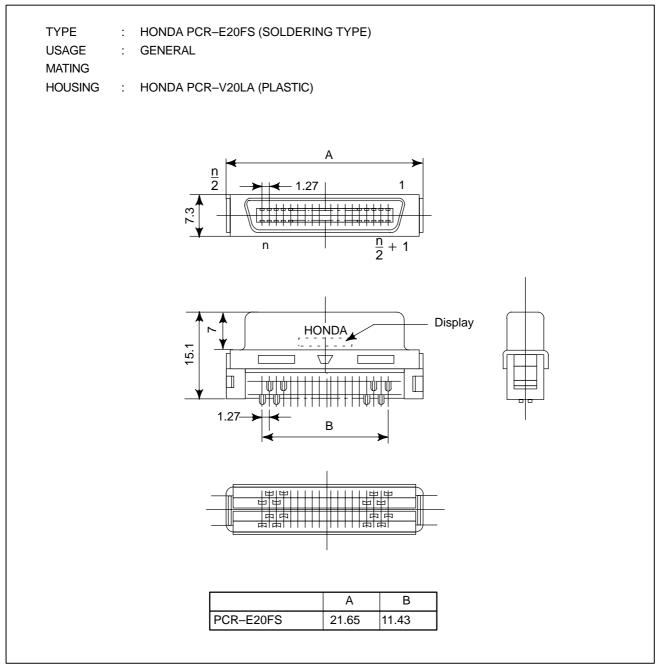


Fig.C1 (a) PCR connector (soldering type)

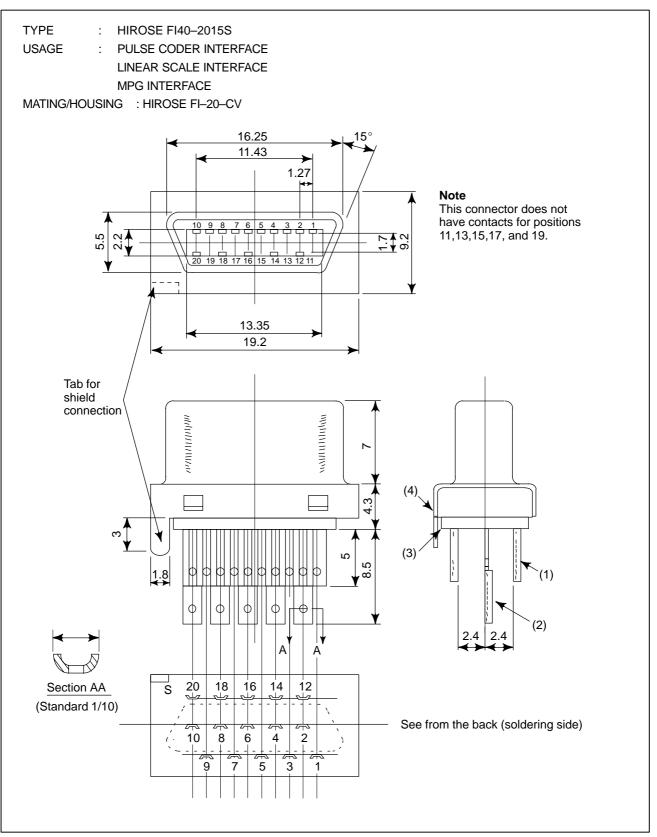


Fig.C1 (b) FI40 connector

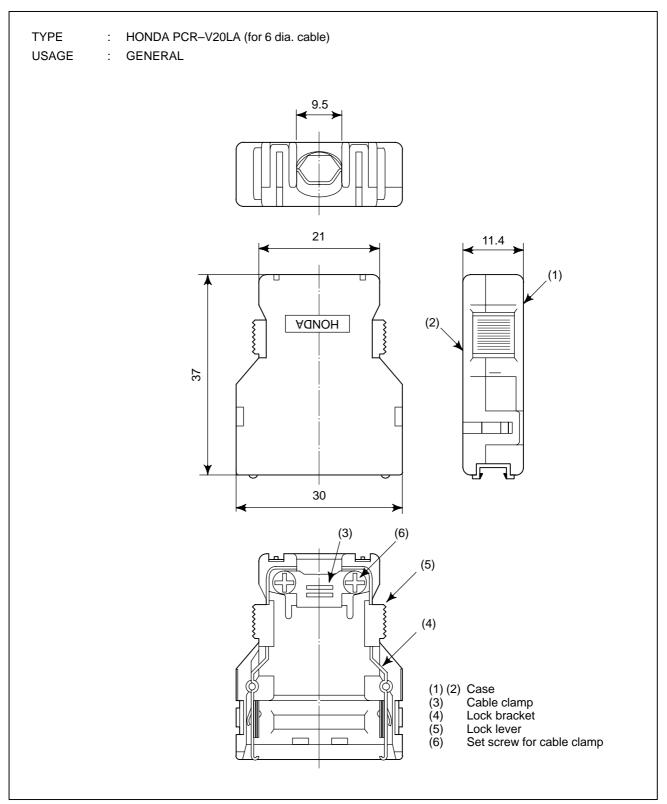


Fig.C2 (a) Connector case (HONDA PCR type)

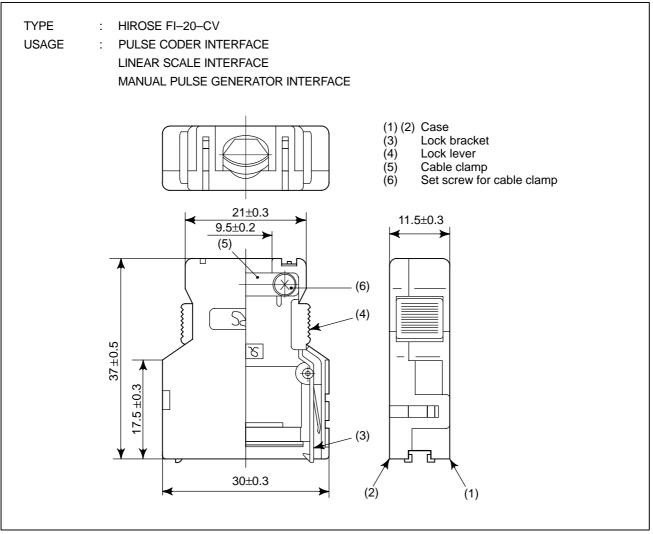


Fig.C2 (b) Connector case (HIROSE FI type)

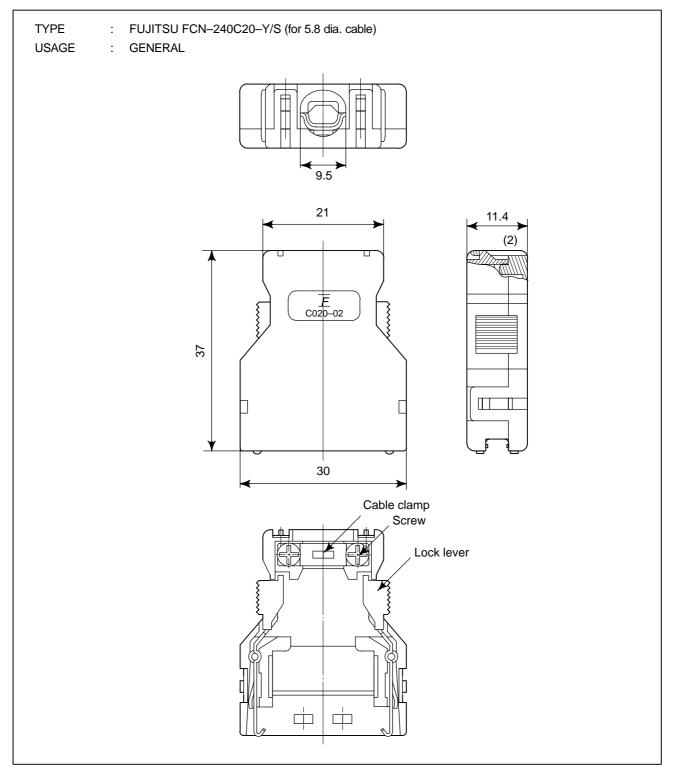


Fig.C2 (c) Connector case (FUJITSU FCN type)

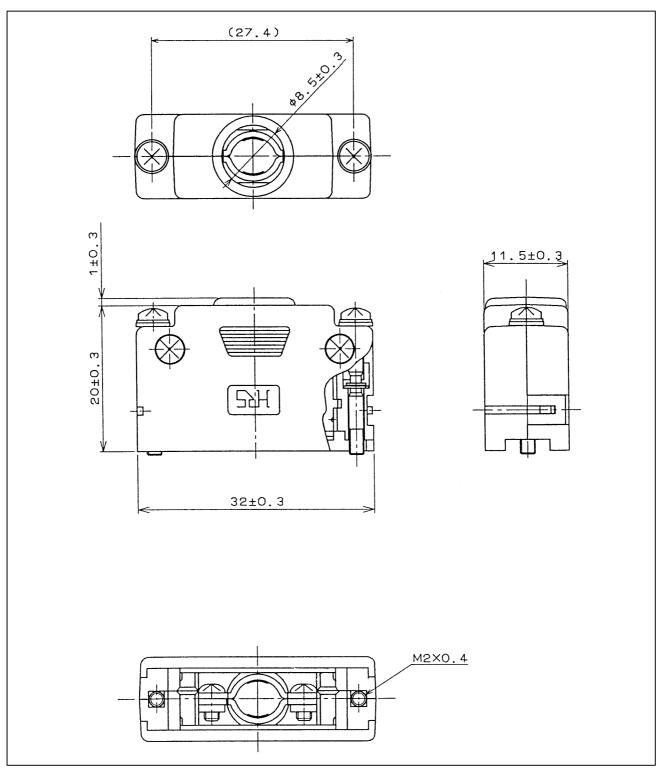


Fig.C2 (d) Connector case (PCR type (Hirose Electric))

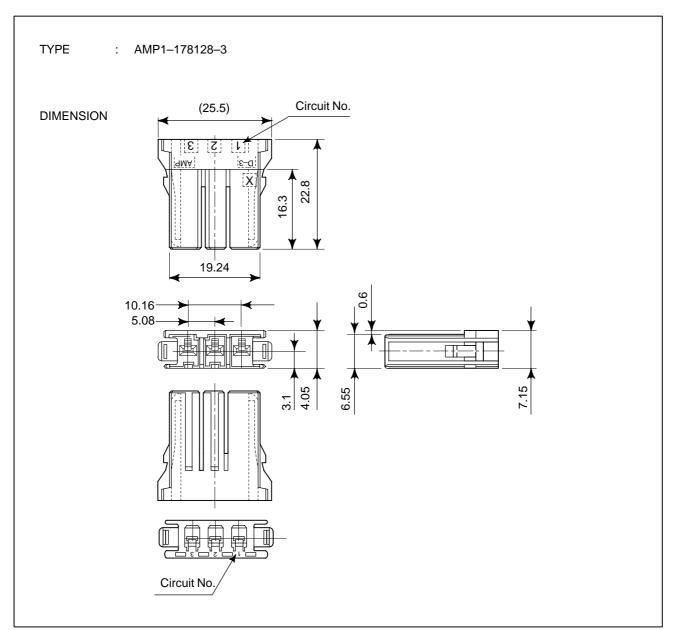


Fig.C3 (a) AMP connector (1)

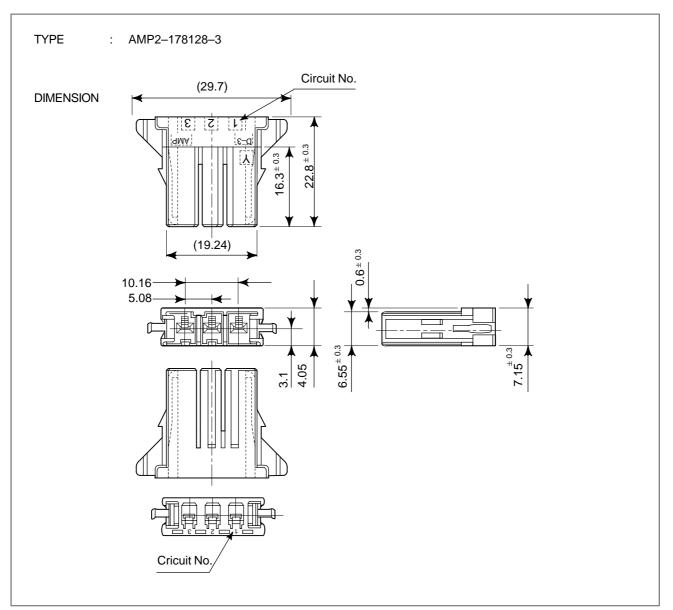


Fig. C3 (b) AMP connector (2)

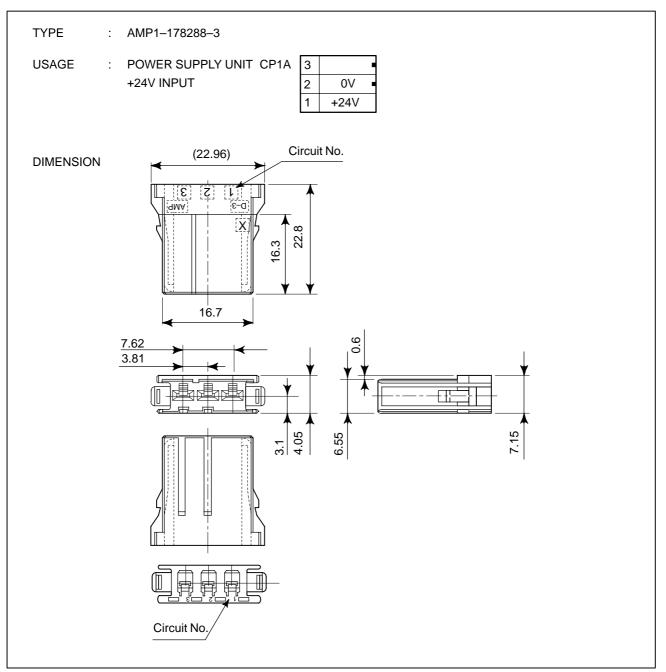


Fig.C3 (c) AMPconnector (3)

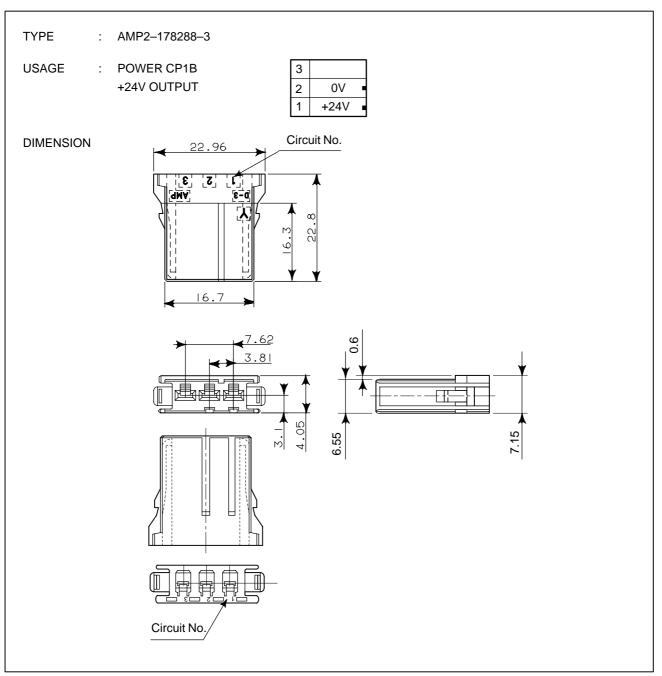


Fig.C3 (d) AMP connector (4)

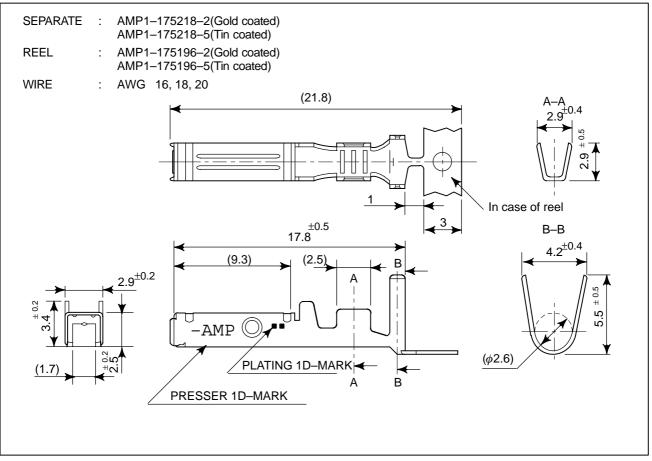


Fig.C3 (e) Contact for AMP connector

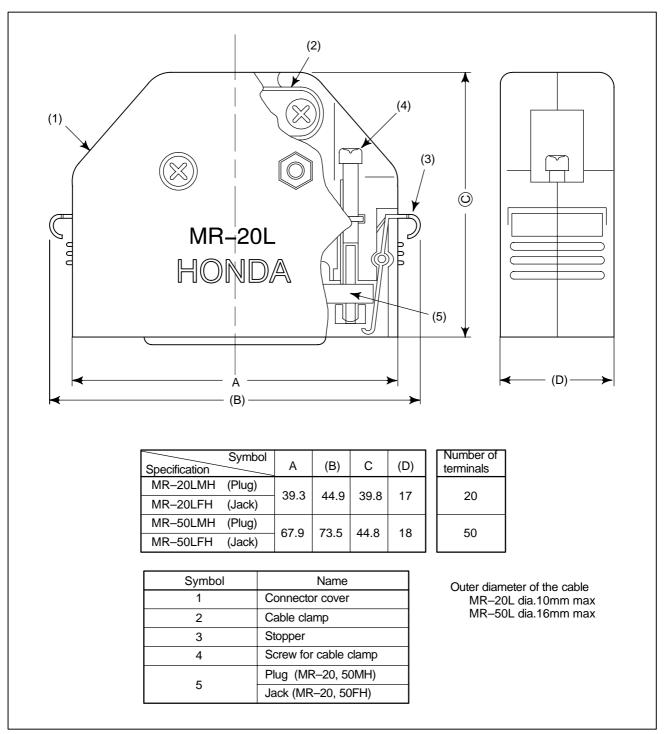


Fig.C4 (a) HONDA connector (case)

Fig.C4 (b) Honda connector (angled-type case)

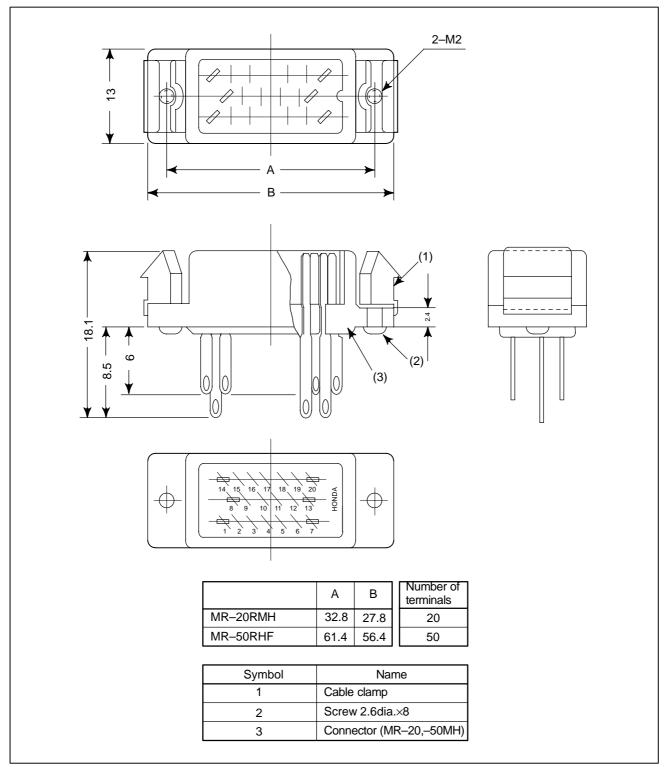


Fig.C4 (c) HONDA connector (male)

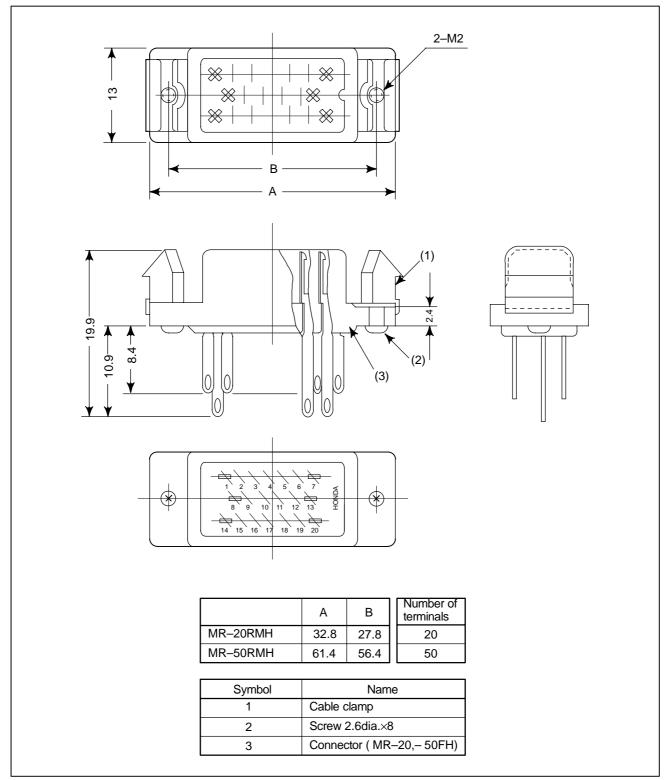


Fig.C4 (d) HONDA connector (female)

B-63833EN/03

A. EXTERNAL DIMENSIONS OF EACH UNIT

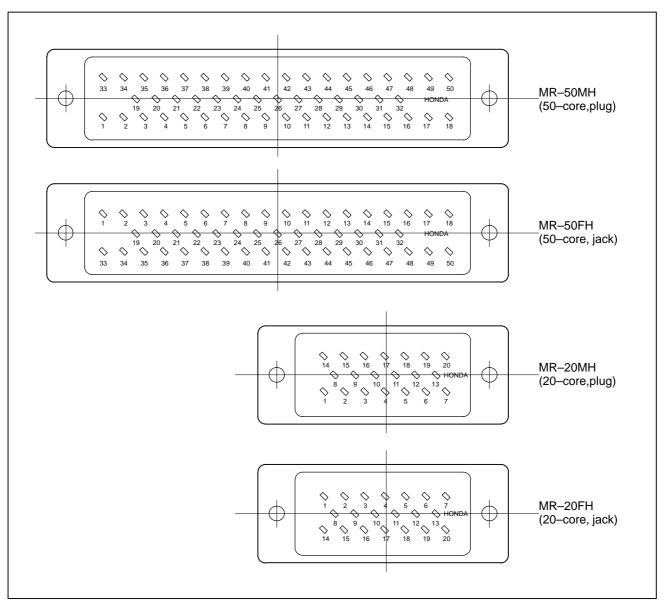


Fig.C4 (e) HONDA connector (terminal layout)

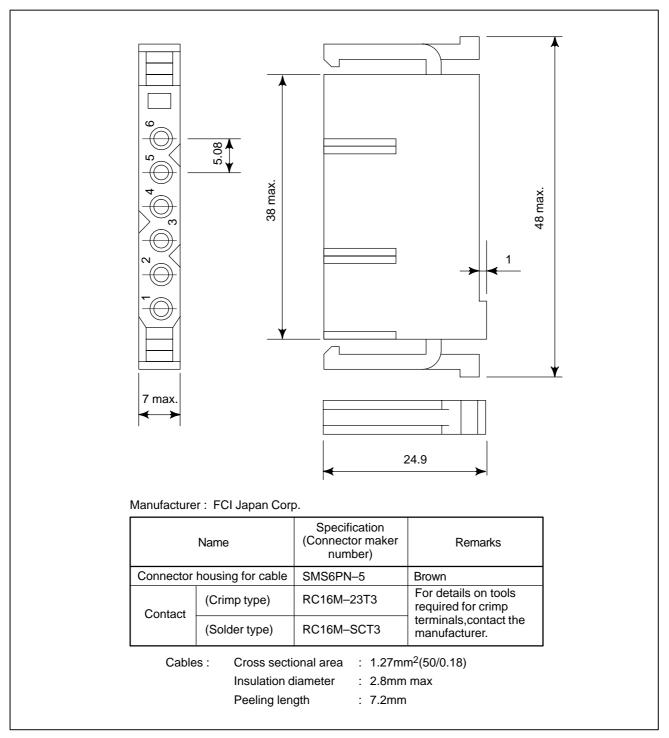
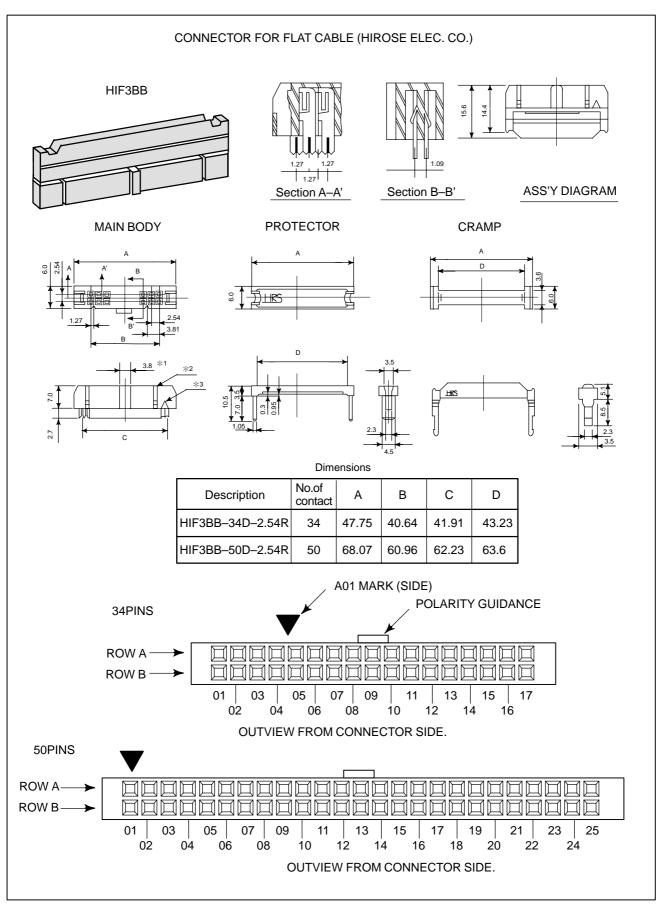
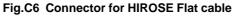
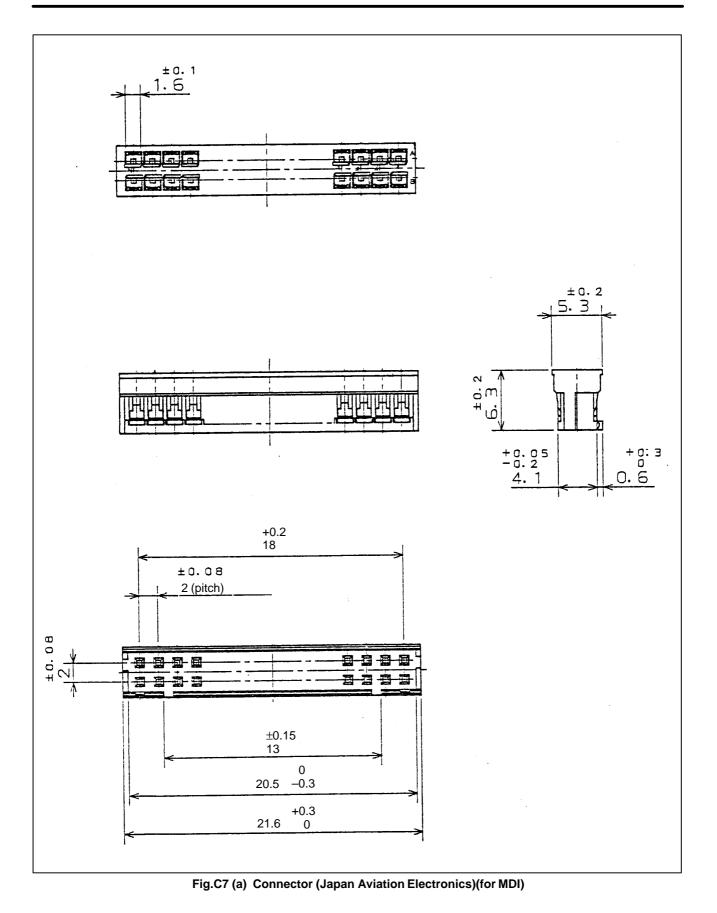





Fig.C5 Connector made by FCI Japan (6 pins,brown)

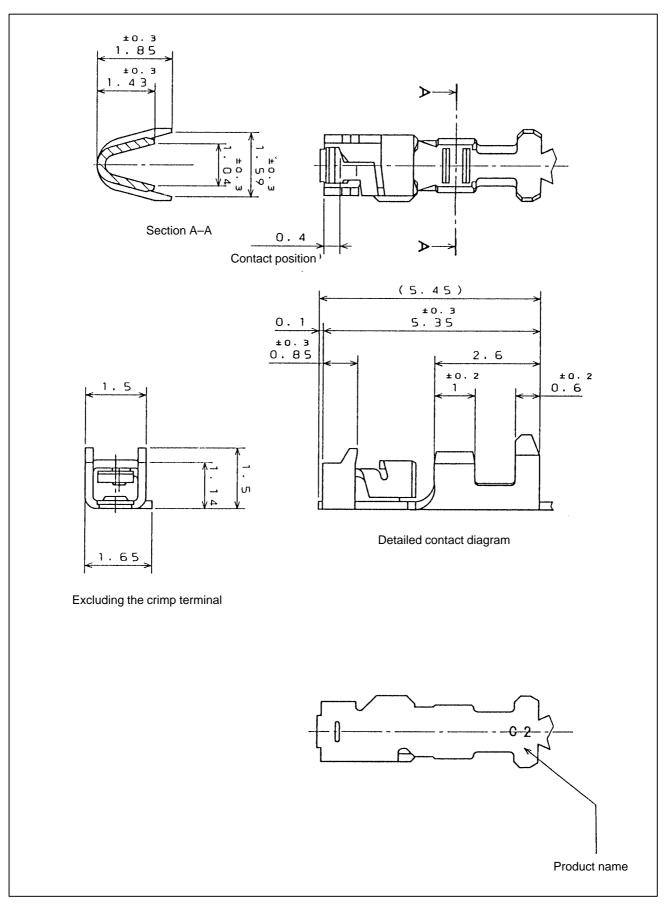


Fig.C7 (b) Contact (Japan Aviation Electronics)(for MDI)

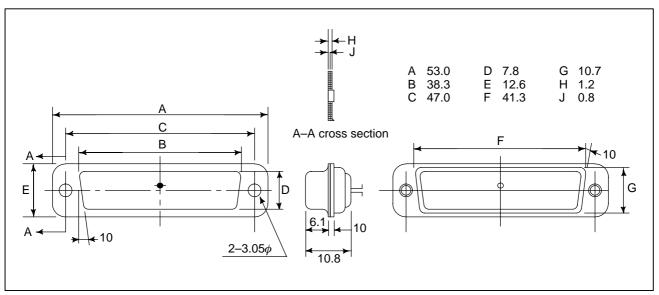


Fig.C8 (a) Punch panel connector for reader/puncher interface

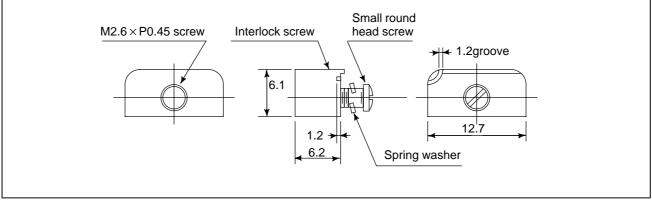


Fig.C8 (b) Locking plate plate for reader/puncher interface connector

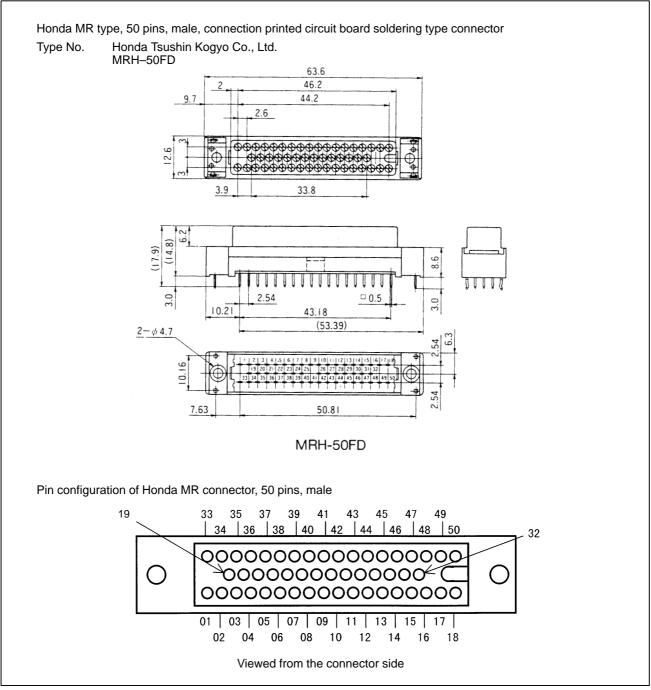


Fig.C9 Honda connector

B.1 OVERVIEW

B.2 BOARD-MOUNTED CONNECTORS

This section explains the recommended (FANUC–approved) connectors for the 20–pin interface, used with the following target models, and the corresponding cables.

Model : PCR-EV20MDT produced by Honda Tsushin or 52618-2011 produced by Japan Molex

The board-mounted connector has been specially developed to achieve the FANUC proprietary high packing density. However, the mating mechanism of the connector is compatible with that of Honda PCR series connectors. Therefore, Honda PCR series connectors can be used as cable connectors. Because cable connectors support this specification extensively, many connector manufacturers offer custom-tailored models.

B.3 CABLE CONNECTORS

Cable connectors consist of a connector main body and housing. The models listed below are available. Those connectors not marked with an asterisk are currently being mass–produced as manufacturer's standard models. Those marked with an asterisk are produced according to custom specifications by FANUC.

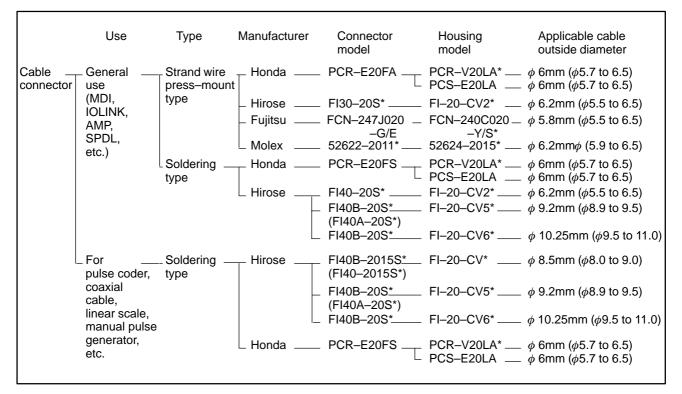


Fig. B.3 Cable connectors

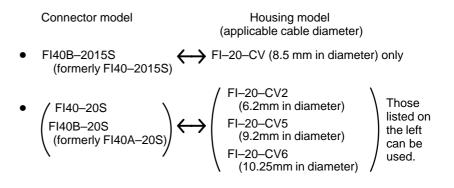
Cable Connectors

Strand wire press-mount connector :

With this connector, #28AWG wires are press-connected to each pin at the same time. The cost of producing a cable/connector assembly with this connector model is much lower than with connectors designed for crimping or soldering.

Soldering type connector : Details of soldering type connectors and their housings are summarized below.

Table B.3 Details of soldering type connectors and housings


Connectors

Connector model (manufacturer)	Supplementary description
PCR-E20FS (Honda)	Soldering type connector for general signals. This is suitable for producing cable assemblies in small quantities, as well as on–site.
FI40–20S (Hirose)	Equivalent to Honda PCR-E20FS
FI40B–20S (Hirose) (formerly, FI40A–20S)	Has the same number of pins as the FI40–20S, but features a wider soldering pitch, facilitating soldering and enabling the use of thicker wires. Its reinforced pins allow wires as thick as #17AWG to be soldered to the FI40B–20S (wires no thicker than #20AWG can be used with the FI40A–20S). Note, however, that a thick wire, such as #17AWG, should be used with a more robust housing like the FI–20–CV6.
FI40B–2015S (Hirose) (formerly, FI40–2015S)	Features a wider soldering pitch, attained by using the space provided by thin- ning out some pins. Also features tougher pins, compared with its predecessor, the FI40–2015S. These pins can be soldered to wires as thick as #17AWG, provided that the cable diameter does not exceed 8.5 mm.

Housings

Housing model (manufacturer)	Supplementary description
FI–20–CV5 (Hirose)	Should be used with the FI40B–20S. This is a plastic housing designed for use with a cable that is 9.2 mm in diameter.
FI–20–CV6 (Hirose)	Should be used with the FI40B–20S. This housing, however, can be used with a thicker cable (such as 10.25 mm) than is possible with the FI–20–CV6. Its components are die cast.

In addition to the combinations shown in Fig. B.4, Hirose soldering-type connectors can be combined with the housings listed below. Ensure that the diameter of the cable used with each housing satisfies the requirements of that housing.

B.4 RECOMMENDED CONNECTORS, APPLICABLE HOUSINGS, AND CABLES

Connector name referenced in the Connection Manual	FANUC–approved connector (manufacturer)	FANUC–approved housing (manufacturer)	Compatible cable (cable diameter) FANUC development FANUC specification number	Remark
PCR–E20FA Strand	PCR–E20FA (Honda Tsushin)	PCR-V20LA (Honda Tsushin)	A66L–0001–0284#10P (6.2 mm in diameter)	Plastic housing
press-mount type		PCS–E20LA (Honda Tsushin)		Metal housing
	FI30–20S (Hirose Electric)	FI–20–CV2 (Hirose Electric)		Plastic housing
	FCN–247J020–G/E (Fujitsu Takamizawa)	FCN–240C020–Y/S (Fujitsu Takamizawa)		Plastic housing
	52622–2011 (Molex)	52624–2015 (Molex)		Plastic housing
PCR–E20FS Soldering type	PCR–E20FS PCR–V20LA (Honda Tsushin) (Honda Tsushin)			Plastic housing
		PCS–E20LA (Honda Tsushin)		Metal housing
	FI40–20S (Hirose Electric)	FI–20–CV2 (Hirose Electric)		Plastic housing
FI40B–2015S (formerly FI40–2015S) 15–pin soldering	FI40B–2015S (formerly FI40–2015S) (Hirose Electric)	FI–20–CV5 (Hirose Electric)	A66L–0001–0367 A66L–0001–0368 (9.2 mm in diameter)	Plastic housing
type	FI40B–20S (Hirose Electric)	FI–20–CV6 (Hirose Electric)	A66L–0001–0403 (*1) (9.8 mm in diameter)	Metal housing

Table B.4 Recommended connectors, applicable housings, and cables

NOTE

*1 Cable A66L–0001–0286 has been recommended for use as a pulse coder cable. It can be up to 20 m long. Two cables, A66L–0001–0402 and A66L–0001–0403, have recently been developed. A66L–0001–0402 and A66L–0001–0403 can be as long as 30 m and 50 m, respectively. (See Fig. 4 for detailed specifications.)

Both cables have the same level of oil and bending resistance (cable, 100 mm in diameter, capable of withstanding at least 10 million bending cycles) as conventional cables, and are UL- and CSA-certified.

Press-mount type connector assembly tools and jigs

Connector model referenced in the Connection Manual	FANUC–approved connector (manufacturer)	Wire forming tool	Press–mounting tool	Remark
PCR-E20FA	PCR–E20FA (Honda Tsushin)	PCS-K2A	FHPT–918A	Low cost
		JGPS-015-1/1-20 JGPS-014	MFC–K1 PCS–K1	(Note 1)
		FHAT–918A		
	FI30–20S (Hirose Electric)	FI30-20CAT	FI30–20/ID	Low cost
		FI30-20CAT1	HHP-502 FI30-20GP	
	FCN–247J020–G/S (Fujitsu)	FCN-237T-T043/H	FCN-237T-T109/H FCN-247T-T066/H	
		FCN-237T-T044/H		
		FCN-237T-T062/H		
	52622–2011	57829–5000	57830–5000	Low cost
	(Molex)	57823-5000	57824–5000	

NOTE

1 Those tools indicated by shading are available from FANUC (specification number A02B–0120–K391).

2 The tools available from each manufacturer are specifically designed for use with the connectors manufactured by that manufacturer.

Materials for cable assemblies

Machine tool builders are required to manufacture or procure the materials for the cable assemblies to be used with their products. FANUC recommends the following materials as being suitable for interface connectors. Individual machine tool builders are encouraged to contact each cable manufacturer for themselves, as required.

Material	Use	Constitution	FANUC specification number	Manufacturer	Remark
10–pair cable	General use	0.08mm ² 10–pair	A66L–0001–0284 #10P	Hitachi Cable, Ltd. Oki Electric Cable Co., Ltd. SHINKO ELECTRIC INDUSTRIES CO., LTD.	
5–conductor coaxial cable	CRT/LCD interface (long–distance)	5–conductor coaxial	A66L-0001-0371	Hitachi Cable, Ltd.	50 m or less
12–conductor composite cable	Pulse coder, linear scale, manual pulse generator	0.5mm ² 6–conductor 0.18mm ² 3–pair	A66L-0001-0286	Hitachi Cable, Ltd. Oki Electric Cable Co., Ltd. SHINKO ELECTRIC INDUSTRIES CO., LTD.	20 m or less
		0.75mm ² 6–conductor 0.18mm ² 3–pair	A66L-0001-0402	Oki Electric Cable Co., Ltd.	30 m or less Usable on movable parts
		1.25mm ² 6–conductor 0.18mm ² 3–pair	A66L-0001-0403	Oki Electric Cable Co., Ltd.	50 m or less Usable on movable parts

B. 20-PIN INTERFACE CONNECTORS AND CABLES

10-pair cable (a) Specifications Unit Item **Specifications** Product No. A66L-0001-0284#10P _ Manufacturer Hitachi Cable, Ltd. Oki Electric Cable, Co., Ltd. SHINKO ELECTRIC INDUSTRIES CO., LTD. 60°C Rating 30V:UL2789 _ 80°C 30V:UL80276 Conductor Stranded wire of tinned annealed copper (ASTM B-286) Material _ Insulator Cross-linked vinyl _ Shield braid Tinned annealed copper wire _ Sheath Heat-resistant oilproof vinyl _ Number of pairs Pairs 10 AWG Size 28 Conductor Structure Conductors 7/0.127 /mm Outside diameter 0.38 mm Insulator Thickness 0.1 mm Thinnest portion: 0.08 (3.1mm) Outside diameter (approx.) 0.58 mm UL15157(80°C, 30V) Core style (rating) mm Twisted pair Outside diameter (approx.) mm 1.16 20 or less Pitch mm Collect the required number of twisted pairs into a cable, Lay then wrap binding tape around the cable. To make the cable round, apply a cable separator as required. Lay diameter (approx.) 3.5 mm Hitachi Cable : Not available Drain wire Conductors : Not available /mm Shinko Electric Oki Electric Cable: Available, 10/0.12 Shield braid Element wire diameter 0.12 mm % Braid density 85 or more Black Sheath Color _ 1.0 Thickness mm Outside diameter (approx.) 6.2 mm Standard length 200 m _ Packing method Bundle Electrical Electric resistance (at 20°C) Ω/km 233 or less performance Insulation resistance (at 20°C) $M\Omega$ -km 10 or more V/min. 300 Dielectricstrength (AC) Flame resistance Shall pass flame resistance test VW-1SC of UL standards.

(b) Cable structure

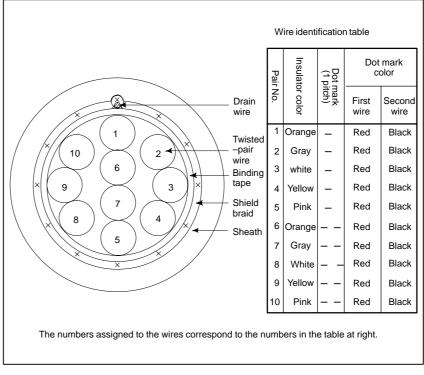
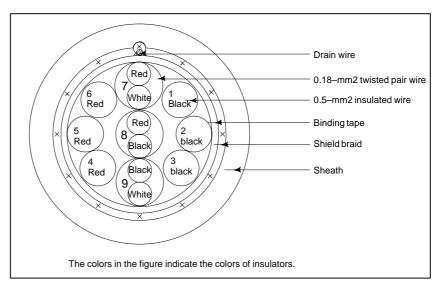


Fig. B.4

Composite 12–core cable

(a) Specifications

Item		Unit	Specifi	cations
Product No.		_	A66L-0001-0286	
Manufacturer		_	Oki Cable, Ltd. Hitachi Electric Cable Co., Ltd. SHINKO ELECTRIC INDUSTRIES CO., LTD.	
Rating		-	80°C, 30V	
Material	Conductor,braid–shielded wire,drain wire	-	Strand wire of tinned annealed copper (JIS C3152)	
	Insulator	-	Heat-resistant flame-retarda	nt vinyl
	Sheath	-	Oilproof, heat-resistant, flame	e-retardant vinyl
Number of wir	res (wire ons.)	Cores	6 (1 to 6)	6 (three pairs) (7 to 9)
Conductor	Size	mm ²	0.5	0.18
	Structure	Conductors /mm	20/0.18	7/0.18
	Outside diameter	mm	0.94	0.54
Insulator	Standard thickness (The mini- mum thickness is at least 80% of the standard thickness.)	mm	0.25	0.2
	Outside diameter	mm	1.50	0.94
Twisted pair	Outside diameter	mm		1.88
	Direction of lay	_		Left
	Pitch	mm		20 or less
Lay		_	Twist the wires at an appropriate pitch so the outermost layer is right–twisted, and wrap tape around the outermo layer. Apply a cable separator as required.	
Lay diameter		mm	5	.7
Drain wire	Size	mm ²	0	.3
	Structure	Wires/mm	12/0	0.18
	Outside diameter	mm	n 0.72	
Shield braid	Element wire diameter	mm	0.	12
	Thickness	mm	0	.3
	Braid density	%	7	0
	Outside diameter	mm	6.3	


Item		Unit	Specifications	
Sheath	Color	-	Black	
	Standard thickness (The mini- mum thickness is at least 85% of the standard thickness.)	mm	1.1	
	Outside diameter	mm	8.5Max. 9.0(1)	
Standard leng	th	m	100	
Packing metho	bd	-	Bundle	
Electrical performance	Electric resistance (at 20°C) (wire nos.)	Ω/km	39.4(1 to 6) 113(7 to 9)	
	Insulation resistance (at 20°C)	MΩ–km	15	
	Dielectric strength (AC)	V/min.	500	
Flame resistar	nce	_	Shall pass flame resistance tes	t VW–1SC of UL standards,

NOTE

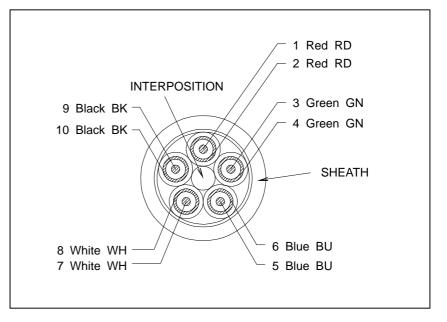
The maximum outside diameter applies to portions other than the drain wire.

(b) Cable structure

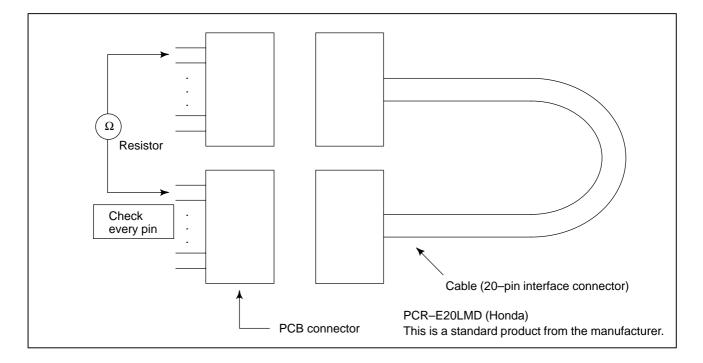
The cable structure is shown below.

	ltem	Specification				
FANUC	specification number	A66L-0001-0402		A66L–00	01–0403	
Manufacturer			Oki Electric C	Cable Co., Ltd.		
		A-conductor	B-conductor	A-conductor	B-conductor	
Conductor	Constitution Number of conductors/mm	16/0.12 (0.18mm ²)	3/22/0.12 (0.75mm ²)	16/0.12 (0.18mm ²)	7/16/0.12 (1.25mm ²)	
	Typical outside diameter (mm)	0.55	1.20	0.55	1.70	
Insulation (polyester)	Color	White, red, black	Red, black	White, red, black	Red, black	
(polyester)	Typical thickness (mm)	0.16	0.23	0.16	0.25	
	Typical outside diameter (mm)	0.87	1.66	0.87	2.20	
Pair twisting	Constitution	White–red, white–black, and black–red		White–red, white–black, and black–red		
	Direction of twisting	Left Typical pitch: 20 mm		Left Typical pitch: 20 mm		
Assembling by twisting	Number of strands or conductors	3	6	3	6	
	Direction of twisting	Le	eft	Le	eft	
	Taping	Twisting is wrapped with washi, or Japanese paper, tape.		Twisting is wrapped with washi, or Japanese paper, tape.		
	Typical outside diameter (mm)	5.7		6.9		
Braided shielding	Typical strand diameter (mm)		0.	14		
	Typical density (mm)		8	0		
	Drain	A 12/0.18 m	m wire is roughly w	vrapped under braided shielding.		
	Typical outside diameter (mm)	6.	.4	7.6		
Sheath (polyurethane)	Color		Black ((matted)		
(polyurethane)	Typical thickness (mm)	1.0	05	1.	1	
	Vertical taping	Ve	rtically taped with w	ashi under sheathir	ng.	
	Outside diameter (mm)	8.5 ±	±0.3	9.8±0.3		
Finished	Typical length (m)		10	00		
assembly	Short size		Basically no	ot approved.		
		Basically not approved.				

(c) Specifications


Item FANUC specification number Manufacturer		Specification				
		A66L-00	A66L-0001-0402 A66L-000		001–0403	
		Oki Electric Cable Co., Ltd.				
		A-conductor	B-conductor	A-conductor	B-conductor	
Finished assembly	Rating	80°C 30V				
performance	Standard	Shall comply with UL STYLE 20236 and CSA LL43109 AWM I/II A 80°C 30V FT–1.			AWM I/II A 80°C	
	Flame resistance		Shall comply with	VW-1 and FT-1.		
Electrical performance	Conductor resistance Ω/km (20°C)	103 or lower	25.5 or lower	103 or lower	15.0 or lower	
	Insulation resistance MΩ/km (20°C)		1 or h	nigher		
	Dielectric strength V–min		A. C	500		
Insulation performance	Tensile strength N/mm ²	9.8 or higher				
	Elongation %	100 or higher				
	Tensile strength after aging %	At least 70% of that before aging				
	Elongation after aging %	At least 65% of that before aging				
	Aging condition	For 168 hours at 113°C				
Sheathing performance	Tensile strength N/mm ²	9.8 or higher				
	Elongation %	100 or higher				
	Tensile strength after aging %		At least 70% of t	hat before aging		
	Elongation after aging %		At least 65% of t	hat before aging		
	Aging condition		For 168 hou	urs at 113°C		
Cable cross section	1	ape		Braided shieldin	<u>ig</u>	
	_Solid wire B Sheath	Red	Red Black	Twisted pair A		

5-core coaxial cable


(a) List of specifications

	Item	Unit	Description
Specification		_	A66L-0001-0371
Manufacture		_	Hitachi Densen
Number of Condu	ctors	_	5
Inside Conductor	Size	mm ²	0.14
	Components	Conduc- tors(PCS)/mm	7/0.16
	Material	-	Tin-coated Soft Copper Wire
	Diamter	mm	0.48
Insulator	Material (Color)	_	Polyethylene (White) Heat–resistant 80°C
	Thickness	mm	0.71
	Diamter	mm	1.90
Outside Conduc-	Material	_	Tin-coated Soft Copper Wire (Rolled)
tor	Diamter of Component–Wire	mm	0.08
	Density	%	95 or more
	Thickness	mm	0.2
Jacket	Material	_	Vinyl Heart-resistant 80°C
	Color	_	Black, White, Red, Green, Blue
	Thickness	mm	0.15
	Diamter	mm	2.6
Twisted Assembly	Diameter	mm	7.1
Thickness of Pape	er Tape	mm	0.05
Shield braiding	Element wire diameter (material)	mm	0.12 (tinned soft copper wire)
	Density	%	80 or more (typ. 82%)
	Thickness	mm	0.3
	Diameter	mm	7.8
Sheath	Material, Color	_	Oil Tight Vinyl (A) Black Heat–resistant 80°C
	Thickness	mm	0.7 (Min. : 0.56)
Finish Diameter	,	mm	9.2 ± 0.3
Conductor Resista	ance (20°C)	Ω/km	143 or less
Withstand Voltage	e (A.C.)	_	1000VAC
Insulation Resista	nce (20°C)	MΩ–km	1000 or more

Item	Unit	Description
Impedanse (10MHz)	Ω	75±5
Standard Capacitance (1MHz)	nF/km	56
Standard Attenation (10MHz)	dB/km	53
Estimated weight	kg/km	105
Standard Length	m	200
Package form	_	Bundle

An example of circuit testing 20-pin interface cable

С

CONNECTION CABLE (SUPPLIED FROM US)

Cable type	Use and condition	Maximum cable length (m)
MDI cable	Control unit-to-MDI unit	50 m
	Stand–alone type display unit–to– MDI unit	0.5 m
I/O Link cable	Electrical cable	10 m Note 2
	Electrical-to-optical conversion adapter	2 m
	Optical cable	200 m
Serial spindle cable	Electrical cable (control unit-to- spindle servo unit)	20 m
	Electrical-to-optical conversion adapter	2 m
	Optical cable	200 m
Position coder cable	Control unit position coder	50 m
MPG cable	For manual pulse generator	50 m
FSSB cable	See APPENDIX D.	
HSSB cable	See APPENDIX D.	
RS-232C	4800 baud or less	100 m
communication cable	9600 baud or less	50 m
RS-422	9600 baud or less	800 m
communication cable	19.2 kbaud	50 m
CRT video signal cable	Control unit-to-CRT	50 m

Maximum allowable cable length between units

NOTE

- 1 The maximum cable lengths listed above apply only when the respective recommended cables stated in the text are used. If a non-recommended cable is used, the maximum cable length may not be guaranteed. Cables other than those listed above are used between units in the *i* series CNC. See the respective descriptions in this manual for details of these cables.
- 2 This cable can be extended to up to 15 m if it is used within the cabinet.

Purpose	Description	Specification	Length
MDI signal cable Control unit (JA2) ↓ MDI unit (CK1)	PCR-E20F	A02B–0120–K810	5m
CRT/PDP video signal cable Control unit (JA1) ↓ CRT/PDP unit (CN1)	FI40-20S-CV5 MR-20LW	A02B–0120–K819	5m
Monochrom CRT power cable Control unit (CP1B) ↓ CRT unit (CN2)	AMP2-17288-3 SMS6PN-5	A02B–0120–K820	5m
LCD Power supply cable Control unit (CP1B) ↓ LCD unit (CP1B)	AMP2-17288-3	A02B–0120–K823	5m
Power supply cable for I/O unit Control unit (CP1B) ↓ I/O Unit (CP31)	AMP2-178288-3	A02B-0236-K843	5 m
MDI signal cable Stand–alone type display unit	FI40-2015S	A02B-0299-K812	25 cm
(CÁ55) ≎ MDI unit (CK1)		A02B-0299-K813	45 cm

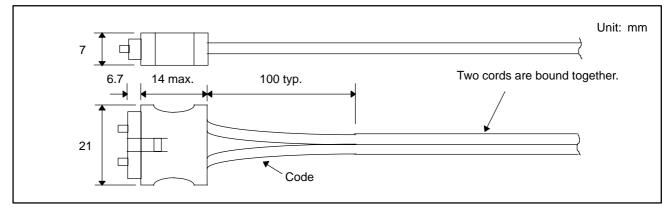
Purpose	Description	Specification	Length
Power supply cable for stand–alone type LCD unit Control unit (CPD2) ↓ Stand–alone type LCD (CP1A)	AMP2-178288-3	A02B–0166–K880	55 cm
Manual pulse generator cable (for one unit) Control unit (JA3) ↓ Manual pulse generator terminal board	FI40-2015S M3 crimp style terminal	A02B–0120–K847	7m
Manual pulse generator cable (for two units) Control unit (JA3) ↓ Manual pulse generator terminal board	FI40-2015S M3 crimp style terminal	A02B–0120–K848	7m
Manual pulse generator cable (For 3 MGs) Control unit (JA3) ↓ Manual pulse generator terminal board	HI40-2015S M3 crimp style terminal EREE 0000	A02B–0120–K841	7m
I/O Link cable Control unit (JD1A) ↓ I/O unit (JD1B)	PCR-E20FA	A02B-0120-K842	5m

C. CONNECTION CABLE (SUPPLIED FROM US)

Purpose	Description	Specification	Length
Spindle signal cable Control unit		A03B–0807–K801	5m
(JA7A) ↓ Spindle amplifier (JA7B)	PCR-E20FA	A03B-0807-K802	10m
Control unit pow- er supply cable Voltage regulator (24VDC) ↓ Control unit (CP1A)	M3 crimp style terminal	A02B–0124–K830	5m

OPTICAL FIBER CABLE

The Series 0i/0i Mate uses optical fiber cables for the following interfaces. This table lists the usable combinations.


Interface	Recommended optical cable	Maximum allowable transmission distance	Applicable junc- tion adapter	Remark
Serial spindle interface	A66L-6001-0026#L~	100 m	None	
Serial spindle interface	A66L-6001-0029#L~	55 m	A63L-0020-0004	For junction only
I/O Link interface	A66L-6001-0026#L~	200 m	A63L-0020-0002	
High–speed serial bus (HSSB) interface (Note)	A66L-6001-0026#L~	100 m	None	
	A66L-6001-0029#L~	55 m	A63L-0020-0004	For junction only
Serial servo bus (FSSB) interface	A66L-6001-0023#L~	10 m	None	
Interface	A66L-6001-0026#L~	100 m	None	
LCD interface	A66L-6001-0026#L~	100 m	None	

NOTE

For printed–circuit boards with the following former ordering information, the maximum allowable transmission distance with -0026#L~ is lowered to 50 m, and connection with A63L-0020-0004 is impossible.

·A20B-8001-0580 ·A20B-8001-0581 ·A20B-8001-0640 ·A20B-8100-0100

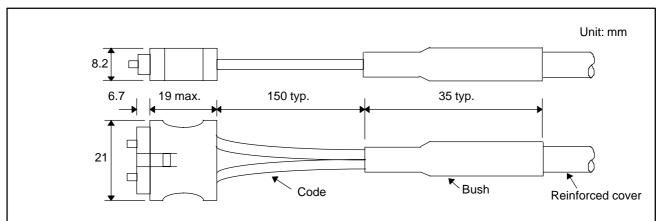

Notes on the specifications of optical fiber cable C (1) Supported optical fiber cables (a) Internal cord type cable: A66L–6001–0023#L□R□□ Cable length: 0.15 to 10 m Code diameter: 2.2 mm × 2 cords Tensile strength: Optical fiber cord 7 kg per cord Between optical fiber cord and connector 2 kg Minimum bending radius of optical fiber cord: 25 mm Operating temperature: -20 to 70°C

Fig. D.1 External dimensions of internal cord type cable

(b) External type cable: A66L–6001–0026#L R C
A66L–6001–0029#L R C
Cable length: 1 to 200 m
Optical fiber cord diameter: 2.2 mm × 2 cords
Diameter of cable with reinforced cover: 7.6 mm
Tensile strength: Cable with reinforced cover – 75 kg
Optical fiber cord 7 kg per cord
Between optical fiber cord and connector 2 kg
Minimum bending radius of optical fiber cord: 25 mm
Minimum bending radius of cable with reinforced cover: 50 mm
Bending resistance (cable with reinforced cover): 1
0 million bending cycles at room temperature (when the bending radius is 100 mm)

Flame resistance: Equivalent to UL VW-1 Operating temperature: -20 to 70°C

Fig. D.2 External dimensions of external cable

Internal cord type cable		Externa	al cable		
A66L-6001-0023#		A66L-600	A66L-6001-0026#		
Specification	Length	Specification	Length		
L150R0	0.15 m	L1R003	1.0 m		
L300R0	0.3 m	L2R003	2.0 m		
L500R0	0.5 m	L3R003	3.0 m		
L1R003	1.0 m	L5R003	5.0 m		
L2R003	2.0 m	L7R003	7.0 m		
L3R003	3.0 m	L10R03	10.0 m		
L5R003	5.0 m	L15R03	15.0 m		
L7R003	7.0 m	L20R03	20.0 m		
L10R03	10.0 m	L30R03	30.0 m		
		L50R03	50.0 m		
		L100R03	100.0 m		
		L200R03	200.0 m		

Table D.1 Standard cable length

- 2. Cable selection
 - Always use an external cable (A66L-6001-0026#~) when the cable is to be laid outside the power magnetics cabinet or main unit cabinet, where it may be pulled, rubbed, or stepped on.
 - Use an external cable when part of the cabling is to be subject to movement. For example, when connecting a <u>portable</u> operation pendant box to the power magnetics cabinet, the use of an external cable is desirable because the cable is likely to be bent, pulled, or twisted repeatedly even though frequent system operation is not expected. However, the force likely to be applied when the cable is installed or moved for maintenance purposes does not need to be taken into consideration.
 - Use an external cable in locations where sparks or flame are a danger. Although the internal cord type cable (A66L-6001-0023#~) is covered by nonflammable resin, the cover, if exposed to frame for a long time, may melt, allowing the fiber cable inside to burn.
 - Use an external cable when the cable is expected to be pulled with considerable force during installation (the force applied to the cable must be within the specified tensile strength limit at all times). For example, even though installing a cable in a cable duct can be regarded as internal cabling, a cable of the appropriate type must be selected according to the tensile force to be applied to the cable during installation.
 - Both the internal cord type and external cables have the same oil and heat resistance properties.

3. Procuring the cable

All the optical fiber cables mentioned above are special cable products with optical connectors, which are designed, produced, and tested to ensure the required system performance and reliability. It is technically impossible for users to produce these cables or process (cut and reconnect) them after purchase. Users are requested to purchase cables of the necessary length from an appropriate supplier. Cables are available from either FANUC or any of the FANUC–approved manufacturers listed in Table D.2.

Table D.2 FANUC–approved cable manufacturers and cable model numbers (retail)

Manufacturer	Model number	Remarks
Japan AMP, Co., Ltd.	*-353373-*	
Japan Aviation Electronics Industry, Ltd.	PF-2HB209-**M-F-1	** indicates the cable length (m).
Hirose Electric Co., Ltd.	H07–P22–F2VCFA–**	** indicates the cable length (m).
(2) External Cable AGE		

(1) Internal cord type cable A66L–6001–0023#L \square R \square

(2) External Cable A66L–6001–0026#L R

Manufacturer	Model number	Remarks
Japan AMP, Co., Ltd.	*-353199-*	
Japan Aviation Electronics Industry, Ltd.	CF-2HB208-**M-F-1	** indicates the cable length (m).
Hirose Electric Co., Ltd.	H07-P22-F2NCFA-**	** indicates the cable length (m).
Oki Electric Cable Co., Ltd.	OPC201HPXF-**MB	** indicates the cable length (m).

4. Handling precautions

(1) Protection during storage

When the electrical/optical conversion module mounted on the printed circuit board and the optical fiber cable are not in use, their mating surfaces must be protected with the lid and caps with which they are supplied. If left uncovered, the mating surfaces are likely to become dirty, possibly resulting in a poor cable connection.

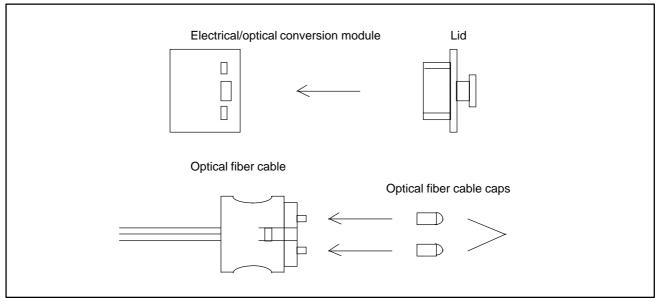
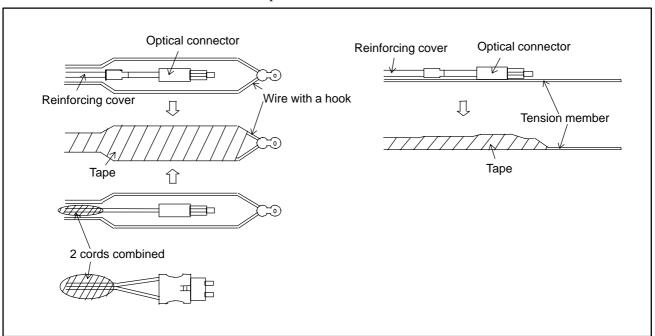



Fig. D.3 Protection of electrical/optical conversion module and optical fiber cable (when not in use)

(2) Optical fiber cable

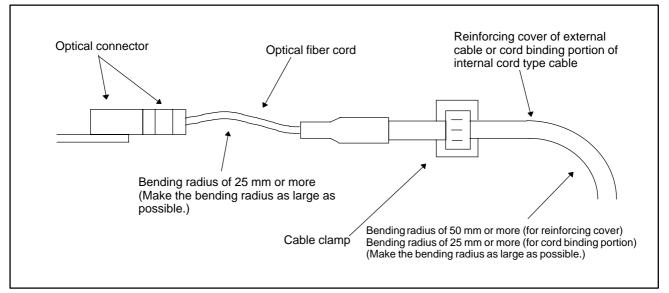
- Make sure that the bending radius and tensile strength of the cable are always within their ranges described in the specifications (see the first item), regardless of whether the cable is stored or routed and whether operation is in progress or not.
- Although the reinforcing cover of the external cable has sufficient mechanical strength, be careful not to drop heavy objects on the cable.
- Grasp the optical connector firmly when connecting or disconnecting the cable. Do not pull on the optical fiber cord itself. (The maximum tensile strength between the fiber cord and connector is 2 kg. Applying greater force to the cord is likely to cause the connector to come off, making the cable unusable.)
- Once connected, the optical connector is automatically locked by the lock levers on its top. To remove the connector, release the lock levers and pull the connector.
- Although optical connectors cannot be connected in other than the correct orientation, always take note of the connector's orientation before making the connection.
- Before installing an external cable, fix either a wire with a hook or a tension member to the reinforcing cover of the optical connector and pull the wire or tension member, as shown in Fig. D.4. This is done to prevent a tensile force from being applied between the fiber cord and connector. If no tensile force is applied between the fiber cord and connector when installing the cable, you can hold the reinforcing cover of the connector directly and pull it. In the case of an internal cord, which does not have a reinforcing cover, apply the same protective measures, as instructed in Fig. D.4, for that portion of the cable where the two cords are bound together, in order to prevent a tensile force from being applied between the fiber cord and connector. In the same way as for an external cable, if no tensile force is applied between the fiber cord and connector. In the site way as for an external cable, if no tensile force is applied between the fiber cord and connector.

pull it. Because the combined tensile strength of the two cords is only 14 kg, however, avoid applying too great a force to the cable during installation, regardless of whether you have taken the protective measures.

Fig. D.4 Prior to installing a cable

- Take care to keep both parts of the optical connector (cable side and PCB side) clean. If they become dirty, wipe them with tissue paper or absorbent cotton to remove dirt. The tissue paper or absorbent cotton may be moistened with ethyl alcohol. Do not use any organic solvent other than ethyl alcohol.
- Fix the reinforcing cover of the external cable or the cord binding portion of the internal cord type cable by using a cable clamp, as shown in Fig. D.5, to prevent the weight of the optical fiber cable from being applied directly to the connecting part of the optical connector.

(Recommended cable clamp):


Recommended cable clamps are listed below. Use a clamp that grasps the optical cable lightly; the clamp should not apply excessive pressure to the cable.

For an external cable:

CKN-13SP (with sponge)(Kitagawa Industry Co., Ltd.)

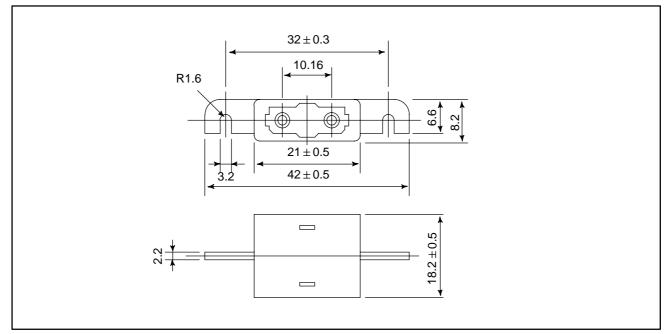
For an internal cord type cable:

MN-1 (Kitagawa Industry Co., Ltd.)

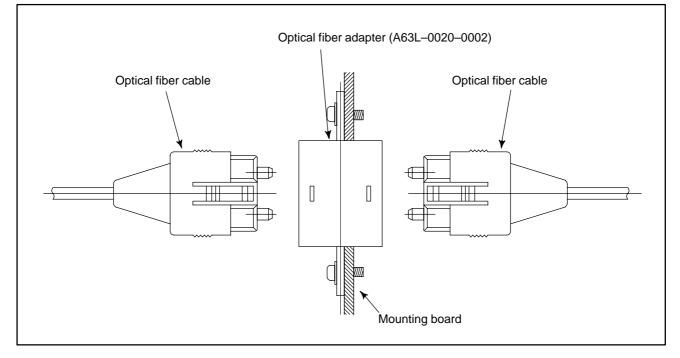
Fig. D.5 Fixing the cable with a clamp

- Any superfluous portion of the cable may be wound into a loops. Should this prove necessary, make sure the diameter of each loop is at least 150 mm (for an external cable) or at least 100 mm (for an internal cord type cable). Winding the cable into smaller loops may produce sharp curves that exceed the specified bending radius limit without the user being aware. Such bending can result in a greater transmission loss, ultimately leading to a communication failure.
- When using a nylon band (cable tie) as a cable clamp, follow the instructions given below. Also, take care not to apply a bending force to one particular part of the cable when fixing it with a clamp. Failing to clamp the cable correctly may cut or damage it. External cable:

Do not clamp the uncovered portion of the cable with a nylon band. When clamping the cable by the reinforcing cover, the clamping force is not an important factor to consider. However, ensure that the clamping force is as small as possible to ensure that the reinforcing cover is not deformed by the clamping. If possible, the clamping force should be 5 kg or less.

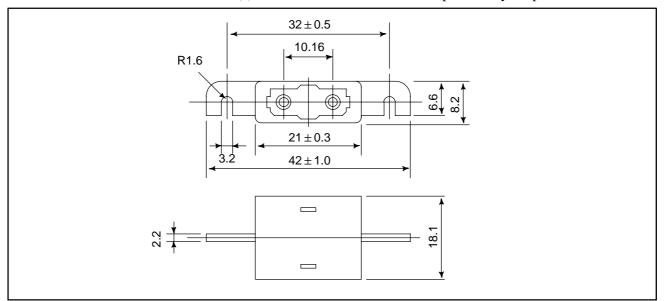

Internal cord type cable:

Lightly clamp the optical cable with a nylon band so that the cable shield is not deformed. If possible, the clamping force should be 1 or 2 kg (make sure that no force is applied to the cable). Due care is required when clamping the internal cord type cable because its cable shield is weaker than the reinforcing cover of the external cable.

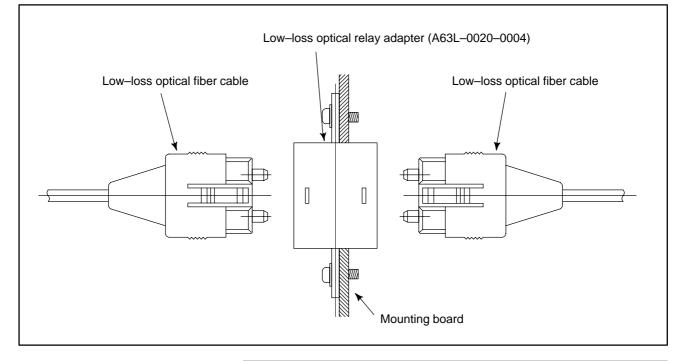

5. Optical fiber cable relay

When used for the FANUC I/O Link application, optical fiber cables can be connected by using an optical fiber adapter, as follows.

(a) External view of an optical fiber adapter


(b) Example of the use of an optical fiber adapter

NOTE


Up to one relay points are permitte.

6. Optical fiber cable relay of FANUC high–speed serial bus With the FANUC high–speed serial bus, special low–loss optical cables can be connected by using a special low–loss optical relay adapter as an optical fiber relay adapter.

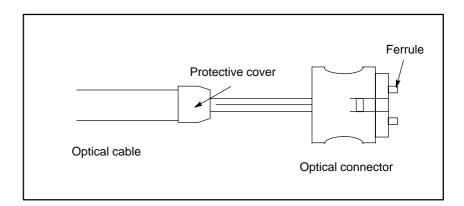
(a) External view of the low-loss optical relay adapter

(b) Example of use of the optical fiber relay adapter

NOTE

Only one relay point is permitted.

- 7. Precautions for connection with low-loss optical junction adapter
 - Features of and handling precautions for low-loss optical junction adapter (A63L-0020-0004)


When optical connectors for a conventional optical junction adapter (A63L–0020–0002) are jointed, the facing ferrules(Note 1) are located about 60 um from each other. This is because the optical fiber of conventional PCF (plastic clad silica fiber) cables (A66L–6001–0008, –0009, –0026) may protrude from the tip of the ferrules (by up to about several um), resulting in the fiber protrusion being damaged when the ferrules are butted against each other.

In the low–loss optical junction adapter, the ferrules are butted against each other, thus greatly reducing the reduction in repeater loss. Therefore, the two optical cables used with the low–loss optical junction adapters must be dedicated to the adapters.

If a conventional PCF (plastic clad silica fiber) cable (A66L–6001–0008, –0009, –0026) is used as even one of the two optical fiber cables for joining the low–loss optical junction adapter, both cables may be damaged, resulting in deteriorated characteristics.

NOTE

Ferrule: Movable metal at the tip of an optical connector; the fiber is bonded to the ferrule.

- Features of low-loss optical cable (A66L-6001-0029~) A low-loss optical cable is selected from conventional PCF optical cables (A66L-6601-0026). The selected cable offers low loss, and its connector section is given special treatment; the fiber ends are provided with a depression so that the ferrules can be butted against each other. The two optical cables used with the low-loss optical junction adapter must be of low-loss type.
- Appearance of the low-loss optical junction adapter and cable (how to distinguish them from conventional types) The body of the conventional optical junction adapter is black, but that of the low-loss optical junction adapter is blue. In addition, the protective cover(Note 1) of the conventional PCF optical cable is black, but that of the low-loss optical cable is blue.

- 8. Installing the optical fiber junction adapter The optical fiber junction adapter should be installed within a cabinet, as a rule. If it is impossible to avoid installing it within a cabinet, protect the adapter and the optical cable portions (such as connectors and cords) not covered with reinforcement coating from the outside air by, for example, covering them with packing.
- 9. Environmental resistance of the optical fiber junction adapter
 - The optical fiber junction adapter is not waterproof. Even when optical cables are attached to both ends of the adapter, there are very small gaps in the linked portions, so water resistance can not be expected.
 - When optical cables are attached to both ends of the junction adapter installed in a normal environment (such as within a cabinet), it is unlikely that dust will penetrate between the adapter and optical fiber to the degree that it may hamper normal optical linkage. If one or both ends of the adapter are left open, dust and dirt may accumulate even when the adapter is in a normal environment (such as within a cabinet). The dust and dirt on the adapter ends is likely to hamper normal optical linkage when the optical cables are attached. In such a case, clean the junction adapter and the optical connector using the optical fiber junction adapter cleaning method described below.
 - Do not allow cutting fluid to splash over the adapter or those optical cable portions (such as connectors and cords) that are not covered with reinforcement coating. If the inside of the adapter and fiber end surfaces are contaminated with cutting fluid, a malfunction may occur.

10.Cleaning

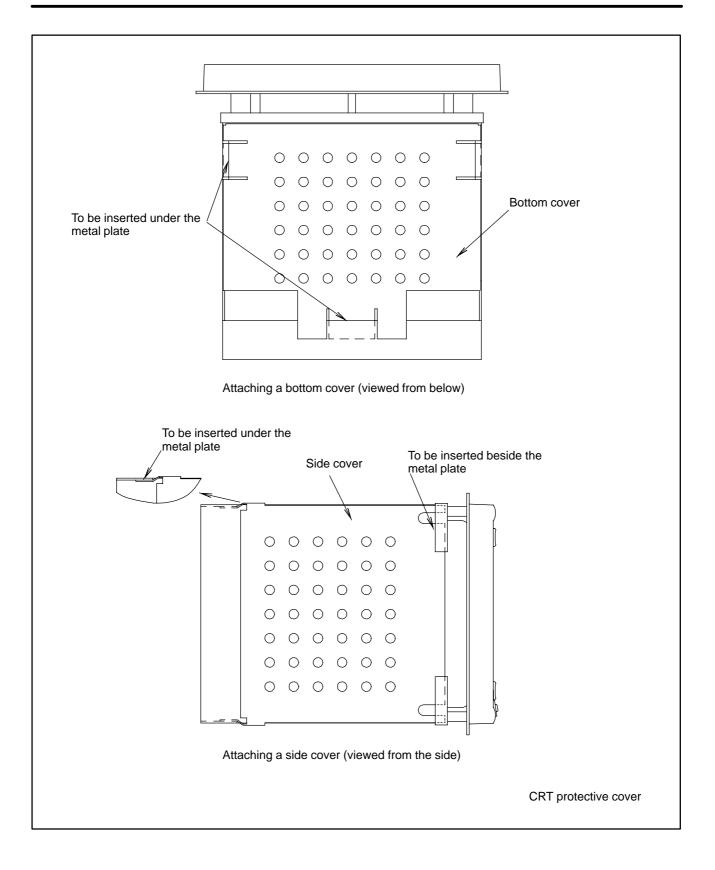
If the optical fiber junction adapter, optical-to-electrical conversion module, or optical cable are soiled, clean them according to the following procedures.

• Cleaning the optical fiber junction adapter and optical-to-electrical conversion module

First, clean the entire housing by wiping it with a cloth moistened with, or by washing it in, ethyl alcohol or HCFC141B (alternative CFC; High Shower spray can DS–2168, manufactured by Sun Hayato). Similarly, wash the two sleeves in the adapter or wipe them with a cotton swab or the like.

— 403 —

• Cleaning optical cables


For the optical cables, it is important to clean the connectors at their ends. Any soiling on the optical fiber end surfaces will hamper optical transmission, resulting in a malfunction. Wipe the optical fiber end surfaces (that is, the ferrule end surfaces) thoroughly with a soft, clean cloth (like gauze) moistened with ethyl alcohol or HCFC141B, in the same way as described above. The use of cotton swabs may prove convenient. The fiber end surfaces of low–loss optical cables are lower than the ferrules. To remove any soiling from the fiber end surfaces completely, push the cotton swab or gauze into the depressions all the way through while rotating the ferrule. If the ferrules and optical connectors are contaminated with oily substances, and they may extend over a cleaned fiber end surface when it is attached to the optical-to-electrical conversion module, it is a good idea to wash them before wiping the optical fiber end surfaces, using the procedure stated above.

ATTACHING A CRT PROTECTIVE COVER

To satisfy the requirements for CE marking (machine directive), it is necessary to attach a CRT protective cover to the 9" monochrome CRT display unit.

The CRT display unit is already provided with a protective cover at its top and rear surfaces. So, additional covers are required on the bottom and side surfaces.

E. ATTACHING A CRT PROTECTIVE COVER

F

MEMORY CARD INTERFACE

Overview	Data I/O internal to the CNC can be performed for maintenance through the memory card interface in the control unit. This appendix F describes the memory card interface for data input/output.		
ATA CARD	1.Overview The flash ATA card incorporates a storage device and controller, it enables data input/output for a personal computer equipped with a PCMCIA interface without using any special PC card writer.		
	2.Flash ATA card specification		
	The Flash ATA card must comply with the following standards and must be of one of the following types. However, it is not guaranteed that all ATA cards that comply with these standards will operate normally in the CNC. See Table F for those ATA cards whose normal operation has been confirmed by FANUC.		
	2–1 Card standards The ATA card to be used in the CNC must comply with PCMCIA (Personal Computer Memory Card International Association) PC Card standard Release 2.1 and PCMCIA PC Card ATA Release 1.02.		
	2–2 Card Shapes PCMCIA Type I and Type II		
	2–3 Card Operation Mode PC–ATA specification		
	 2-4 Card Operating Voltage ATA cards that can operate on 5 V (single voltage power source) and 5 V/3.3 V (automatic switching) can be used in the CNC. 		

3.Flash ATA cards whose normal operation has been confirmed

The following table shows that the ATA Flash cards which are confirmed to be worked on the Series 0i/0i Mate^(note 1) by FANUC. (for June, 2003)

The marks on the table mean bellow.

- Available: The card confirmed to be worked by FANUC
- NG: FANUC does not recommend to use it because it might need much time to write data to the card.
- —: No planning to test

(Blank): This will be evaluated in the future.

FANUC does not guarantee that any other cards except for the list work well.

NOTE

The PSMCIA interface on the CNC display unit for with PC functions is not included.

Table F(a) ATA flash card list

			Purpose			
Vendor	Specification	Capacity	For Data Input/Output	For Data Server	Remarks	
	HB28D096A8H	96MB	0	0		
HITACHI	HB28D160A8H	160MB	0	0		
	HB28B192A8H	192MB	0	0		
	HB28B320A8H	320MB	0	0		
	HB28B640A8H	640MB	0	0		
	HB28B1000A8H	1GB	0	0		

NOTE

- 1 If a card other than the above is used, the operation is not guaranteed.
- 2 The cards for 3.3 V cannot be used.
- 3 The cards for 5 and 3.3 V (automatic switching) can be used.

In the future, we will recommended compact flash cards because of their availability.

For those that we do not plan to evaluate, use the compact flash cards on the compact flash card list instead.

			Purpose		
Vendor	Specification	Capacity	For Data Input/Output	For Data Server	Remarks
	SDCFB-64-801	64MB	0		
	SDCFB-128-801	128MB	0	0	Note 2
	SDCFB-256-801	256MB	0	0	
SanDisk	SDCFB-384-801	384MB	0	0	
	SDCFB-512-801	512MB	0	0	
	SDCFB-32-101	32MB	0		
	SDCFB-64-101	64MB	0		
	HB288032C6	32MB	0	—	No production
HITACHI	HB288064C6	64MB	0	—	No production
	HB28D032C8H	32MB	0		
	HH28B064C8H	64MB	0		
I·O data	PCCF-32MS	32MB	0	—	No production
	PCCF-48MS	48MB	0	—	No production
	PCCF-64MS	64MB	0	—	No production
	PCCF-H32MS	32MB	0	_	No production
	PCCF-H48MS	48MB	0	_	No production
	PCCF-H64MS	64MB	0	—	No production

Table F(b) Compact flash card list

NOTE

1	The compact flash card adapters used for operation									
	confirmation are as follows:									
	Adapter made by SanDisk: SDCF-31									
	Adapter made by I-O DATA: PCCF-ADP									
2	The compact flash card adapter used for operation									
	confirmation is as follows:									
	Adapter made by SanDisk: SDCF-31-03									

4. Miscellaneous

- The flash ATA card uses a quick format. If your flash ATA card has not been formatted, do so using a personal computer.
- It is impossible to use ATA cards with the memory card access function of a C executor application.

[Numbers]

20-pin Interface Connectors and Cables, 374
2A DO (Output Signal) Connection, 190
2A Output Connector Pin Allocation, 189
2A Output DO Signal Specifications, 191
9" CRT Display Unit Interface, 52

[A]

Action Against Noise, 16 Address Assignment by Ladder, 259 Analog Input Connector Pin Allocation, 192 Analog Input Signal Connections, 193 Analog Input Signal Specifications, 195 Analog Input Specifications, 196 Analog Spindle Interface, 86 Attaching a CRT Protective Cover, 405

[B]

Basic Unit 10.4" LCD Type, 289
Basic Unit 12.1" LCD Type, 290
Basic Unit 15.0" LCD Type, 290
Batteries for CNC Display Unit with PC Functions (3VDC), 46
Battery, 44
Battery for Absolute Pulse Coder Built into the Motor (6VDC), 48
Battery for Memory Backup (3VDC), 44
Battery for Separate Absolute Pulse Coders (6VDC), 47
Board-mounted Connectors, 375

Built-in I/O Card Connection, 110

[C]

Cable Clamp and Shield Processing, 24 Cable Connectors, 376 Cable for Power Supply to Control Unit, 43 Cable Lead–in Diagram, 28 Cable Length for Manual Pulse Generator, 199 Cable Length When Manual Pulse Generator is Used, 78 Centronics Parallel Port, 301 CNC Display Unit with PC Functions, 278 CNC Display Unit with PC Functions Having a Touch Panel and Soft Key, 285 CNC Display Unit with PC Functions Having a Touch Panel but No Soft Key, 284 CNC Display Unit with PC Functions Having Neither Soft Keys nor a Touch Panel, 281 CNC Display Unit with PC Functions Having Soft Keys but No Touch Panel, 283 Configuration, 1, 179 Connecting DI/DO, 112 Connecting I/O Devices, 64, 65 Connecting Machine Interface I/O, 107 Connecting the FANUC Servo Unit β Series with I/O Link, 257 Connecting the High-speed Skip (HDI), 80 Connecting the Manual Pulse Generator, 76 Connecting the signal ground (SG) of the control unit, 19 Connection, 128, 258, 280 Connection Cable (Supplied from US), 389 Connection Diagram, 180, 266 Connection of Basic and Expansion Modules, 200 Connection of Battery for Separate Absolute Detector, 101 Connection of Connector Panel I/O Module, 179 Connection of Each Section, 161 Connection of FANUC I/O Link by Electric Cable, 133 Connection of One to Two Serial Spindles, 84 Connection of Operator's Panel I/O Module (for Matrix Input), 212 Connection of Operator's Panel I/O Module and Power Magnetics Cabinet I/O Module, 230 Connection of Power Supply, 93 Connection of Source Output Type Connection Unit, 247 Connection to CNC Peripherals, 49 Connection to FANUC I/O Link, 126 Connection to Machine Operator's Panel, 135 Connection to Manual Pulse Generators, 77 Connection to other Networks, 277 Connection to the Display Unit/MDI Unit, 50 Connection to the High-speed Skip (HDI), 81 Connection to the MDI Unit (When a LCD Unit is Used), 55 Connection to the Servo Amplifiers, 89 Connection to the Small Machine Operator's Panel, 160 Connection to the Standard MDI Unit, 54

Connections, 137

Connector (on the cable side) specifications, 147

Connector Layout Diagram, 30, 292

Connector Layout of the Small Machine Operator's Panel, 173

Connector Locations, 103

Connector Locations of Main Panel B, 150

Connector Pin Arrangement, 111

Connector Pin Layout for Source Output Type Connection Unit, 253

Control Unit, 27

Cooling by Heat Exchanger, 14

Customization of the key sheet, 177

[D]

Design and Installation Conditions of the Machine Tool Magnetic Cabinet, 12

Detachable key top, 156

DI (General–purpose Input Signal) Connection, 215, 234

DI (Input Signal) Connection, 184

DI (input signal) connection, 142

DI (Matrix Input Signal) Connection, 217

DI Signal Connection (Rotary Switch Connection), 166

DI Signals and Receivers, 109

DI/DO Address, 148

DI/DO Connector Pin Arrangement, 214, 233

DI/DO Connector Pin Assignment, 183

DI/DO Mapping, 150

DI/DO Signal Specifications, 187

Dimensions of Source Output Type Connection Unit, 256

Distribution I/O Setting, 209

DNC2 Interface (RS-232-C), 276

DO (Output Signal) Connection, 186, 218, 238

DO (output signal) connection, 144

DO Signals and Drivers, 109

[E]

Emergency Stop Signal, 260 Emergency stop signal connection, 141 Emergency stop switch, 162 Environment for Installation, 10 Environmental requirement, 151, 174
Environmental Requirements Outside the Control Unit, 10
External 24 VDC Power Supply and Circuit Configurations, 37
External Dimensions, 169
External Dimensions of Each Unit, 313
External View, 222, 240

[F]

FANUC DNC2 Interface, 274 FANUC Handy File Connection, 75 Floppy Disk Drive (Signal and Power Supply), 294 Full Keyboard, 298

[G]

General Connection Diagrams, 281 General of Hardware, 4 General–purpose DI signal definition, 153 General–purpose DO signal definition, 153 Ground, 18

[H]

Handling Precautions, 268 Handling precautions, 296 Hard Disk Unit, 307 HDD Unit, 291 Heat Loss of Each Unit, 15 High–speed Serial Bus (HSSB), 263, 297

[I]

I/O Address, 167
I/O Address Allocation, 169
I/O Link connection, 162
I/O link connection, 140
I/O Signal Requirements and External Power Supply for DO, 122
Input Signal Requirements, 99
Input Signal Rules for the High–speed Skip (HDI), 82
Input Signal Specifications for Source Output Type Connection Unit, 248
Installation, 9, 104 Installation Environment, 268 Installation Environmental Conditions, 286 Installation Method, 308 Installation Space, 289 Installing the Control Unit, 27 Interface to the Servo Amplifiers, 90

[K]

Key Symbol Indication on Machine Operator's Panel, 154, 175 Keyboard of main panel, 148 Keyboard of the operator's panel, 167

[L]

Layout of the key sheet, 171 Linear Scale Interface (Parallel Interface), 94

[M]

Main panel B, B1 specification, 152
Main Power Supply Input, 293
Maintenance Parts, 178
Manual Handle Allocation Function, 78
Manual Pulse Generator Connection, 198, 221, 240
Manual pulse generator connection, 145, 163
Maximum Number of Units that can be Connected, 259
Meaning of key symbols, 154, 175
Memory Card Interface, 407
Module Installation, 201
Module Specifications, 181
Mouse, 300

[0]

Operating environment, 296 Operator's panel specification, 174 Optical Fiber Cable, 393 Order specification, 151, 174 Others, 177 Outline drawing and panel–cut drawing of the small machine operator's panel, 170 Output Signal Specifications for Source Output Type Connection Unit, 249 Overall Connection Diagram, 160, 212, 230 Override signals, 149, 168

[P]

PCI Expansion Board, 308 PCMCIA Card, 306 Peripheral Equipment and Connection, 292 Personal Computer Specification, 267 Pin assignment, 137 Position Coder Interface, 87 Power Connection, 213, 232 Power connection, 161 Power ON/OFF control signal connection, 141 Power Supply, 11 Power Supply Connection, 34 Power supply connection, 139 Power Supply for CNC Control Units, 11 Power Supply for the Control Unit, 36 Power Supply Precautions, 133 Power Supply Specification, 287 Power supply specification, 152, 175 Procedure for Installing Personal Computer Interface Boards, 269 Procedure for Turning Off the Power, 42 Procedure for turning on the power, 41

[N]

Name Of Each Part of Control Unit, 2 Noise Suppressor, 23 Notes on Installing a Separate Detector Interface Unit, 105

[R]

Recommended Cables, 273
Recommended Connectors, Applicable Housings, and Cables, 378
RS–232–C Interface Specification, 67
RS–232–C Serial Port, 66

[S]

Separate Detector Interface, 91 Separate Detector Interface Unit Specification, 93 Separating Signal Lines, 16 Serial Port 1, 304 Serial Port 2 + USB, 302 Serial Spindle, 84 Servo Interface, 88 Shutdown, 288 Soft Keys, 305 Specifications, 151, 174, 223, 241, 286 Spindle Connection, 83 Stand–alone Type Pulse Coder Interface (Parallel Interface), 95 Sub panel A, B1 specification, 152 Thermal Design of the Cabinet, 14

Total Connection Diagram, 5, 136

Turning On and Off the Power to the Control Unit, 36

[U]

Units that Can be Connected Using FANUC I/O Link, 134

[V]

Varied MDI key switch, 56 Various LCD Units Interface, 53

[W]

When a pendant-type manual pulse generator, 146

[T]

Temperature Rise Within the Cabinet, 14

σ	
Ē	
0	
ů,	
Ð	
2	
-	
Ē	
<u>o</u>	
3	
÷	
2	
e	
2	

FANUC Series 0*i*-MODEL B/0*i* Mate-MODEL B CONNECTION MANUAL (HARDWARE) (B-63833EN)

				Contents
				Date
				Edition
	 Addition of functions (such as small operator's panel) Correction of errors 	 Deletion of Series 0i Mate–MODEL A Addition of Series 0i Mate–MODEL B 		Contents
	Nov., 2003	Aug., 2002	July, 2002	Date
	03	02	01	Edition