GE Fanuc Automation

Computer Numerical Control Products

Series 21 / 210 - Model B

Connection Manual (Hardware)

Warnings, Cautions, and Notes as Used in this Publication

Warning

Warning notices are used in this publication to emphasize that hazardous voltages, currents, temperatures, or other conditions that could cause personal injury exist in this equipment or may be associated with its use.

In situations where inattention could cause either personal injury or damage to equipment, a Warning notice is used.

Caution

Caution notices are used where equipment might be damaged if care is not taken.

Note

Notes merely call attention to information that is especially significant to understanding and operating the equipment.

This document is based on information available at the time of its publication. While efforts have been made to be accurate, the information contained herein does not purport to cover all details or variations in hardware or software, nor to provide for every possible contingency in connection with installation, operation, or maintenance. Features may be described herein which are not present in all hardware and software systems. GE Fanuc Automation assumes no obligation of notice to holders of this document with respect to changes subsequently made.

GE Fanuc Automation makes no representation or warranty, expressed, implied, or statutory with respect to, and assumes no responsibility for the accuracy, completeness, sufficiency, or usefulness of the information contained herein. No warranties of merchantability or fitness for purpose shall apply.

DEFINITION OF WARNING, CAUTION, AND NOTE

This manual includes safety precautions for protecting the user and preventing damage to the machine. Precautions are classified into Warning and Caution according to their bearing on safety. Also, supplementary information is described as a Note. Read the Warning, Caution, and Note thoroughly before attempting to use the machine.

WARNING

Applied when there is a danger of the user being injured or when there is a damage of both the user being injured and the equipment being damaged if the approved procedure is not observed.

CAUTION

Applied when there is a danger of the equipment being damaged, if the approved procedure is not observed.

NOTE

The Note is used to indicate supplementary information other than Warning and Caution.

Read this manual carefully, and store it in a safe place.

PREFACE

This manual describes the electrical and structural specifications required for connecting the FANUC Series 21/210-TB/MB CNC control unit to a machine tool. The manual outlines the components commonly used for FANUC CNC control units, as shown in the configuration diagram in Chapter 2, and supplies additional information on using these components with the Series $21 / 210$. See Connection Manual (Loader Control) (B-62443EN-2), for details of loader control option. Refer to individual manuals for the detailed specifications of each model.

Product name	Abbreviation	
FANUC Series 21-TB	$21-\mathrm{TB}$	Series 21
FANUC Series 21-MB	$21-\mathrm{MB}$	
FANUC Series 210-TB	$210-\mathrm{TB}$	Series 210
FANUC Series 210-MB	$210-\mathrm{MB}$	

Configuration of the manual

Chapter title	Description
Chapter 1 CONFIGURATION	Outlines connections for the Series 21/210 and guides the reader concerning additional details.
Chapter 2 TOTAL CONNECTION DIAGRAM	This chapter shows the total connection diagram.
Chapter 3 INSTALLATION	This chapter describes the installation conditions for the Series 21/210. 1) Required power supply 2) Heat generated 3) Connector arrangement on the control unit 4) Noise prevention
Chapter 4 CONNECTING THE POWER SUPPLY	This chapter describes how to connect the power supply.
Chapter 5 CONNECTING PERIPHERAL UNITS	This chapter describes how to connect the following peripheral devices: 1) Display devices (CRT and plasma display) 2) MDI units 3) I/O devices (via RS232C) 4) Manual pulse generators
Chapter 6 CONNECTING THE SPINDLE UNIT	This chapter describes how to connect the spindle servo unit, the spindle motor.
Chapter 7 SERVO INTERFACE	This chapter describes how to connect the servo unit and the servo unit.
Chapter 8 CONNECTING THE MACHINE INTER- FACE I/O	This chapter describes the addresses and connector pins for signals transferred between the Series 21/210 and the machine. Describes the built-in I/O board and I/O unit.
Chapter 9 CONNECTION TO FANUC I/O Link	This chapter describes the use of FANUC I/O Link to expand the machine interface I/O.
Chapter 10 EMERGENCY STOP SIGNAL	This chapter describes the handling of emergency stop signals. The user must read this chapter before attempting to operate the CNC.
Chapter 11 DISPLAY UNIT CHANGE-OVER SWITCH	This chapter describes the connection to the display unit change-over circuit supported by the Series 21 (not supported by the Series 210).
Chapter 12 REMOTE BUFFER INTERFACE	This chapter describes the remote buffer interface supported by the Series 21 (not supported by the Series 210).
Chapter 13 CONNECTING PERIPHERAL UNITS TO THE MMC-IV	This chapter describes how to connect MMC-IV peripherals to the Series 210.
Chapter 14 HIGH-SPEED SERIAL BUS (HSSB)	This chapter describes the high-speed serial bus (HSSB) supported by the Series 210.
Chapter 15 FANUC INTELLIGENT TERMINAL	This chapter describes the FANUC intelligent terminal, which can be connected to the Series 210 by using the high-speed serial bus (HSSB).
Appendix	A External dimensions of units B 20-pin interface connectors and cables C Connection cables D Optical fiber cable E Attaching a CRT protecting cover

Related manuals
The table below lists manuals related to the $21-\mathrm{TB}, 21-\mathrm{MB}, 210-\mathrm{TB}$, and $210-\mathrm{MB}$. In the table, this manual is marked with an asterisk $(*)$.

Manuals Related to the Series 21/210

Manual name	Specification number	
DESCRIPTIONS	B-62702EN	
CONNECTION MANUAL (Hardware)	B-62703EN	*
CONNECTION MANUAL (Function)	B-6253703EN-1	
OPERATOR'S MANUAL (For Lathe)	B-62704EN	
OPERATOR'S MANUAL (For Machining Center)	B-62705EN	
MAINTENANCE MANUAL	B-61803E-1	
PARAMETER MANUAL	B-66102E	
PROGRAMMING MANUAL (Macro Compiler / Macro Executer)	B-61874E-1	
FAPT MACRO COMPILER PROGRAMMING MANUAL		
CONVERSATIONAL AUTOMATIC PROGRAMMING FUNCTION I FOR MACHINING CENTER OPERATOR'S MANUAL	Ben	

Manuals related to control motor α series

Manuals related to control motor α series

Manual name	Specification number
FANUC AC SERVO MOTOR α series DESCRIPTIONS	B-65142E
FANUC AC SERVO MOTOR α series PARAMETER MANUAL	B-65150E
FANUC AC SPINDLE MOTOR α series DESCRIPTIONS	B-65152E
FANUC AC SPINDLE MOTOR α series PARAMETER MANUAL	B-65160E
FANUC CONTROL MOTOR AMPLIFIER α series DESCRIPTIONS	B-65162E
FANUC CONTROL MOTOR α series MAINTENANCE MANUAL	B-65165E

Manual related to loader control option

Manual name	Specification number
FANUC Series 21/16/18/160/180 CONNECTION MANUAL Loader Control	B-62443EN-2

Manuals related to I/O Unit

Manual name	Specification number
FANUC I/O Unit-MODEL A CONNECTION•MAINTENANCE MANUAL	B-61813E
FANUC I/O Unit-MODEL B CONNECTION MANUAL	B-62163E

Manual related to FANUC
MMC-IV, high-speed serial bus, and intelligent terminal

Manual name	Specification number
FANUC MMC-IV OPERATOR'S MANUAL	B-62494E

Table of Contents

DEFINITION OF WARNING, CAUTION, AND NOTE s-1
PREFACE p-1

1. CONFIGURATION 1
1.1 NAME OF EACH PART OF CONTROL UNIT 2
1.2 GENERAL OF HARDWARE 7
2. TOTAL CONNECTION DIAGRAM 9
3. INSTALLATION 17
3.1 ENVIRONMENT FOR INSTALLATION 18
3.1.1 Environmental Requirements Outside the Cabinet 18
3.1.2 Installation Requirements of CNC and Servo Unit 18
3.1.3 Environmental Requirements of Control Unit Built-in MMC-IV (for Series 210) 19
3.2 POWER SUPPLY 20
3.2.1 Power Supply for CNC Control Units 20
3.3 DESIGN AND INSTALLATION CONDITIONS OF THE MACHINE TOOL MAGNETIC CABINET 21
3.4 THERMAL DESIGN OF THE CABINET 23
3.4.1 Temperature Rise Within the Cabinet 23
3.4.2 Cooling by Heat Exchanger 23
3.4.3 Heat Loss of Each Unit 24
3.5 INSTALLING THEHEAT EXCHANGER 25
3.5.1 Cooling Fin A/B/C 25
3.5.2 The Heat Pipe Type Heat Exchanger 29
3.5.2.1 Installation 29
3.6 ACTION AGAINST NOISE 33
3.6.1 Separating Signal Lines 33
3.6.2 Ground 35
3.6.3 Connecting the Signal Ground (SG) of the Control Unit 36
3.6.4 Noise Suppressor 43
3.6.5 Cable Clamp and Shield Processing 44
3.7 CONTROL UNIT 47
3.7.1 Installation of the Control Unit 47
3.8 CABLE LEAD-IN DIAGRAM 48
3.9 CONNECTOR LAYOUT DIAGRAM 50
4. POWER SUPPLY CONNECTION 60
4.1 GENERAL 61
4.2 TURNING ON AND OFF THE POWER TO THE CONTROL UNIT 62
4.2.1 Power Supply for the Control Unit 62
4.2.2 Procedure for Turning On the Power 64
4.2.3 Procedure for Turning Off the Power 64
4.3 CABLE FOR POWER SUPPLY TO CONTROL UNIT 65
4.4 BATTERY 66
4.4.1 Battery for Memory Backup (3VDC) 66
4.4.2 Battery for Separate Absolute Pulse Coders (6VDC) 68
5. CONNECTION TO CNC PERIPHERALS 69
5.1 CONNECTION TO THE DISPLAY UNIT 70
5.1.1 Outline 70
5.1.2 Connection to Display Unit 71
5.1.3 $\quad 9^{\prime \prime}$ CRT Display Unit Interface 72
5.1.4 $\quad 9$ " PDP Display Unit Interface 73
5.1.5 Varied LCD Units Interface 74
5.1.6 Adjusting the Flat Display 75
5.1.7 Adjusting the STN Monochrome LCD 76
5.1.8 Adjusting the TFT Color LCD 77
5.2 CONNECTION OF MDI UNIT 78
5.2.1 General 78
5.2.2 Connection to the MDI Unit 78
5.2.3 Connection to the Standard MDI Unit 80
5.2.4 Varied MDI Key Switch 81
5.3 CONNECTING I/O DEVICES 93
5.3.1 General 93
5.3.2 Connecting I/O Devices 93
5.3.3 RS-232-C Serial Port 95
5.3.4 RS-232-C Interface Specification 96
5.3.5 FANUC Handy File Connection 105
5.4 CONNECTING THE MANUAL PULSE GENERATOR 106
5.4.1 General 106
5.4.2 Connection to Manual Pulse Generators 108
5.4.3 Cable Length When Only One Manual Pulse Generator is Used 109
5.4.4 Requirements for the Manual Pulse Generator Interface 110
6. SPINDLE CONNECTION 111
6.1 SERIAL SPINDLE INTERFACE 112
6.2 ANALOG SPINDLE INTERFACE 113
6.3 POSITION CODER INTERFACE 114
7. SERVO INTERFACE 115
7.1 OUTLINE 116
7.1.1 Interface to the Servo Amplifier 116
7.1.2 Separate Type Detector Interface 118
7.1.3 Connection of Battery for Separate Type Absolute Detector 119
8. CONNECTING MACHINE INTERFACE I/O 126
8.1 GENERAL 127
8.2 CAUTIONS 128
8.2.1 DI Signals and Receivers 128
8.2.2 DO Signals and Drivers 128
8.3 BUILT-IN I/O A CONNECTION (FOR 21/210-MB) 129
8.3.1 Connector Pin Arrangement 130
8.3.2 Connection of DI/DO for Operation Panel 131
8.3.3 Connecting DI/DO Points for the Machine 134
8.4 BUILT-IN I/O CARD B CONNECTION (FOR 21/210-MB) 139
8.4.1 Connector Pin Arrangement 140
8.4.2 Connection of DI 141
8.4.3 Connection of DO 146
8.5 BUILT-IN I/O CARD C CONNECTION (FOR 21/210-MB) 150
8.5.1 Connector Pin Arrangement 151
8.5.2 Connection of DI/DO for Operation Panel 152
8.5.3 Connecting DI/DO Points for the Machine 155
8.5.4 Notes on DO Connection 161
8.5.5 Requirements Imposed on Input/Output Signals and the External Power Supply for Output Signals 162
8.5.5.1 Input signal requirements 162
8.5.5.2 Output signal driver ratings 162
8.5.5.3 External power supply for output signals 162
8.5.5.4 Output signal driver 162
8.6 BUILT-IN I/O D CONNECTION (FOR 21/210-MB) 164
8.6.1 Connector Pin Arrangement 165
8.6.2 Example of DI Connection 166
8.6.3 Example of DO Connection 170
8.6.4 Notes on DO Connection 174
8.6.5 Requirements Imposed on I/O Signals and Driver 175
8.6.5.1 Signal requirements 175
8.6.5.2 External power supply for output signals 175
8.6.5.3 Output signal driver 175
8.7 BUILT-IN I/O CARD CONNECTION (FOR 21/210-TB) 177
8.7.1 Connector Pin Arrangement 178
8.7.2 Connecting DI/DO 179
8.7.3 I/O Signal Requirements and External Power Supply for DO 189
8.8 CONNECTION OF Series 0 OPERATOR'S PANEL 193
9. CONNECTION TO FANUC I/O Link 199
9.1 GENERAL 200
9.2 CONNECTION 201
9.2.1 Connection of FANUC I/O Link by Electric Cable 203
9.2.2 Connection of FANUC I/O Link Optical Fiber Cable 204
9.3 UNITS THAT CAN BE CONNECTED USING FANUC I/O Link 206
9.4 CONNECTION OF MACHINE OPERATOR'S PANEL INTERFACE UNIT 207
9.4.1 Function Overview 207
9.4.2 System Configuration 209
9.4.3 Signal Assignment 210
9.4.4 Interface 212
9.4.5 PMC Addresses 222
9.4.6 Major Connection Precautions 223
9.4.7 State of the LEDs on the Machine Operator's Panel Interface Unit 223
9.4.8 Connector (on the Cable Side) Specifications 223
9.4.9 Machine Operator's Panel Interface Unit Dimension Diagram (Including Connector Locations) 225
9.4.10 Machine Operator's Panel Interface Unit Mounting Dimension Diagram 226
9.4.11 Fuse Mounting Position 228
9.5 CONNECTION OF OPERATOR'S PANEL CONNECTION UNIT 229
9.5.1 Input Signal Regulations for Operator's Panel Connection Unit 230
9.5.2 Output Signal Regulations for Operator's Panel Connection Unit 232
9.5.3 Connector Layout for Operator's Panel Connection Unit 233
9.5.4 External View of Operator's Panel Connection Unit 235
9.6 CONNECTION OF SOURCE OUTPUT TYPE CONNECTION UNIT 236
9.6.1 Input Signal Specifications for Source Output Type Connection Unit 237
9.6.2 Output Signal Specifications for Source Output Type Connection Unit 238
9.6.3 Connector Pin Layout for Source Output Type Connection Unit 242
9.6.4 Dimensions of Source Output Type Connection Unit 245
9.7 FANUC I/O Link CONNECTION UNIT 246
9.7.1 Overview 246
9.7.2 Specification 247
9.7.3 Connection 250
9.7.3.1 I/O Link interface 250
9.8 CONNECTING THE FANUC SERVO UNIT β SERIES WITH I/O Link 253
9.8.1 Overview 253
9.8.2 Connection 254
9.8.3 Maximum Number of Units that can be Connected 255
9.8.4 Address Assignment by Ladder 255
10. EMERGENCY STOP SIGNAL 256
11. DISPLAY UNIT CHANGE-OVER SWITCH 258
11.1 OVERVIEW 259
11.2 CONNECTING ONE DISPLAY UNIT TO TWO CONTROL UNITS 260
11.2.1 Ordering Information 260
11.2.2 Connection Diagram 261
11.3 CONNECTING TWO DISPLAY UNITS TO ONE CONTROL UNIT 266
11.3.1 Ordering Information 266
11.3.2 Jumper Pins 266
11.3.3 Connections 267
11.3.4 Connection Diagram 268
12. REMOTE BUFFER INTERFACE 272
12.1 GENERAL 273
12.2 REMOTE BUFFER INTERFACE (RS-232-C) 275
12.3 REMOTE BUFFER INTERFACE (RS-422) 277
13. CONNECTING PERIPHERAL UNITS TO THE MMC-IV 279
13.1 GENERAL 280
13.2 CONNECTING A DISPLAY UNIT 281
13.2.1 I/O Board (Video Signal Output Board in NC) Interface 282
13.2.2 Connecting the Display Unit (Video Signal) 283
13.2.3 Connecting a Display Unit (Power Supply) 284
13.2.3.1 $14^{\prime \prime}$ analog CRT/MDI unit 284
13.2.3.2 9.5" analog TFT/MDI unit 285
13.3 CONNECTION TO RS-232C SERIAL PORT 286
13.4 CONNECTING A PORTABLE-TYPE 3.5" FLOPPY DISK UNIT 288
13.5 CONNECTION TO CENTRONICS PARALLEL PORT 291
13.6 CONNECTING A FULL KEYBOARD OR MOUSE 293
14. HIGH-SPEED SERIAL BUS (HSSB) 295
14.1 OVERVIEW 296
14.2 CAUTIONS 297
14.3 CONNECTION DIAGRAM 298
14.4 PERSONAL COMPUTER SPECIFICATION 299
14.5 INSTALLATION ENVIRONMENT 300
14.6 PROCEDURE FOR INSTALLING PERSONAL COMPUTER INTERFACE BOARDS 301
14.7 HANDLING PRECAUTIONS 302
14.8 RECOMMENDED CABLES 303
15. FANUC INTELLIGENT TERMINAL 304
15.1 OVERVIEW 305
15.2 CAUTIONS 306
15.3 CONNECTION 307
15.4 OVERALL CONNECTION DIAGRAM 308
15.5 SPECIFICATION 309
15.5.1 Installation Environment 309
15.5.2 Power Supply Specifications 310
15.6 INSTALLATION SPACE 311
15.6.1 When No ISA Expansion is Installed 311
15.6.2 When an ISA Expansion is Installed 312
15.7 PERIPHERAL DEVICES AND THEIR CONNECTIONS 313
15.7.1 Connector Layout Diagram 313
15.7.2 Main Power Input 314
15.7.3 Floppy Disk Drive (Signal and Power) 315
15.7.4 High-speed Serial Bus (HSSB) 316
15.7.5 Typewriter-style Keyboard 317
15.7.6 Centronics Parallel Port 318
15.7.7 Serial Port 2 319
15.7.8 Serial Port 1 320
15.7.9 Soft Keys 322
15.8 ISA EXPANSION BOARDS 323
15.8.1 Installation Method 323
15.8.2 Handling Precautions 325

APPENDIX

A. EXTERNAL DIMENSIONS OF EACH UNIT 329
B. 20-PIN INTERFACE CONNECTORS AND CABLES 381
B. 1 OVERVIEW 382
B. 2 ADDITIONAL TARGET MODELS 382
B. 3 BOARD-MOUNTED CONNECTORS 382
B. 4 CABLE CONNECTORS 383
B. 5 RECOMMENDED CONNECTORS, APPLICABLE HOUSINGS, AND CABLES 385
C. CONNECTION CABLE (SUPPLIED FROM US) 396
D. OPTICAL FIBER CABLE 400
E. ATTACHING A CRT PROTECTIVE COVER 406

1

CONFIGURATION

1.1

NAME OF EACH PART OF CONTROL UNIT

The following figure shows the configuration of FANUC Series 21/210-TB/MB control unit.
This manual describes how to connect the units illustrated in this diagram. The numbers in parentheses shown in the diagram are section references for this manual.

NOTE

(*) The high-speed serial bus cannot be connected to the Series 21-MB control unit.

Series 21/210-TB control unit (2-slot)

NOTE

(*) The high-speed serial bus cannot be connected to the Series 21-TB control unit.

Series 210 control unit (with MMC-IV)

Series 21 control unit (3-slot)

1.2
 GENERAL OF HARDWARE

- Series 21

- Series 210

2

TOTAL CONNECTION DIAGRAM

NOTE

Either an analog or serial spindle can be used. For details of spindle and servo motor connection, refer to the relevant manuals.

I/O Board B (for 21-MB)

MMC-IV Board (for 210-TB/MB)

When the high-speed serial bus (HSSB) is used (common to the 210-TB and 210-MB)

c o o n t r r o i	High-speed serial bus interface board (installed in a minislot)	Personal computer or intelligent terminal
u n i i	COP7	COP7

NOTE
Refer to Chapter15 for information about connections specific to intelligent terminals.

NOTE

The option 1 board cannot be used in the Series 210 system. The loader control board can be used only in the 21-TB (in slot 3 of control unit B).

3 Installation

3.1
 ENVIRONMENT FOR
 INSTALLATION

3.1.1
 Environmental Requirements Outside the Cabinet

The peripheral units, such as the control unit and CRT/MDI, have been designed on the assumption that they are housed in closed cabinets. In this manual "cabinet" refers to the following:
(1) Cabinet manufactured by the machine tool builder for housing the control unit or peripheral units;
(2) Cabinet for housing the flexible turnkey system provided by FANUC ;
(3) Operation pendant, manufactured by the machine tool builder, for housing the CRT/MDI unit or operator's panel.
(4) Equivalent to the above.

The environmental conditions when installing these cabinets shall conform to the following table. Section 3.3 describes the installation and design conditions of a cabinet satisfying these conditions.

Room temperature	In operation	$0^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$
	In storage or transportation	$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Change in temperature	$1.1^{\circ} \mathrm{C}$ /minute max.	
Relative humidity	Normal	75% or less
	Temporary(within 1 month)	95% or less
Vibration	In operation: 0.5 G or less	
Environment	Normal machine shop environment (The environment must be considered if the cabinets are in a location where the density of dust, coolant, and/ or organic solvent is relatively high.)	

3.1.2
 Installation
 Requirements of CNC and Servo Unit

Room temperature	In operation	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
	In storage or transportation	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Relative humidity	95% RH or less (no condensation)	
Vibration	0.5 G or less	
Environment	The unit shall not be exposed direct to cutting oil, lubri- cant or cutting chips.	

NOTE

See Subsec. 3.1.3 for Series 210.
3.1.3

Environmental
Requirements of Control Unit Built-in MMC-IV
(for Series 210)

When the MMC-IV is incorporated into the system, the environment in which the control unit is installed must satisfy the following conditions (within the cabinet):

Room temperature	In operation	$5^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
	In storage or transportation	$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
	$20^{\circ} \mathrm{C}$ /hour max.	
Relative humidity	Normal	Relative humidity: 10% to 75%, non-condensing.
	Temporary (within 1 month)	Relative humidity: 10% to 90%, non-condensing.
Vibration	In operation	0.5 G or less
	Not operation	1.0 G or less
Environment	The control unit shall be housed in a sealed cabinet.	

CAUTION

Data stored on the hard disk may be damaged or destroyed as a result of a mis-operation or system failure, even when the above-listed conditions are satisfied. In particular, turning off the power while the hard disk is being accessed is extremely likely to damage stored data. Do not, therefore, turn off the power while the hard disk is being accessed. Ensure that your end users are also aware of this precaution.
Important data on the hard disk should be regularly backed up to another medium.

NOTE

1 Operating ambient temperature
The temperature sensor on the MMC-IV printed circuit board monitors whether the temperature is within the specified range. (The operator can check the state using the CNC diagnosis screen.)
(1) If the ambient temperature is outside the specified range at power-on

Only the CNC and PMC are turned on.
Once the temperature moves within the specified range, the MMC-IV is automatically turned on.
(2) If the ambient temperature moves outside the specified range during operation after normal power-on

An error occurs when the system attempts to access the hard disk.
2 Vibration
The CNC control unit or built-in hard disk drive may exhibit vibration at an arbitrary frequency.
Once the CNC control unit has been installed in the machine, check that no vibration occurs.
Be particularly careful to eliminate any vibration when using the memory card socket.

3.2
 POWER SUPPLY

3.2.1

Power Supply for CNC Control Units

The following units related to the CNC control unit require input power of 24 VDC $\pm 10 \%$ (excluding the $14^{\prime \prime}$ CRT/MDI unit):

Table 3.2.1 Power supply

Unit	Power supply voltage	Power supply
$21-\mathrm{TB}$ control unit A	24 VDC $\pm 10 \%$ $\pm 10 \%$ includes momentary surges and ripples.	2.4A (only control unit)
\|21-TB control unit B		3.4A (only control unit)
$21-\mathrm{MB}$ control unit		3.4A (only control unit)
Series 210 control unit		3.5A (only control unit) When MMC-IV is used.
Series 210 control unit		5.5A (only control unit) When MMC-IV is used.
Loader control option board		0.7A (only 21-TB)
9" CRT/MDI unit		0.8A
9" PDP unit		2.0A
7.2" STN unit		0.8A
9.5" STN unit		0.8A
8.4" TFT color unit		0.8A
14" CRT/MDI unit	170 to 264VAC	0.6A
9.5" TFT/MDI unit	$\begin{aligned} & 24 \mathrm{VDC} \pm 10 \% \\ & \pm 10 \% \text { includes } \\ & \text { momentary surges } \\ & \text { and ripples. } \end{aligned}$	0.8A
I/O Unit-A		Depends on the type and number of modules. Refer to "I/O unit-MODEL A connection and Maintenance Manual" (B-61813E)

NOTE

See Chapter 13 for details of intelligent terminal unit.

3.3 DESIGN AND INSTALLATION CONDITIONS OF THE MACHINE TOOL MAGNETIC CABINET

When a cabinet is designed, it must satisfy the environmental conditions described in Sec. 3.1. In addition, the magnetic interference on the CRT screen, noise resistance, and maintenance requirements must be considered. The cabinet design must meet the following conditions :
(1) The cabinet must be fully closed.

The cabinet must be designed to prevent the entry of airborne dust, coolant, and organic solvent.
Cabinets that let in air may be desined for the servo amplifier and servo transformer provided that they :

- Use an air filter on the air inlet;
- Place the ventilating fan so that it does not blow air directly toward the unit;
- Control the air flow so that no dust or coolant enters the air outlet
(2) The cabinet must be designed to maintain a difference in temperature of $10^{\circ} \mathrm{C}$ or less between the air in the cabinet and the outside air when the temperature in the cabinet increases.
See Sec. 3.4 for the details on thermal design of the cabinet.
(3) A closed cabinet must be equipped with a fan to circulate the air within.
The fan must be adjusted so that the air moves at $0.5 \mathrm{~m} / \mathrm{sec}$ along the surface of each installed unit.

CAUTION

If the air blows directly from the fan to the unit, dust easily abheres to the unit. This may cause the unit to fail.
(4) For the air to move easily, a clearance of 100 mm is required between each unit and the wall of the cabinet.
(5) Packing materials must be used for the cable port and the door in oreder to seal the cabinet.
Because the CRT unit uses a voltage of approximatery 11 kV , airborne dust gathers easily. If the cabinet is insufficiently sealed, dust passes through the gap and abheres to the unit. This may cause the insulation of the unit to deteriorate.
(6) The CRT/MDI unit and other display units must be installed in a location where coolant cannot be poured directly on it. The unit does have a dust-proof front panel.
(7) Noise must be minimized.

As the machine and the CNC unit are reduced in size, the parts that generate noise may be placed near noise-sensitive parts in the magnetics cabinet.
The CNC unit is built to protect it from external noise. Cabinet design to minimize noise generation and to prevent it from being transmitted to the CNC unit is necessary. See Sec. 3.6 for details of noise elimination/management.
(8) The units must be installed or arranged in the cabinet so that they are easy to inspect and maintain.
(9) The CRT screen can be distorted by magnetic interference.

Arranging magnetic sources must be done with care.
If magnetic sources (such as transformers, fan motors, electromagnetic contactors, solenoids, and relays) are located near the CRT display, they frequently distort the display screen. To prevent this, the CRT display and the magnetic sources generatlly must be kept 300 mm apart. If the CRT display and the magnetic sources are not 300 mm apart, the screen distortion may be suppressed by changing the direction in which the magnetic sources are installed.
The magnetic intensity is not constant, and it is often increased by magnetic interference from multiple magnetic sources interacting with each other. As a result, simply keeping the CRT and the magnetic sources 300 mm apart may not be enough to prevent the distortion. If they cannot be kept apart, or if the CRT screen remains distorted despite the distance, cover the screen with a magnetic shield.
(10) The installation conditions of the I/O unit must be satisfied.

To obtain good ventilation in the module, the I/O unit must be installed in the direction shown in the following figure. Clearances of 100 mm or more both above and below the I/O unit are required for wiring and ventilation.
Equipment radiating too much heat must not be put below the I/O unit.

3.4
 THERMALDESIGNOF THE CABINET

The purpose of the thermal design of the cabinet is to limit the difference in temperature between the air in the cabinet and the outside air to $10^{\circ} \mathrm{C}$ or less when the temperature in the cabinet increases.
The internal air temperature of the cabinet increases when the units and parts installed in the cabinet generate heat. Since the generated heat is radiated from the surface of the cabinet, the temperature of the air in the cabinet and the outside air balance at certain heat levels. If the amount of heat generated is constant, the larger the surface area of the cabinet, the less the internal temperature rises. The thermal design of the cabinet refers to calculating the heat generated in the cabinet, evaluating the surface area of the cabinet, and enlarging that surface area by installing heat exchangers in the cabinet, if necessary. Such a design method is described in the following subsections.

3.4.1 Temperature Rise Within the Cabinet

The cooling capacity of a cabinet made of sheet metal is generally $6 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ per $1 \mathrm{~m}^{2}$ surface area, that is, when the 6 W heat source is contained in a cabinet having a surface area of $1 \mathrm{~m}^{2}$, the temperature of the air in the cabinet rises by $1^{\circ} \mathrm{C}$. In this case the surface area of the cabinet refers to the area useful in cooling , that is, the area obtained by subtracting the area of the cabinet touching the floor from the total surface area of the cabinet. There are two preconditions: The air in the cabinet must be circuited by the fun, and the temperature of the air in the cabinet must be almost constant.
The following expression must then be satisfied to limit the difference in temperature between the air in the cabinet and the outside air to $10^{\circ} \mathrm{C}$ or less when the temperature in the cabinet rises:

$$
\begin{gathered}
\text { Internal heat loss } \mathrm{P}[\mathrm{~W}] \leqq=6\left[\mathrm{~W} / \mathrm{m}^{2 \mathrm{~S}} \cdot{ }^{\circ} \mathrm{C}\right] \times \text { surface area } \mathrm{S}\left[\mathrm{~m}^{2}\right] \\
\\
\times 10\left[{ }^{\circ} \mathrm{C}\right] \text { of rise in temperature }
\end{gathered}
$$

For example, a cabinet having a surface area of $4 \mathrm{~m}^{2}$ has a cooling capacity of $24 \mathrm{~W} /{ }^{\circ} \mathrm{C}$. To limit the internal temperature increase to $10^{\circ} \mathrm{C}$ under these conditions, the internal heat must not exceed 240W. If the actual internal heat is 320 W , however, the temperature in the cabinet rises by $13^{\circ} \mathrm{C}$ or more. When this happens, the cooling capacity of the cabinet must be improved using the heat exchanger described next.

3.4.2
 Cooling by Heat Exchanger

If the temperature rise cannot be limited to $10^{\circ} \mathrm{C}$ by the cooling capacity of the cabinet, a heat exchanger must be added. The heat exchanger forcibly applies the air from both the inside and outside of the cabinet to the cooling fin to obtain effective cooling. The heat exchanger enlarges the surface area. Sec. 3.5 explains five heat exchangers supplied by FANUC. Select one of these according to the application.
If cooling fin A is used for the cabinet, the total cooling capacity of a cabinet having a surface area of $4 \mathrm{~m}^{2}$ in the example above is improved as follows:

$$
6 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C} \times 4 \mathrm{~m}^{2}+9.1 \mathrm{~W} /{ }^{\circ} \mathrm{C}=33.1 \mathrm{~W} /{ }^{\circ} \mathrm{C}
$$

The calculated value verifies that even if the internal heat is 320 W , the temperature rise can be limited to less than $10^{\circ} \mathrm{C}$.
See Sec. 3.5 for installing the heat exchanger.

3.4.3
 Heat Loss of Each Unit

Name		Heat loss
Control unit	Series 21	60W
	Series 210	90W
Display unit	9"CRT/MDI unit	14W
	9"PDP unit	20W
	7.2"STN unit	10W
	8.4"TFT color unit	20W
	9.5"STN unit	10W
	9.5"TFT unit	20W
	14"CRT unit	70W
I/O unit	AIF01A, AIF01B	1.2W
	AID32A, AID32B	1.2W+0.23W \times number of ON points
	AID16C, AID16D	0.1W+0.21W \times number of ON points
	AID32E, AID32F	$0.1 \mathrm{~W}+0.23 \mathrm{~W} \times$ number of ON points
Multi-tap transformer		51W

3.5
 INSTALLING THE HEAT EXCHANGER

Table 3.5 lists the heat exchangers.
Cooling fins A, B and C are not provided with a fan. Note that a fan motor is required for any of these cooling fins when it is used as a heat exchanger.

Table 3.5 List of Heat Exchangers

Name	Ordering specification	Cooling capacity	Size	Fan
Cooling fin A	A02B-0053-K303	$9.1 \mathrm{~W} /{ }^{\circ} \mathrm{C}$	$196 \times 90 \times$ 1000 mm	-
Cooling fin B	A02B-0053-K304	$10.1 \mathrm{~W} /{ }^{\circ} \mathrm{C}$	$444 \times 90 \times$ 650 mm	-
Cooling fin C	A02B-0053-K305	$25.2 \mathrm{~W} /{ }^{\circ} \mathrm{C}$	$560 \times 90 \times$ 970 mm	-
Heat pipe type heat exchanger	A02B-0094-C901	$9.0 \mathrm{~W} /{ }^{\circ} \mathrm{C}$	226×132 $\times 415 \mathrm{~mm}$	Built-in

3.5.1

Cooling Fin A/B/C
The cooling fin is shown in Fig. 3.5.1 (a).

Fig.3.5.1(a) Internal view of cooling fin
The cooling fin can be installed in two ways, as shown in Fig.3.5.1(a). The following lists the general precautions to be observed when using the cooling fins :

1) The fans are not included with the cooling fin. They should be provided by the machine tool builder.
2) Bring in the outside air from the bottom and exhaust the hot air from the top.
3) The inside air may flow from top to bottom or bottom to top. However, generally decide the direction as follows :
a) Bring in the air near high heat loss components.
b) Exhaust the air toward the most important components to be cooled.
4) For the cooling fin to display the specified cooling capacity, the air inside the cooling fins must flow at a velocity of $2.5 \mathrm{~m} / \mathrm{sec}$ or greater.
(velocity of air flow measurement)

5) Generally, install the cooling fins to the door. But be sure that the door does not bend when installing the cooling fin. The cooling fins are equipped with packing.

Fig.3.5.1(b) External dimension and mounting method of cooling fin A (02B-0053-K303)

Fig.3.5.1(c) External dimension and mounting method of cooling fin B (A02B-0053-K304)

Fig.3.5.1(d) External dimension and mounting method of cooling fin C (A02B-0053-K305)

3.5.2
 The Heat Pipe Type
 Heat Exchanger

3.5.2.1 Installation

The heat pipe type heat exchanger is used for cooling the airtight cabinet of small sized electronic devices. It is a compact, lightweight, and heat-efficient unit. Because the fan is built-in, it is used simply by installing it, performing the "panel cut" operation.

Installation format		Installation type in board	
Fan specifi- cations	Coolign ability (W/ ${ }^{\circ} \mathrm{C}$)	9	
	Voltage (V)	200VAC	
	Frequency (Hz)	50	60
	Rating current (A)	0.28	0.24
	Rating input (W)	28	26
Weight (kg)	4		
Color	Munsell signal N1.5		

Order specifications Heat exchanger A02B-0094-C901

Remarks

- A filter is installed on the outside air inhalation side.
- The installation board thickness is the standard 1.6 t .
- When a fan motor and filter are necessary for maintenance, prepare them separately.

Fan motor specifications
A90L-0001-0219\#A

Filter specifications
A250-0689-X004

- If the heat exchanger is installed near the CRT, screen distortion may occur due to magnetic flux leakage from the fan motor.

External dimensions

Panel cut dimensions

Installation method

Please install the heat exchanger by the following sequence:
(1) Take out the external fan unit from the heat exchanger main unit. (Fig.
1)

Detach the external fan unit installation screws A (2 pieces), take out the unit from the main unit by sliding it down, and detach the earth cable and the power cable to the fan. Also detach the installation screw B (1 piece).
(2) Install the heat exchanger main unit in the installation section which has been panel cut. (Fig. 2)
When fastening down the heat exchanger main unit with the screws, first, temporarily secure the panel and the heat exchanger main unit with the installation screw B, which was taken out in (1)). After that, secure the main unit by the installation screws. In this case, the external fan unit installation screw holes should be aligned with the main unit screw holes. (Please provide the installation screws for the heat exchanger main unit.)
Because this product is composed of plastic, set the value shown below for the screw tightening torque.

Heat exchanger main unit (M4 screw): $11 \mathrm{kgf.cm}$
External fan unit (M3 screw): $\quad 5 \mathrm{kgf.cm}$
(3) Connect the power cable and the earth cable to the external fan unit (the unit detached in (1)), and secure the installation screw A to the main unit from the outside.
The installation is now complete.

3.6
 ACTION AGAINST NOISE

The CNC has been steadily reduced in size using surface-mount and custom LSI technologies for electronic components. The CNC also is designed to be protected from external noise. However, it is difficult to measure the level and frequency of noise quantitatively, and noise has many uncertain factors. It is important to prevent both noise from being generated and generated noise from being introduced into the CNC. This precaution improves the stability of the CNC machine tool system.
The CNC component units are often installed close to the parts generating noise in the power magnetics cabinet. Possible noise sources into the CNC are capacitive coupling, electromagnetic induction, and ground loops.
When designing the power magnetics cabinet, guard against noise in the machine as described in the following section.

3.6.1 Separating Signal Lines

The cables used for the CNC machine tool are classified as listed in the following table:
Process the cables in each group as described in the action column.

Group	Signal line	Action
A	Primary AC power line	Bind the cables in group A separately (Note 1) from groups B and C , or cover group A with an electromagnetic shield (Note 2). See Subsec. 3.6.4 and connect spark killers or diodes with the solenoid and relay.
	Secondary AC power line	
	AC/DC power lines (containing the power lines for the servo and spindle motors)	
	AC/DC solenoid	
	AC/DC relay	
B	DC solenoid (24VDC)	Connect diodes with DC solenoid and relay. Bind the cables in group B separately from group A, or cover group B with an electromagnetic shield. Separate group B as far from Group C as possible. It is more desirable to cover group B with the shield.
	DC relay (24VDC)	
	DI/DO cable between the CNC and power magnetics cabinet	
	DI/DO cable between the CNC and machine	

Group	Signal line	Action
C	Cable between the CNC and servo amplifier	Bind the cables in group C separately from group A, or cover group C with an electromagnetic shield. Separate group C as far from Group B as possible. Be sure to perfrom shield processing in Subsec. 3.6.5.
	Cable for position and velocity feedback	
	Cable between the CNC and spindle amplifier	
	Cable for the position coder	
	Cable for the manual pulse generator	
	Cable between the CNC and the CRT/MDI	
	RS-232-C and RS-422 interface cable	
	Cable for the battery	
	Other cables to be covered with the shield	

NOTE

1 The groups must be 10 cm or more apart from one another when binding the cables in each group.
2 The electromagnetic shield refers to shielding between groups with grounded steel plates.

3.6.2 Ground

The following ground systems are provided for the CNC machine tool:
(1) Signal ground system (SG)

The signal ground (SG) supplies the reference voltage $(0 \mathrm{~V})$ of the electrical signal system.
(2) Frame ground system (FG)

The frame ground system (FG) is used for safety, and suppressing external and internal noises. In the frame ground system, the frames, cases of the units, panels, and shields for the interface cables between the units are connected.
(3) System ground system

The system ground system is used to connect the frame ground systems connected between devices or units with the ground.

- Connect the signal ground with the frame ground (FG) at only one place in the CNC control unit.
- The grounding resistance of the system ground shall be 100 ohms or less (class 3 grounding).
- The system ground cable must have enough cross-sectional area to safely carry the accidental current flow into the system ground when an accident such as a short circuit occurs.
(Generally, it must have the cross-sectional area of the AC power cable or more.)
- Use the cable containing the AC power wire and the system ground wire so that power is supplied with the ground wire connected.

3.6.3

Connecting the Signal
Ground (SG) of the Control Unit

Connect the 0 V line of the electronic circuit in the control unit with the ground plate of the cabinet via the signal ground (SG) terminal.
The SG terminal is located below the main board of the control unit.

Separate type 9" CRT unit

Separate type 7.2"STN unit

Separate type 8.4" TFT color LCD unit

9.5"TFT/MDI unit (horizontal type)

3.6.4
 Noise Suppressor

Notes on selecting the spark killer

The AC/DC solenoid and relay are used in the power magnetics cabinet. A high pulse voltage is caused by coil inductance when these devices are turned on or off.
This pulse voltage induced through the cable causes the electronic circuits to be disturbed.

- Use a spark killer consisting of a resistor and capacitor in series. This type of spark killer is called a CR spark killer.(Use it under AC)
(A varistor is useful in clamping the peak voltage of the pulse voltage, but cannot suppress the sudden rise of the pulse voltage. FANUC therefore recommends a CR spark killer.)
- The reference capacitance and resistance of the spark killer shall conform to the following based on the current (I (A)) and DC resistance of the stationary coil:

1) Resistance (R) : Equivalent DC resistance of the coil
2) Capacitance (C): $\frac{\mathrm{R}^{2}}{10}$ to $\frac{\mathrm{I}^{2}}{20} \quad(\mu \mathrm{~F})$

I : Current at stationary state of the coil

NOTE

Use a CR-type noise eliminator. Varistor-type noise eliminators clamp the peak pulse voltage but cannot suppress a sharp rising edge.

3.6.5

Cable Clamp and Shield Processing

The CNC cables that require shielding should be clamped by the method shown below. This cable clamp treatment is for both cable support and proper grounding of the shield. To insure stable CNC system operation, follow this cable clamp method.
Partially peel out the sheath and expose the shield. Push and clamp by the plate metal fittings for clamp at the part. The ground plate must be made by the machine tool builder, and set as follows :

Fig.3.6.5(a) Cable clamp (1)

Fig.3.6.5(b) Cable clamp (2)

Prepare ground plate like the following figure.

Fig.3.6.5(c) Ground plate
For the ground plate, use a metal plate of 2 mm or thicker, which surface is plated with nickel.

Fig.3.6.5(d) Ground plate holes
(Reference) Outer drawings of metal fittings for clamp.

Fig.3.6.5(e) Outer drawings of metal fittings for clamp
Ordering specification for metal fittings for clamp
A02B-0124-K001 (8 pieces)

3.7

CONTROL UNIT

3.7.1
 Installation of the Control Unit

The rack consists of a plastic box, fan motors and a backplane PCB. Since the rack is provided with built-in fan motors, it does not require the external air flow conditions described in Section 3.5. The air comes into the rack from the bottom and goes out through the fan motor, which is located on the top of the rack. Space as shown in Fig. 3.7.1 must be reserved not to disturb the air flow ((A), (B))
The backplane PCB, which is located on the rear side of the rack, interconnects the PCBs installed in the rack. It has another connector which appears at the left side panel of the rack (except for 21-TB control unit). This connector is used for testing the controller, connecting other purposes. The space for this shall be reserved as shown in (c) of Fig. 3.7.1.

Fig.3.7.1

3.8
 CABLE LEAD-IN DIAGRAM

Fig. 3.8 (a) shows the grid of connector location.
Control board may not have all connectors as shown in Fig. 3.8 (a).
For actual connector layout of each board, please see the connector layout diagrams in Fig. 3.9 (a) or later.

Fig. 3.8 (a)

Fig. 3.8 (b)

3.9
 CONNECTOR LAYOUT DIAGRAM

Fig.3.9 (a) Main board

Fig. 3.9 (b) I/O board A (for 21/210-MB)

Fig.3.9 (c) I/O board B (for 21/210-MB)

Fig.3.9 (d) I/O board C (for 21/210-MB)

Fig. 3.9 (e) I/O board D (for 21/210-MB)

Fig. 3.9 (f) I/O board (for 21/210-TB)

Remote buffer function

Fig. 3.9 (g) Option 1 board

Fig. 3.9 (h) Loader control board

Fig. 3.9 (i) MMC-IV board

Fig.3.9 (j) High-speed serial bus interface board

4

POWER SUPPLY CONNECTION

4.1 GENERAL

This section explains the connection of power supply for Series 21/210 control unit.

4.2
 TURNING ON AND
 OFF THE POWER
 TO THE CONTROL
 UNIT

4.2.1

Power Supply for the Control Unit

Supply power (24VDC) to the control uint of Series $21 / 210$ from an external sources.
Install a power switch at (1) in Fig. 4.2.1 (a).

Fig.4.2.1 (a)

ON/OFF circuit (example) For example, "ON/OFF circuit" is as follows :(Fig.4.2.1 (b)) Select the circuit devices, in consideration of its capacity.

Fig.4.2.1 (b)

4.2.2 Procedure for Turning On the Power

Turn on the power to each unit in the following order or all at the same time.

1. Power supplies (200 VAC) for the entire machine
2. Power supplies (24 VDC) for slave I/O devices connected using the FANUC I/O Link (such as the I/O Unit-MODEL A)
3. Power supplies (24 VDC) for the control unit and CRT unit

Do not disconnect the battery for memory backup (3 VDC) or the battery for the separate absolute pulse coders (6 VDC) regardless of whether the power to the control unit is on or off. If batteries are disconnected when the power to the control unit is turned off, current data stored in the control unit for the pulse coders, parameters, programs etc, are lost.
Make sure that the power to the control unit is on when replacing batteries.
See Section 4.4.1 for how to replace the batteries for memory backup.

CAUTION

(Except for 21-TB control unit A)
The maintenance rotary switch must be always set to 0 (set to 0 at shipping from factory).
Changing this setting may cause the contents of memory to be lost.

4.2.3
 Procedure for Turning Off the Power

Turn off the power to each unit in the following order or all at the same time.

1. Power supplies (24 VDC) for slave I/O devices connected using the FANUC I/O Link (such as the I/O Unit-MODEL A)
2. Power supplies (24 VDC) for the control unit and CRT unit
3. Power supplies (200 VAC) for the entire machine

Motors cannot be controlled when the power is turned off or momentarily interrupted. Take appropriate action on the machine side when necessary. For example, when the tool is moved along a gravity axis, apply brakes to prevent the axis from falling. Apply a brake that clamps the motor when the servo is not operating or the motor is not rotating. Release the clamp only when the motor is rotating. When the servo axis cannot be controlled when the power is turned off or momentarily interrupted, clamp the servo motor. In this case, the axis may fall before the relay for clamping starts operating. The designer should make sure if the distance results in trouble.

4.3
 CABLE FOR POWER SUPPLY TO CONTROL UNIT

Supply power to the control unit from external resouce.

4.4 BATTERY

4.4.1 Battery for Memory Backup (3VDC)

Replacing the battery

Part programs, offset data, and system parameters are stored in CMOS memory in the control unit. The power to the CMOS memory is backed up by a lithium battery mounted on the front panel of the control unit. The above data is not lost even when the main battery goes dead. The backup battery is mounted on the control unit at shipping. This battery can maintain the contents of memory for about a year.
When the voltage of the battery becomes low, alarm message "BAT" blinks on the CRT display and the battery alarm signal is output to the PMC. When this alarm is displayed, replace the battery as soon as possible. In general, the battery can be replaced within two or three weeks, however, this depends on the system configuration.
If the voltage of the battery becomes any lower, memory can no longer be backed up. Turning on the power to the control unit in this state causes system alarm 910 (SRAM parity alarm) to occur because the contents of memory are lost. Clear the entire memory and reenter data after replacing the battery.The power to the control unit must be turned on when the battery is replaced. If the battery is disconnected when the power is turned off, the contents of memory are lost.
Observe the following precautions for lithium batteries:

WARNING

If an unspecified battery is used, it may explode.
Replace the battery only with the specified battery (A02B-0177-K106.)

Dispose of used batteries as follows:
(1) Small quantities

Discharge the batteries and dispose of them as ordinary nonflammable garbage.
(2) Large quantities

Consult FANUC.

1 Use a litium battery (ordering drawing number : A02B-0177-K106)
2 Turn on the Series 21/210.
3 Remove the battery case from the front panel of the power supply unit. The case can be removed easily by holding the top and bottom of it and pulling.

Fig.4.4.1(a) Replacing the battery(1)

4 Remove the connector from the battery.

Fig.4.4.1(b) Replacing the battery(2)
5 Replace the battery and reconnect the connector.
6 Install the battery case.
7 Turn off the Series 21/210.

4.4.2
 Battery for Separate Absolute Pulse Coders (6VDC)

One battery unit can maintain current position data for six absolute pulse coders for a year.
When the voltage of the battery becomes low, APC alarms $3 n 6$ to $3 n 8$ (n: axis number) are displayed on the CRT display. When APC alarm 3n7 is displayed, replace the battery as soon as possible. In general, the battery should be replaced within two or three weeks, however, this depends on the number of pulse coders used.
If the voltage of the battery becomes any lower, the current positions for the pulse coders can no longer be maintained. Turning on the power to the control unit in this state causes APC alarm 3n0 (reference position return request alarm) to occur. Return the tool to the reference position after replacing the battery.See Subsec. 7.1.3 for connecting the battery for separate absolute pulse coders.

CONNECTION TO CNC PERIPHERALS

5

5.1
 CONNECTION TO THE DISPLAY
 UNIT

5.1.1
 Outline

The display unit is used for displaying the programs, parameters etc, and supporting the machine operation.
The Series 21 supports the following display units: 9" CRT, 9" plasma display (PDP), 7.2" STN, and 9.5"STN.
The Series 210 supports the following display units: 14 " CRT and $9.5^{\prime \prime}$ TFT.
See Section 13.1 for an explanation of how to connect a display unit to the Series 210.

5.1.2
 Connection to Display
 Unit

Connection to Series 21

5.1.3

9" CRT Display Unit

Interface

5.1.4
 9" PDP Display Unit
 Interface

5.1.5

Varied LCD Units

Interface

5.1.6
 Adjusting the Flat Display

Applied unit

Locations of switches and jumper pins

Adjustment

- Eliminating flicker

- Adjusting the horizontal position

Fine adjustment of the video signal is supported to enable its use with color liquid crystal displays and plasma displays. This adjustment is necessary to compensate for errors resulting from the combination of NC devices and cables.
Adjustment of the video signal is necessary if you have replaced the display unit, cable, or a hardware component of the display circuit in the NC, either as part of regular field maintenance or to correct a failure.

- Analog LCD

Name	Specification number			
$\begin{array}{l}\text { 9.5" color TFT/MDI unit } \\ \text { (For Series 210 with MMC-IV) }\end{array}$	$\begin{array}{l}\text { A02B-0200-C065\# } \square \square \square \\ \text { A02B-0200-C066\# } \square \square \\ \text { (} \square \square \square\end{array}$			
Name \square	: Arbitrary number)	$]$	PDP	Specification number
:---	:---			
Separate type 9" PDP unit	A02B-0200-C1000			

- Analog color liquid crystal display: Jumper pin TM1

Change the jumper pin to another side.
Normally one of these settings will eliminate flicker.

- Plasma display: Switch SW1

1 Change the jumper pin and search for a range such that flicker is eliminated.
2 If you find that flicker is eliminated by two or more different settings, select the setting approximating to the midpoint of those settings.
Example : If flicker is eliminated by all of settings 2 to 6 , select 4 .

- Analog color liquid crystal display : Switch SW1
- Plasma display : Switch SW2

1 The screen can be shifted horizontally in units of dots.
2 Adjust the horizontal position such that the entire screen is visible. Only one setting can successfully realize this positioning.

CAUTION

Do not attempt to change any controls or settings other than those described above.

5.1.7
 Adjusting the STN Monochrome LCD

(1) Applied unit

Name	Specification number
Separate type 7.2" STN monochrome LCD unit	A02B-0200-C081
Separate type 9.5" STN monochrome LCD unit	A02B-0200-C115

(2) Adjustment point (as viewed from the rear of the display unit)

(3) Adjustment method
(a) Display mode and horizontal setting

The mode and horizontal position of the display can be set as listed below, using SW1. When inverted, text is displayed in black against a white background.
The standard setting is 9 .

Mode		8-level gray scale	4-level gray scale	Inverted 8-level gray scale	Inverted 4-level gray scale
Horizontal position	Shifted one dot to the right	0	4	8	C
	Standard Shifted one dot to the left	2	6	A	E
	Shifted two dots to the left	3	7	B	F

(b) Contrast control

The contrast of the display is adjusted using VRP1.
(c) Flicker adjustment

Flicker is eliminated using VR1. Do not change the VR1 setting when no flicker is evident.

5.1.8
 Adjusting the TFT Color LCD

(1) Applied unit

Name	Specification number
Separate type 8.4" TFT color LCD unit	A02B-0218-C050

(2) Adjustment point (as viewed from the rear of the display unit

(3) Adjustment method
(a) Display horizontal setting

- The horizontal position of the display is set as described below, using SW1. Rotating SW1 one notch in the positive (+) direction shifts the display one dot to the right. Rotating SW1 one notch in the negative (-) direction shifts the display one dot to the left.
- Set SW1 such that the entire display is visible. There is only one optimum setting position.
(b) Flickering adjustment

Flickering is eliminated by setting jumper pin TM1. One side of TM1 is marked A, while the other side is marked B. TM1 is factory-set to the B position. If the screen flickers, set TM1 to the A position.

5.2
 CONNECTION OF MDI UNIT

5.2.1

General

Manual data input devices for the Series 21 are called MDI units. MDI units are keyboards used to enter data such as CNC programs and parameters into the CNC.
Various standard MDI units are provided for each model of the Series 21.

5.2.2
 Connection to the MDI
 Unit

(

5.2.3

Connection to the

Standard MDI Unit

5.2.4

Varied MDI Key Switch

- 9"CRT/MDI unit for

Series 21-TB

- Separate type small MDI unit for Series 21-TB

English display

Symbol display

- 9"CRT/MDI unit for

Series 21-MB

- Separate type small MDI unit for Series 21-MB

English display

Symbol display

- Separate type full key for 21-TB

English display

Symbol display

- Separate type full key for 21-MB

English display

Symbol display

- Separate type full key for 210-TB

English display

Symbol display

- Separate type full key for 210-MB

English display

Symbol display

- 9.5" color TFT/MDI unit (horizontal type) for 210-TB

English display

Symbol display

- 9.5" color TFT/MDI unit (horizontal type) for 210-MB

English display

Symbol display

- 14" color CRT/MDI unit for 210-TB
(vertical type)
- 9.5" color TFT/MDI unit for 210-TB
(vertical type)

English display

Symbol display

- 14" color CRT/MDI unit for 210-MB
(vertical type)
- 9.5" color TFT/MDI unit for 210-MB
(vertical type)

English display

Symbol display

- 14" color CRT/MDI unit (horizontal type) for 210-TB

English display

Symbol display

- 14" color CRT/MDI unit (horizontal type) for 210-MB

English display

Symbol display

5.3
 CONNECTING I/O DEVICES

5.3.1

General

I/O devices are used for inputting various data such as CNC programs and parameters from external devices to the CNC or outputting data from the CNC to external devices.
The Handy File is one of the I/O devices for the Series $21 / 210$. The interface for I/O devices complies with RS-232-C. The Series 21/210 can therefore be connected to devices which have an RS-232-C interface.

5.3.2

Connecting I/O Devices

For 21/210-TB

For 21/210-MB

Handy File

5.3.3

RS-232-C Serial Port

5.3.4

RS-232-C Interface Specification

RS-232-C Interface signals

Generally signals as follows are used in RS-232-C interface.

Fig.5.3.4 RS-232-C interface

Signal description of RS-232-C interface

Signal name	RS-232-C circuit number	I/O	Description	
SD	103	Output	Sending data	Start bit

NOTE

Signal on/off state is defined as follows;

	-3 V or lower	+3V or higher
Function	OFF	ON
Signal Condition	Marking	Spacing

Transmission Method of
 RS-232-C interface

Start-stop

Codes

Generally, two transmission methods are available at the serial interface. Series 21 use the start-stop method. With this method, start and stop signals are output before and after each data bit.

Transmission codes are as follows:
(i) EIA code and Control codes DC1 to DC4.
(ii) ISO code and Control codes DC1 to DC4 (Optional ISO code input is necessary.)
The connected external device must be able to recognize the following control codes, sent from NC.

Control code		$\mathbf{8}$	$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$		$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$
DC1	Tape reader start				\bigcirc		\bigcirc			\bigcirc
DC2	Tape punch designation				\bigcirc		\bigcirc		\bigcirc	
DC3	Tape reader stop	\bigcirc			\bigcirc		\bigcirc		\bigcirc	
DC4	Tape punch release				\bigcirc		\bigcirc	\bigcirc		\bigcirc

NOTE

The listed control codes are used for both EIA and ISO.

In this interface, control codes DC 1 to DC 4 are used.
(a) NC can control external device by issuing codes DC 1 to DC 4 .
(b) When external processing falls behind the pace of the NC signals (When NC issues data)
(i) External device can temporarily stop NC data output by using the NC's CS signal. Data output stops within two characters including a currently transmitting character when CS OFF signal is input to NC. When CS signal is turned on again, data transmission start.
(ii) If control code DC3 is input to NC, NC stops data output within ten characters. When control code DC1 is input to NC, NC starts sending data again.
(c) When the external device is equipped with an ISO/EIA converter, the external device must satisfy the specification shown in Table 5.3.4 (a).

Table 5.3.4(a)

ISO code										EIA code										Meaning	
Character	8	7	6	5	4		3	2	1	Character	8	7	6	5	4		3	2	1		
0			\bigcirc	\bigcirc		-				0			\bigcirc			-					Numeral 0
1	\bigcirc		\bigcirc	\bigcirc		-			\bigcirc	1						\bullet			\bigcirc		Numeral 1
2	\bigcirc		\bigcirc	\bigcirc		-		\bigcirc		2						-		O			Numeral 2
3			\bigcirc	\bigcirc		-		\bigcirc	\bigcirc	3				\bigcirc		-		\bigcirc	\bigcirc		Numeral 3
4	\bigcirc		\bigcirc	\bigcirc		-	\bigcirc			4						-	\bigcirc				Numeral 4
5			\bigcirc	\bigcirc		-	\bigcirc		\bigcirc	5				\bigcirc		-	\bigcirc		\bigcirc		Numeral 5
6			\bigcirc	\bigcirc		\bullet	O	\bigcirc		6				O		\bullet	O	O			Numeral 6
7	\bigcirc		\bigcirc	\bigcirc		-	\bigcirc	\bigcirc	\bigcirc	7						\bullet	O	O	\bigcirc		Numeral 7
8	\bigcirc		\bigcirc	\bigcirc	\bigcirc	-				8					\bigcirc	\bullet					Numeral 8
9			\bigcirc	\bigcirc	\bigcirc	-			\bigcirc	9				\bigcirc	\bigcirc	\bullet			\bigcirc		Numeral 9
A		\bigcirc				-			\bigcirc	a		\bigcirc	\bigcirc			\bullet			\bigcirc		Address A
B		O				\bullet		\bigcirc		b		\bigcirc	\bigcirc			\bullet		O			Address B
C	\bigcirc	O				\bullet		O	\bigcirc	c		\bigcirc	\bigcirc	\bigcirc		\bullet		O	O		Address C
D		\bigcirc				\bullet	\bigcirc			d		\bigcirc	\bigcirc			\bullet	O				Address D
E	\bigcirc	\bigcirc				-	\bigcirc		\bigcirc	e		\bigcirc	\bigcirc	\bigcirc		-	O		\bigcirc	?	Address E
F	\bigcirc	\bigcirc				\bullet	\bigcirc	\bigcirc		f		\bigcirc	\bigcirc	\bigcirc		-	O	\bigcirc			Address F
G		\bigcirc				\bullet	\bigcirc	\bigcirc	\bigcirc	g			\bigcirc	O		-	O	O	\bigcirc		Address G
H		\bigcirc			\bigcirc	\bullet				h		\bigcirc	\bigcirc		\bigcirc	\bullet					Address H
1	\bigcirc	\bigcirc			\bigcirc	-			\bigcirc	i		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet			\bigcirc		Address I
J	\bigcirc	\bigcirc			\bigcirc	-		\bigcirc		j		\bigcirc		O		\bullet			\bigcirc		Address J
K		\bigcirc			\bigcirc	-		\bigcirc	\bigcirc	k		\bigcirc		\bigcirc		-		O			Address K
L	\bigcirc	\bigcirc			\bigcirc	-	\bigcirc			1		\bigcirc				-		O	\bigcirc		Address L
M		\bigcirc			\bigcirc	-	\bigcirc		\bigcirc	m		\bigcirc		\bigcirc		-	\bigcirc				Address M
N		\bigcirc			\bigcirc	\bullet	\bigcirc	\bigcirc		n		\bigcirc				\bullet	O		\bigcirc		Address N
0	\bigcirc	\bigcirc			\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	-		\bigcirc				-	\bigcirc	\bigcirc			Not used at significant data zone in ISO code. Assumed as address 0 at EIA code.
P		\bigcirc		\bigcirc		\bullet				p		\bigcirc		\bigcirc		\bullet	O	\bigcirc	\bigcirc		Address P
Q	\bigcirc	\bigcirc		\bigcirc		-			\bigcirc	q		\bigcirc		\bigcirc	\bigcirc	\bullet					Address Q
R	\bigcirc	\bigcirc		\bigcirc		\bullet		\bigcirc		r		\bigcirc			\bigcirc	\bullet			\bigcirc		Address R
S		\bigcirc		\bigcirc		-		\bigcirc	\bigcirc	s			\bigcirc	\bigcirc		\bullet		\bigcirc			Address S
T	\bigcirc	\bigcirc		\bigcirc		-	\bigcirc			t			\bigcirc			\bullet		O	\bigcirc		Address T
U		\bigcirc		\bigcirc		-	O		\bigcirc	u			\bigcirc	\bigcirc		\bullet	O				Address U
V		\bigcirc		\bigcirc		\bullet	\bigcirc	\bigcirc		v			\bigcirc			-	O		\bigcirc		Address V
W	\bigcirc	\bigcirc		\bigcirc		-	\bigcirc	\bigcirc	\bigcirc	w			\bigcirc			-	\bigcirc	\bigcirc			Address W
X	\bigcirc	\bigcirc		\bigcirc	\bigcirc	-				x			\bigcirc	\bigcirc		\bullet	O	\bigcirc	\bigcirc		Address X
Y		\bigcirc		\bigcirc	\bigcirc	\bullet			\bigcirc	y			\bigcirc	O	\bigcirc	\bullet					Address Y
Z		\bigcirc		\bigcirc	\bigcirc	\bullet		\bigcirc		z			\bigcirc		\bigcirc	\bullet			\bigcirc		Address Z
DEL	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	Del		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc	\bigcirc	*	Delete (cancel erroneous hole)
NUL						-				Blank						-				*	No holes. Not used at significant data zone is EIA code.
BS	\bigcirc				\bigcirc	\bullet				BS			\bigcirc		\bigcirc	\bullet		\bigcirc		*	Back space
HT					\bigcirc	-			\bigcirc	Tab			\bigcirc	\bigcirc	\bigcirc	\bullet	\bigcirc	\bigcirc		*	Tabulator
LF or NL					\bigcirc	\bullet		\bigcirc		CR or EOB	\bigcirc					\bullet					End of block
CR	\bigcirc				\bigcirc	\bullet	\bigcirc		\bigcirc											*	Carriage return
SP	\bigcirc		\bigcirc			-				SP				\bigcirc		-				*	Space
\%	\bigcirc		\bigcirc			\bullet	\bigcirc		\bigcirc	ER					\bigcirc	\bullet		\bigcirc	\bigcirc		Absolute rewind stop
(\bigcirc		\bigcirc	-				(2-4-5)				\bigcirc	\bigcirc	\bullet		\bigcirc			Control out (start of comment)
)	\bigcirc		O		\bigcirc	\bullet			\bigcirc	(2-4-7)		\bigcirc			\bigcirc	\bullet		O			Control in (end of comment)
+			O		O	-		O	O	+		O	O	\bigcirc		\bullet				*	Plus sign
-			\bigcirc		\bigcirc	-	\bigcirc		\bigcirc	-		\bigcirc				\bullet				-	Minus sign
:			\bigcirc	\bigcirc	\bigcirc	-		\bigcirc													Assumed as program number in ISO code.
I	\bigcirc		\bigcirc		\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	1			\bigcirc	\bigcirc		\bullet			\bigcirc		Optional block skip
-			\bigcirc		\bigcirc	\bullet	O	\bigcirc		.		\bigcirc	\bigcirc		\bigcirc	\bullet		O	O		Decimal point
\#	\bigcirc		\bigcirc			\bullet		\bigcirc	\bigcirc											*	Sharp
\$			\bigcirc			-	\bigcirc													*	Dollar symbol
\&	\bigcirc		\bigcirc			\bullet	\bigcirc	\bigcirc		\&					\bigcirc	\bullet	\bigcirc	\bigcirc		*	Ampersand
			\bigcirc			-	\bigcirc	\bigcirc	\bigcirc											*	Apostrophe
*	\bigcirc		\bigcirc		\bigcirc	\bullet		\bigcirc												*	Asterisk
,	\bigcirc		0		O	-	O			,			\bigcirc	O	\bigcirc	\bullet		O	\bigcirc	*	Comma
;	\bigcirc		\bigcirc	\bigcirc	\bigcirc	-		\bigcirc	\bigcirc											*	Semicolon
<			\bigcirc	\bigcirc	\bigcirc	-	O													*	Left angle bracket
$=$	\bigcirc		\bigcirc	\bigcirc	\bigcirc	-	\bigcirc		\bigcirc											*	Equal mark
>	\bigcirc		\bigcirc	\bigcirc	\bigcirc	-	O	\bigcirc												*	Right angle bracket
?			\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc											*	Question mark
@	\bigcirc	\bigcirc				\bullet														*	Commerical at mark
"			\bigcirc			\bullet		\bigcirc												*	Quotation mark

NOTE

1 When the external device is equipped with an ISO/EIA converter, the following items must be noted in Table 5.3.4(a).

Condition1
Left parenthesis "("of the ISO code punches holes at bits 2, 4 and 5 when used in the EIA code.
Right parenthesis ")" of the ISO code punches holes at bits 2, 4 and 7 when used in the EIA code.
Condition2
EIA code CR is LF in ISO code.
Condition3
EIA code O is : in ISO code.

NOTE

2 Control codes DC1 to DC4 are transmission codes output from the NC. So they need not to be punched on the NC tape.
(iii) Transmission rate (Baud rate)

The transmission rate (Baud rate) is the number of bits transferred per second.
The following baud rates are available depending on the system parameter.
50, 100, 110, 150, 200, 300, 600, 1200, 2400, 4800, 9600.

(Example)

Baud rate : 110
When using one start bit and two stop bits (totalling 11 bits per character):
Transmission characters/second $=\frac{110}{11}=10$ characters $/$ second (Max.)
(iv) Cable length

The cable length depends on the external device type. Consult with the device manufacturers for actual connecting cable lengths.
When cable A (A66L-0001-0041) is used, cable length is as follows by the specification of NC.

$$
\begin{aligned}
\text { for RS-232-C } & 100 \mathrm{~m} \text { or less ... } 4800 \text { bauds or less } \\
& 60 \mathrm{~m} \text { or less ... } 9600 \text { bauds or less }
\end{aligned}
$$

Time chart when the NC receives data (Read into memory)

(1) NC outputs DC1.
(2) The external device starts sending data upon receiving DC1.
(3) NC sends DC3 when NC processing is delayed.
(4) The external device stops sending data to NC after receiving DC3. The device may send up to 10 characters after receiving DC3. If it sends more than 10 characters, alarm 087 will occur.
(5) NC reissues $\mathrm{DC1}$ upon completing delayed processing.
(6) The external device restarts data output upon receiving the DC1 code (the data must be the next data to the preceding.)
(7) NC sends DC3 upon completing data read.
(8) The external device stops sending data.

Time chart when the NC send data (Punch out)

(1) NC output DC 2 .
(2) NC outputs punch data in succession.
(3) When data processing is delayed at the external device.
(a) Data output stops within two characters including a currently transmitting character when CS signal is turned off.
When CS signal is turned on again, data transmission starts. (See Fig.A)
(b) If control code DC 3 is input to NC , NC stops data output within ten characters. When control code DC1 is input to NC, NC starts sending data again. (See Fig.B)
(4) The NC starts sending the next data if the CS signal is turned on after the external device completes data processing.
(5) The NC issues DC4 upon completing data output.

Fig.A

Fig.B

Connection between
 RS-232-C interface and external device

- The cable for connecting the PG-Mate to the NC should be connected as shown in the below diagram.

Prepare the cable with I/O device as follows :

5.3.5

FANUC Handy File Connection

NOTE

1 Machine tool builder shall furnish relay connector and relay cable.
2 Use a totally shielded cable for the signal cable.
Recommended cable specification:
A66L-0001-0284\#10P
3 Open all terminals other than illustrated.
4 Set suitable parameters on reader/puncher interface for FANUC Handy File. The baud rate is 4800 baud in standard.
5 Connect the FANUC Handy File to either JD5A or JD5B. Do not use both pins; the power capacity may exceed that of +24 V and blow the fuse.

5.4
 CONNECTING THE
 MANUAL PULSE
 GENERATOR

5.4.1

General

Manual pulse generators are used to manually move an axis in the handle feed mode.
Up to two manual pulse generators can be connected with the 21/210-TB.
Up to three manual pulse generators can be connected with the 21/210-MB.

For 21/210-MB

Manual Pulse Generator (No.3)

5.4.2
 Connection to Manual Pulse Generators

CNC				Manual Pulse Generator				
I/O PCB JA3B (PCR-EV20MDT)				\ggg	Manua (M3 sc	ulse	enerato nal)	unit \#1
1	HA1	11	0 V		3	4	5	6
2	HB1	12	OV		+5V	0V	HA1	HB1
3	HA2	13	OV		Manua	ulse	enerato	unit \#2
4	HB2	14	OV		(M3 sc			
5	HA3	15	OV		3	4	5	6
6	HB3	16	OV		+5V	OV	HA2	HB2
7		17	+5V		Manua	ulse	enerato	unit \#3
8		18	+5V		(M3 sc	ter		
9	$+5 \mathrm{~V}$	19	+5V		3	4	5	6
10	$+5 \mathrm{~V}$	20	$+5 \mathrm{~V}$		+5V	OV	HA3	HB3

NOTE

Up to two manual pulse generators can be connected to the 21/210-TB. In such a case, signals HA3 and HB3 are not used.

5.4.3
 Cable Length When Only One Manual Pulse Generator is Used

Manual pulse generators are supplied with 5 VDC power the same as pulse coders. The drop in voltage due to cable resistance must not exceed 0.2 V (on 0 V and 5 V lines in total).

Example: When cable A66L-0001-0286 is used
This cable consists of three pairs of signal lines and six power wires (20/0.18, $0.0394 \Omega / \mathrm{m}$).
When these three cables are used for 0 V and 5 V lines, the cable length is:

$$
\mathrm{L} \leqq \frac{3}{0.0394}=76.75[\mathrm{~m}]
$$

The maximum distance is, however, 50 m for the transmission of a pulse signal from the manual pulse generator. The cable length is, therefore, up to 50 m .
The maximum cable length is 38.37 m when using the two manual pulse generators, or 25.58 m when using the three generators.

5.4.4
 Requirements for the Manual Pulse Generator Interface

Pulse width requirements

When using a manual pulse generator manufactured by a manufacturer other than FANUC, it must satisfy the following requirements:

Fig. 5.4.4 (a) shows the relation between signals HAn and HBn and the command pulses for the CNC. Set the pulse period (T_{1}) to 200μ s or more (i.e., set $\mathrm{T}_{1} / 4$ to 50μ s or more).

Fig.5.4.4(a)

Fig.5.4.4 (b) shows the receiver circuit for signals from the manual pulse generator.

Fig.5.4.4(b)
Switching levels for signals input to the receiver (thresholds)
3.7 V or higher when an input signal changes from low to high
1.5 V or lower when an input signal changes from high to low

SPINDLE CONNECTION

The following two configurations of the spindle interface are available in Series 21.

Serial spindle

Analog spindle

6.1

SERIAL SPINDLE INTERFACE

6.2
 ANALOG SPINDLE INTERFACE

CNC					
JA8A (Main board) (PCR-EV20MDT)				Signal name	Description
				SVC, ES	Spindle command voltage and common line
1	OV	11	OV		
2	CLKX0	12	CLKX1	ENB1, ENB2	Spindle enable signal (Note 1)
3	OV	13	OV		
4	FSX0	14	FSX1	CLKXO, CLKX1, FSX0, FSX1, DX0, DX1, $\pm 15 \mathrm{~V},+5 \mathrm{~V}, 0 \mathrm{~V}$	Feed axis check signal (Note 2)
5	ES	15	OV		
6	DX0	16	DX1		
7	SVC	17	-15V		
8	ENB1	18	+5V		
9	ENB2	19	+15V		
10	+15V	20	+5V		
CABLE WIRING					
$\begin{array}{r} \text { SVC } \\ \text { ES } \\ \text { ENB1 } \\ \text { ENB2 } \end{array}$			$\begin{aligned} & 7 \\ & \hline 5 \\ & \hline 8 \\ & 9 \\ & \text { GROI } \end{aligned}$		FANUC SPINDLE SERVO UNIT DA2 E

NOTE

1 ENB1 and 2 turn on when a spindle command voltage is effective. These signals are not used when the FANUC Spindle Servo Unit is used.
2 Feed axis check signal is used when a feed axis is checked or service work is done. This signal is not used for spindle control.

6.3
 POSITION CODER INTERFACE

NOTE

Signals SOUT and $*$ SOUT are for a serial spindle. These signals are not used for an analog spindle.
This means that if the position coder feedback function is employed in the analog spindle, no serial spindle can be connected.

7

SERVO INTERFACE

7.1
 OUTLINE

7.1.1 Interface to the Servo Amplifier

This chapter describes how to connect the servo unit to the Series 21/210.
For connection on control motor amplifier α series or β series, refer to the Descriptions manual.

CABLE WIRING

RECOMMENDED CABLE MATERIAL
A66L-0001-0284\#10P(\#28WAG $\times 10$ pair)
RECOMMENDED CABLE SPECIFICATION A02B-0120-K800(5m)

NOTE

1 The total length of the cable between the CNC and amplifier and that between the amplifier and motor shall not exceed 50m.
2 As the current feedback lines (IRn and ISn), use the middle twisted pair of the recommended cable. If any other pair is used, abnormal noise or oscillation may occur.
3 The servo interface of the Series $21 / 210$ is type B. Use a servo unit which supports the type-B interface. When using a servo unit which supports both the type-A and type-B interfaces, select the type-B interface. For details, refer to the manual supplied with the servo unit. If the interface setting is incorrect, a servo alarm (AL401 V READY OFF) will be issued.
7.1.2

Separate Type Detector Interface

7.1.3

Connection of Battery for Separate Type
Absolute Detector

Cable connection

JF25		Battery case	
+6 V	7	+	+6 V
	12	-	0 V

Recommended Cable Material
$\geqq 0.2 \mathrm{~mm}^{2}(7 / 0.18)$
Recommended Cable Specification
A02B-0177-K809

NOTE

This battery is necessary only when a separate-type absolute detector is used. When the absolute pulse coder contained in the motor is used, the battery contained in the amplifier is used; the battery for a separate-type absolute detector is not necessary.

Linear scale interface

Cable wiring

Recommended cable material
A66L-0001-0286 (\#20AWG × 6 + \#24AWG $\times 3$-pair)

Separate type pulse coder interface

- For absolute detector

- For incremental detector

Input signal requirements

The standard of the feedback signal from the additional detector is as shown below.
(1) A and B phase signal input

This is a method to input position information by the mutual 90 degree phase slip of A and B phase signals.
Detection of the position is performed with the state in which the B phase is leading taken as a shift in the plus direction, and the state in which the A phase is leading as a shift in the minus direction.

(2) Phase difference and minimum repeat frequency

(3) Z phase signal input

For the Z phase signal (1 rotation signal), a signal width of more than 1 frequency of the A phase or B phase signals is necessary.

Time requirements

Receiver circuit

Relationship between the direction of rotation of the servo motor and that of the separate pulse coder

Requirements for the signals at the input pins of input connectors JF21 to JF24
$\mathrm{TD} \geqq 0.15 \mu \mathrm{sec}$
The signals for these connectors are differential input signals with A and B phases. An important factor is time TD from point A, when the potential difference between PCA and *PCA exceeds 0.5 V , to point B, when the potential difference between PCB and *PCB becomes lower than 0.5 V . The minimum value of TD is $0.15 \mu \mathrm{~s}$. The period and pulse width of the signals must be long enough to satisfy the above requirements.

If the separate pulse coder rotates in the opposite direction to that of the servo motor, reconnect the interface cable of the separate pulse coder as described below.
(1) Exchange signal PCA with signal PCB.
(2) Exchange signal *PCA with signal *PCB.

CONNECTING MACHINE INTERFACE I/O

8

8.1 GENERAL

The Series 21/210 has a built-in I/O board for machine interface I/O. The 21/210-TB has two types of built-in I/O cards, as listed in Table 8.1 (a). The 21/210-MB has four types of built-in I/O cards, as listed in Table 8.1 (b). If the number of DI/DO points is not sufficient, external I/O units such as the FANUC I/O Unit-A can be added using the FANUC I/O Link. MIL ribbon cable connectors are used as the internal connectors for the built-in I/O board to simplify connection with the connector panel. The built-in I/O board in the Series 21/210-MB includes DI/DO points for the operator's panel. These DI/DO points are provided for connecting switches or LEDs on the operator's panel. The number of signals transferred to or from the operator's panel is reduced by configuring a matrix.

Table 8.1 (a) Machine interface I/O points (for 21/210-TB)

Type	Quantity
External I/O card B	$48 / 32$ points
External I/O card A	$96 / 64$ points
FANUC I/O Unit-A	$1024 / 1024$ (maximum) points per group $1024 / 1024$ (maximum) points in total

Table 8.1 (b) Machine interface I/O points (for 21/210-MB)

Type	DI/DO application	Number of DI/DO points (max.)	DO type
Built-in I/O board A	DI/DO for operation panel (matrix)	$64 / 32$	Sink output
	DI/DO for machine	$48 / 48$	
	General purpose DI/DO	$84 / 64$	Sink output
Built-in I/O board C	DI/DO for operation panel (matrix)	$64 / 32$	Source output
	DI/DO for machine	$48 / 48$	
Built-in I/O board D	General purpose DI/DO	$96 / 72$	Source output
I/O unit used with the FANUC I/O Link	FANUC I/O Link Unit-A	$256 / 256$ per group $1024 / 1024$ in total	

8.2
 CAUTIONS

The following cautions must be observed when using I/O signal receivers and drivers for the machine interface.

8.2.1
 DI Signals and Receivers

DI signals are basically of the sink type (a type that drains energy). Some DI signals, however, can be set to either sink type or source type (a type that supplies energy). See the description of the I/O board in the following section for details.
A common signal is provided for selectable receivers. Whether the common signal is connected to 0 V or 24 V determines whether a DI signal is of sink or source type.
A source type DI signal is undesirable from the viewpoint of safety, however, because if the input signal line is grounded, it will be latched in the same state as that existing when the contact is closed. It is recommended that all DI signals be set to sink type.
Always connect the common signal to either 0 or 24 V ; do not leave it open.

8.2.2 DO Signals and Drivers

There are two types of DO signals, sink type (a type that drains off energy) and source type (a type that supplies energy). Either type can be selected depending on the type of the built-in I/O board. See the description of the I/O board in the following chapter for details.
A sink type DO signal is undesirable from the viewpoint of safety, however, because if the output signal line is grounded, the output signal remains in the ON state. It is recommended that all DO signals be set to source type.

If a system alarm occurs in a control unit of the Series $21 / 210$, all I/O board drivers are turned off. Keep this in mind when setting up a machine sequence.
The same situation can occur if the power to the control unit is turned off independently.

8.3

BUILT-IN I/O A CONNECTION (FOR 21/210-MB)

I/O board A

8.3.1

Connector Pin

Arrangement

C95			C91			CM31			C99		
HIROSE 50PIN			HIROSE 50PIN			HIROSE 50PIN			HIROSE 50PIN		
	A	B		A	B		A	B		A	B
01	+24V	+24V	01	+24V	+24V	01	+24V	+24V	01	$+24 \mathrm{~V}$	+24V
02	+24V	NET1	02	+24V		02	DICOM1	DICOM2	02	+24V	
03	NET2	NET3	03	X1008.0	Y1012.6	03	DICOM3	DICOM4	03	X1013.0	NET1
04	NET4	Y1008.0	04	X1008.1	Y1012.7	04	DID0	DID1	04	X1013.1	NET3
05	Y1008.1	Y1008.2	05	X1010.7	Y1013.0	05	DID2	DID3	05	X1012.7	Y1013.4
06	Y1008.3	Y1008.4	06	X1010.6	X1010.5	06	DID4	DID5	06	X1012.6	X1012.5
07	Y1008.5	Y1008.6	07	X1010.3	X1008.2	07	DID6	DID7	07	X1012.3	X1013.2
08	Y1008.7	Y1009.0	08	X1010.1	X1010.4	08	DID8	DID9	08		
09	Y1009.1	Y1009.2	09	X1011.0	X1010.2	09	DID10	DID11	09		X1012.2
10	Y1009.3	Y1009.4	10	X1008.3	X1010.0	10	DID12	DID13	10	X1013.3	
11	Y1009.5	Y1009.6	11	X1008.6	X1008.7	11	DID14	DID15	11	X1013.6	X1013.7
12	Y1009.7	Y1010.0	12	COM0	X1008.5	12	DOCOM1	DOCOM2	12	COM2	X1013.5
13	Y1010.1	Y1010.2	13	X1008.4	X1009.4	13	DOCOM3	DOCOM4	13	X1013.4	
14	Y1010.3	Y1010.4	14	Y1013.1	X1009.0	14	*DOD0	*DOD1	14	Y1013.5	
15	Y1010.5	Y1010.6	15	Y1013.2	X1009.1	15	*DOD2	*DOD3	15	Y1013.6	
16	Y1010.7	Y1011.0	16	Y1013.3	X1011.1	16			16	Y1013.7	NET2
17	Y1011.1	Y1011.2	17	X1011.2	X1011.3	17			17		NET4
18	Y1011.3	Y1011.4	18	X1009.2	X1011.4	18	*DOD8	*DOD9	18		NET5
19	Y1011.5	Y1011.6	19	X1011.5	X1011.6	19	*DOD10	*DOD11	19	NET6	NET7
20	Y1011.7	Y1012.0	20	X1011.7	X1012.0	20			20		
21	Y1012.1	Y1012.2	21	X1012.1	X1009.3	21			21		
22	Y1012.3	Y1012.4	22	X1009.7	X1009.6	22	NET5	NET6	22		
23	Y1012.5	X1012.4	23	X1009.5	COM1	23	NET7	NET4	23		
24	OV	OV	24	OV	OV	24	NET2	NET3	24	OV	OV
25	OV	OV									

NET1 to NET7 are each connected to the pins with the same name in other connectors.
Use these pins to transfer signals between connectors when, for example, sending a signal from the machine operator's panel to the machine.
A receiver having a long delay (5 to 22 ms) is used for X1013. Normal receivers have a delay of 2 ms or less.

8.3.2
 Connection of DI/DO for Operation Panel

The DI/DO points on the operator's panel are provided for connecting switches or LEDs on the machine operator's panel. Connections between the Series 21/210 and the operator's panel are simplified by using a matrix configuration.
The common signals for the DI/DO points on the operator's panel are sequentially turned on or off every 4 ms . The scan cycle is therefore 16 ms.

Example of connecting
 DO for operation panel

Requirements for the DI signals for the operator's panel

Contact capacity: 30 VDC, 16 mA or more
Leakage current between contacts for an open circuit: 1 mA or less (at 26.4 V)

Voltage drop between contacts for a closed circuit: 2 V or less (with 8.5 mA), including the voltage drop from the cables

Connect a diode for preventing unexpected current flow at each matrix DI point as shown in Fig. 8.3.2 (a). If no diode is connected, more than two switches cannot be on at the same time.
When three or more switches are on at the same time, data is not entered correctly.
Use a diode with the following ratings:
Reverse bias voltage: 30 V
Reverse current: 1 mA (at 30 V)

Fig.8.3.2 (a)
Rated voltage: 24 V or more
Forward current: 25 mA or less

NOTE

1 The printed circuit board does not contain resistors for limiting current. Connect resistors R0 to R3 or R8 to R11 shown in the figure below to restrict the current flowing into the indicators.
Each common line can handle current of up to 160 mA . Select resistors R0 to R3 or R3 to R11 so that the total current flowing into the Y000.0 to Y000.3 and Y001.0 to Y001.3 indicators does not exceed 160 mA .
2 For indicators other than LEDs (indicators which light up with current in both directions), a diode for preventing unexpected current flow is necessary in the same way as for matrix DI points.

Fig.8.3.2 (b)

8.3.3

Connecting DI/DO Points for the Machine

Example of DI connection

The DI/DO points for the machine include 24 points with sink type (24-V common voltage) and 24 points for which source type or sink type ($0-\mathrm{V}$ or $24-\mathrm{V}$ common voltage) can be selected.

NOTE

For addresses X1008 and X1009, either source or sink type (with a $0-$ or $24-\mathrm{V}$ common voltage) can be selected. COM0 and COM1 must be connected to either 24 or 0 V ; never leave them open. The above diagram shows an example in which the signals are of sink type (with a $24-\mathrm{V}$ common voltage).

The above diagram shows an example in which the signals are of sink type (with a $24-\mathrm{V}$ common voltage).

NOTE

A receiver having a long delay (5 to 22 ms) is used for X1013. Normal receivers have a delay of 2 ms or less.
For address X1013, either source or sink type (with a 0- or $24-\mathrm{V}$ common voltage) can be selected. COM2 must be connected to either 24 or 0 V ; never leave it open. The above diagram shows an example in which the signal is of sink type (with a $24-\mathrm{V}$ common voltage).

Example of connecting DO for machine

8.4

BUILT-IN I/O CARD B

CONNECTION

(FOR 21/210-MB)

I/O card B

8.4.1

Connector Pin

Arrangement

C100			C101			C102			C103		
HIROSE50PIN			HIROSE50PIN			HIROSE50PIN			HIROSE50PIN		
	A	B		A	B		A	B		A	B
01	+24V	+24V									
02		X1008.0	02		X1012.0	02	X1000.0	X1000.1	02	X1003.0	X1003.1
03	X1008.1	X1008.2	03	X1012.1	X1012.2	03	X1000.2	X1000.3	03	X1003.2	X1003.3
04	X1008.3	X1008.4	04	X1012.3	X1012.4	04	X1000.4	X1000.5	04	X1003.4	X1003.5
05	X1008.5	X1008.6	05	X1012.5	X1012.6	05	X1000.6	X1000.7	05	X1003.6	X1003.7
06	X1008.7	COMX08	06	X1012.7		06	X1001.0	X1001.1	06		
07		X1009.0	07		X1013.0	07	X1001.2	X1001.3	07		
08	X1009.1	X1009.2	08	X1013.1	X1013.2	08	X1001.4	X1001.5	08		
09	X1009.3	X1009.4	09	X1013.3	X1013.4	09	X1001.6	X1001.7	09		
10	X1009.5	X1009.6	10	X1013.5	X1013.6	10	X1002.0	X1002.1	10	X1011.0	X1011.1
11	X1009.7	COMX09	11	X1013.7	COMX13	11	X1002.2	X1002.3	11	X1011.2	X1011.3
12	X1010.0	X1010.1	12	X1010.4	X1010.5	12	X1002.4	X1002.5	12	X1011.4	X1011.5
13	X1010.2	X1010.3	13	X1010.6	X1010.7	13	X1002.6	X1002.7	13	X1011.6	X1011.7
14	Y1008.0	Y1008.1	14	Y1012.0	Y1012.1	14	X1004.0	X1004.1	14		
15	Y1008.2	Y1008.3	15	Y1012.2	Y1012.3	15	X1004.2	X1004.3	15		
16	Y1008.4	Y1008.5	16	Y1012.4	Y1012.5	16	Y1000.0	Y1000.1	16		
17	Y1008.6	Y1008.7	17	Y1012.6	Y1012.7	17	Y1000.2	Y1000.3	17		
18	Y1009.0	Y1009.1	18	Y1013.0	Y1013.1	18	Y1000.4	Y1000.5	18		
19	Y1009.2	Y1009.3	19	Y1013.2	Y1013.3	19	Y1000.6	Y1000.7	19		
20	Y1009.4	Y1009.5	20	Y1013.4	Y1013.5	20	Y1001.0	Y1001.1	20	Y1011.0	Y1011.1
21	Y1009.6	Y1009.7	21	Y1013.6	Y1013.7	21	Y1001.2	Y1001.3	21	Y1011.2	Y1011.3
22	Y1010.0	Y1010.1	22	Y1010.4	Y1010.5	22	Y1001.4	Y1001.5	22	Y1011.4	Y1011.5
23	Y1010.2	X1010.3	23	Y1010.6	Y1010.7	23	Y1001.6	Y1001.7	23	Y1011.6	Y1011.7
24	OV	OV									
25	OV	OV									

NOTE

1 The following Dls cannot be used (addresses not listed in above pin layout).
X1004.4 to X1004.7, X1005.0 to X1005.7
X1006.0 to X1006.7, X1007.0 to X1007.7
X1014.0 or later
2 The following DOs cannot be used (addresses not listed in above pin layout)
Y1002.0 to Y1002.7, Y1003.0 to Y1003.7
Y1004.4 to Y1004.7, Y1005.0 to Y1005.7
Y1006.0 to Y1006.7, Y1007.0 to Y1007.7
Y1014.0 or later
A receiver having a long delay (5 to 22 ms) is used for X1013. Normal receivers have a delay of 2 ms or less.

8.4 .2

Connection of DI

NOTE

For addresses X1008 and X1009, either source or sink type (with a $0-$ or $24-\mathrm{V}$ common voltage) can be selected. COMX08 and COMX09 must be connected to either 24 or 0 V ; never leave them open. The above diagram shows an example in which the signals are of sink type (with a $24-\mathrm{V}$ common voltage).

NOTE

A receiver having a long delay (5 to 22 ms) is used for X1013. Normal receivers have a delay of 2 ms or less.
For address X1013, either source or sink type (with a 0- or $24-\mathrm{V}$ common voltage) can be selected. COMX13 must be connected to either 24 or 0 V ; never leave it open. The above diagram shows an example in which the signal is of sink type (with a $24-\mathrm{V}$ common voltage).

8.4.3

Connection of DO

Requirements for the DI signals for the machine

Ratings for the DO transistors for the machine

Contact capacity: 30 VDC, 16 mA or more
Leakage current between contacts for an open circuit : 1 mA or less (at 26.4 V)

Voltage drop between contacts for a closed circuit :
2 V or less (with 8.5 mA), including the voltage drop in the cables

Maximum load c	200 mA or less, including momentary surges
Saturation voltage when turned on	1.6 V (max.), 1.0 V (typ.) when the load current is 200 mA
Dielectric strength when turned off	$24 \mathrm{~V}+20 \%$ or less, including momentary surges
Leakage current when turned off	$100 \mu \mathrm{~A}$ or less

8.5

BUILT-IN I/O CARD C

 CONNECTION (FOR 21/210-MB)
I/O card C

8.5.1

Connector Pin
Arrangement

CB95			CB91			CM31			CB99		
HIROSE50PIN			HIROSE50PIN			HIROSE50PIN			HIROSE50PIN		
	A	B		A	B		A	B		A	B
01	OV	+24V	01	OV	$+24 \mathrm{~V}$	01	+24V	+24V	01	OV	+24V
02	+24V	NET1	02	+24V		02	DICOM1	DICOM2	02	+24V	
03	NET2	NET3	03	X1008.0	Y1012.6	03	DICOM3	DICOM4	03	X1013.0	NET1
04	NET4	Y1008.0	04	X1008.1	Y1012.7	04	DID0	DID1	04	X1003.1	NET3
05	Y1008.1	Y1008.2	05	X1010.7	Y1013.0	05	DID2	DID3	05	X1012.7	Y1013.4
06	Y1008.3	Y1008.4	06	X1010.6	X1010.5	06	DID4	DID5	06	X1012.6	X1012.5
07	Y1008.5	Y1008.6	07	X1010.3	X1008.2	07	DID6	DID7	07	X1012.3	X1013.2
08	Y1008.7	Y1009.0	08	X1010.1	X1010.4	08	DID8	DID9	08		
09	Y1009.1	Y1009.2	09	X1011.0	X1010.2	09	DID10	DID11	09		X1012.2
10	Y1009.3	Y1009.4	10	X1008.3	X1010.0	10	DID12	DID13	10	X1013.3	
11	Y1009.5	Y1009.6	11	X1008.6	X1008.7	11	DID14	DID15	11	X1013.6	X1013.7
12	Y1009.7	Y1010.0	12	COMO	X1008.5	12	DOCOM1	DOCOM2	12	COM2	X1013.5
13	Y1010.1	Y1010.2	13	X1008.4	X1009.4	13	DOCOM3	DOCOM4	13	X1013.4	
14	Y1010.3	Y1010.4	14	Y1013.1	X1009.0	14	*DOD0	*DOD1	14	Y1013.5	
15	Y1010.5	Y1010.6	15	Y1013.2	X1009.1	15	*DOD2	*DOD3	15	Y1013.6	
16	Y1010.7	Y1011.0	16	Y1013.3	X1011.1	16			16	Y1013.7	NET2
17	Y1011.1	Y1011.2	17	X1011.2	X1011.3	17			17		NET4
18	Y1011.3	Y1011.4	18	X1009.2	X1011.4	18	*DOD8	*DOD9	18		NET5
19	Y1011.5	Y1011.6	19	X1011.5	X1011.6	19	*DOD10	*DOD11	19	NET6	NET7
20	Y1011.7	Y1012.0	20	X1011.7	X1012.0	20			20		
21	Y1012.1	Y1012.2	21	X1012.1	X1009.3	21			21		
22	Y1012.3	Y1012.4	22	X1009.7	X1009.6	22	NET5	NET6	22		
23	Y1012.5	X1012.4	23	X1009.5	COM1	23	NET7	NET4	23		
24	DOCOM	DOCOM	24	DOCOM	DOCOM	24	NET2	NET3	24	DOCOM	DOCOM
25	DOCOM	DOCOM	25	DOCOM	DOCOM	25	OV	OV	25	DOCOM	DOCOM

- Pins NET1 to NET7 are respectively connected to identically named pins of other connectors. Use these pins to transfer signals between connectors when, for example, sending a signal from the operator's panel to the machine.
- A receiver having a long delay (5 to 22 ms) is used for X1013. Normal receivers have a delay of 2 ms or less.

8.5.2
 Connection of DI/DO for Operation Panel

The DI/DO points on the operator's panel are provided for connecting switches or LEDs on the machine operator's panel. Connections between the Series 21/210 and the operator's panel are simplified by using a matrix configuration.
The common signals for the DI/DO points on the operator's panel are sequentially turned on or off every 4 ms . The scan cycle is therefore 16 ms.

Example of connecting
 DO for operation panel

Requirements for the DI signals for the operator's panel

Contact capacity: $30 \mathrm{VDC}, 16 \mathrm{~mA}$ or more
Leakage current between contacts for an open circuit: 1 mA or less (at 26.4 V)

Voltage drop between contacts for a closed circuit: 2 V or less (with 8.5 mA), including the voltage drop from the cables

Connect a diode for preventing unexpected current flow at each matrix DI point as shown in Fig. 8.5.2 (a). If no diode is connected, more than two switches cannot be on at the same time.
When three or more switches are on at the same time, data is not entered correctly.
Use a diode with the following ratings:
Reverse bias voltage: 30 V
Reverse current: 1 mA (at 30 V)

Fig.8.5.2 (a)
Rated voltage: 24 V or more
Forward current: 25 mA or less

NOTE

1 The printed circuit board does not contain resistors for limiting current. Connect resistors R0 to R3 or R8 to R11 shown in the figure below to restrict the current flowing into the indicators.
Each common line can handle current of up to 160 mA . Select resistors R0 to R3 or R3 to R11 so that the total current flowing into the Y000.0 to Y000.3 and Y001.0 to Y001.3 indicators does not exceed 160 mA .
2 For indicators other than LEDs (indicators which light up with current in both directions), a diode for preventing unexpected current flow is necessary in the same way as for matrix DI points.

Fig.8.5.2 (b)

8.5.3

Connecting DI/DO

Points for the Machine

Example of DI connection

The DI/DO points for the machine include 24 points with sink type ($24-\mathrm{V}$ common voltage) and 24 points for which source type or sink type ($0-\mathrm{V}$ or $24-\mathrm{V}$ common voltage) can be selected.

For addresses X1008 and X1009, either source or sink type (with a 0 - or $24-\mathrm{V}$ common voltage) can be selected. COM0 and COM1 must be connected to either 24 or 0 V ; never leave them open. The above diagram shows an example in which the signals are of sink type (with a $24-\mathrm{V}$ common voltage).
From the viewpoint of safety standards, it is recommended that the signals be set to sink type.

A receiver having a long delay (5 to 22 ms) is used for X1013. Normal receivers have a delay of 2 ms or less.
For address X1013, either source or sink type (with a $0-$ or $24-\mathrm{V}$ common voltage) can be selected. COM2 must be connected to either 24 or 0 V ; never leave it open. The above diagram shows an example in which the signal is of sink type (with a $24-\mathrm{V}$ common voltage).

From the viewpoint of safety standards, it is recommended that the signals be set to sink type.

Example of connecting DO for machine

8.5.4

Notes on DO
Connection

CAUTION

Do not connect DOs in parallel, as shown below.

CAUTION

When using a dimming resistor, as shown below, connect a diode to prevent leakage.


```
8.5.5
Requirements Imposed
on Input/Output
Signals and the
External Power Supply
for Output Signals
```


8.5.5.1
 Input signal requirements

- Contact rating: $30 \mathrm{VDC}, 16 \mathrm{~mA}$ or more
- Leakage current between contacts for open circuit: 1 mA or less (at 26.4 V)
- Voltage drop between contacts for closed circuit: 2 V or less (including voltage drop in the cables)

8.5.5.2

Output signal driver ratings

- Maximum on-state load current: 200 mA or less, including momentary surges
(For the DOCOM power supply pins, the maximum current per pin shall not exceed 0.7A.)
- On-state saturation voltage: 1.0 V or less for a load current of 200 mA
- Dielectric strength: $24 \mathrm{~V}+20 \%$ or less, including momentary surges
- Off-state leakage current: $20 \mu \mathrm{~A}$ or less

8.5.5.3
 External power supply for output signals

- Supply voltage: $24 \mathrm{~V} \pm 10 \%$
- Supply current: Total of the maximum load current for each signal (including momentary surges) +100 mA , or higher

8.5.5.4
 Output signal driver

Each output signal driver element on the I/O board outputs eight signals.
The driver elements each monitor the current of an output signal. If a driver element detects a signal overcurrent, it stops output of that signal. Once output of that signal has been turned off, an overcurrent no longer flows, at which point the driver element will again turn on the output of the signal. This means that the signal output will be repeatedly turned on and off upon the occurrence of a ground fault or overload. Connecting a load which induces a large surge current will also produce this effect.
Each driver element contains an overheat detection circuit. If an overcurrent flows continuously, as a result of a ground fault or some other cause, such that the temperature of the element increases beyond the specified range, the element turns off all eight of its output signals. The signals remain off even after the element temperature drops back to within the specified range. Logically turning the signals off, after the temperature has dropped sufficiently, resets the overheat detection circuit, after which the signals can be turned on again. The detection circuit can also be reset by turning off the system power.
The following signals are assigned to the driver elements:

Element \#0: 1008.0 to 1008.7
Element \#1: 1009.0 to 1009.7
Element \#2: 1010.0 to 1010.7
Element \#3: 1011.0 to 1011.7
Element \#4: 1012.0 to 1012.7
Element \#5: 1013.0 to 1013.7
If the output of a signal cannot be turned on even when NC diagnosis indicates that the output is being turned on, that signal, or another signal assigned to the same element, may be overloaded, causing all eight output signals of that element to be turned off. In such a case, turn the system power off, then determine and eliminate the cause of the overload.
[Internal block diagram of driver element]

OHD : Overheat detection circuit, OCD : Overcurrent detection circuit

8.6

BUILT-IN I/O D

CONNECTION
(FOR 21/210-MB)

I/O board D

8.6.1

Connector Pin

Arrangement

CB124			CB125			CB126			CB127		
HIROSE50PIN			HIROSE50PIN			HIROSE50PIN			HIROSE50PIN		
	A	B		A	B		A	B		A	B
01	+0V	+24V	01	OV	+24V	01	OV	+24V	01	OV	+24V
02	X1000.0	X1000.1	02	X1003.0	X1003.1	02	X1004.0	X1004.1	02	X1009.0	X1009.1
03	X1000.2	X1000.3	03	X1003.2	X1003.3	03	X1004.2	X1004.3	03	X1009.2	X1009.3
04	X1000.4	X1000.5	04	X1003.4	X1003.5	04	X1004.4	X1004.5	04	X1009.4	X1009.5
05	X1000.6	X1000.7	05	X1003.6	X1003.7	05	X1004.6	X1004.7	05	X1009.6	X1009.7
06	X1001.0	X1001.1	06	X1010.0	X1010.1	06	X1005.0	X1005.1	06	X1012.0	X1012.1
07	X1001.2	X1001.3	07	X1010.2	X1010.3	07	X1005.2	X1005.3	07	X1012.2	X1012.3
08	X1001.4	X1001.5	08	X1010.4	X1010.5	08	X1005.4	X1005.5	08	X1012.4	X1012.5
09	X1001.6	X1001.7	09	X1010.6	X1010.7	09	X1005.6	X1005.7	09	X1012.6	X1012.7
10	X1002.0	X1002.1	10	X1011.0	X1011.1	10	X1008.0	X1008.1	10	X1013.0	X1013.1
11	X1002.2	X1002.3	11	X1011.2	X1011.3	11	X1008.2	X1008.3	11	X1013.2	X1013.3
12	X1002.4	X1002.5	12	X1011.4	X1011.5	12	X1008.4	X1008.5	12	X1013.4	X1013.5
13	X1002.6	X1002.7	13	X1011.6	X1011.7	13	X1008.6	X1008.7	13	X1013.6	X1013.7
14	Y1013.0	Y1013.1	14	Y1013.4	Y1013.5	14		COMX08	14	COMX09	COMX13
15	Y1013.2	Y1013.3	15	Y1013.6	Y1013.7	15			15		
16	Y1000.0	Y1000.1	16	Y1002.0	Y1002.1	16	Y1009.0	Y1009.1	16	Y1011.0	Y1011.1
17	Y1000.2	Y1000.3	17	Y1002.2	Y1002.3	17	Y1009.2	Y1009.3	17	Y1011.2	Y1011.3
18	Y1000.4	Y1000.5	18	Y1002.4	Y1002.5	18	Y1009.4	Y1009.5	18	Y1011.4	Y1011.5
19	Y1000.6	Y1000.7	19	Y1002.6	Y1002.7	19	Y1009.6	Y1009.7	19	Y1011.6	Y1011.7
20	Y1001.0	Y1001.1	20	Y1008.0	Y1008.1	20	Y1010.0	Y1010.1	20	Y1012.0	Y1012.1
21	Y1001.2	Y1001.3	21	Y1008.2	Y1008.3	21	Y1010.2	Y1010.3	21	Y1012.2	Y1012.3
22	Y1001.4	Y1001.5	22	Y1008.4	Y1008.5	22	Y1010.4	Y1010.5	22	Y1012.4	Y1012.5
23	Y1001.6	Y1001.7	23	Y1008.6	Y1008.7	23	Y1010.6	Y1010.7	23	Y1012.6	Y1012.7
24	DOCOM	DOCOM									
25	DOCOM	DOCOM									

NOTE

1 The following Dls cannot be used (addresses not listed in above pin layout).
X1006.0 to X1006.7, X1007.0 to X1007.7
X1014.0 or later
2 The following DOs cannot be used (addresses not listed in above pin layout)
Y1003.0 to Y1003.7
Y1004.0 to Y1004.7, Y1005.0 to Y1005.7
Y1006.0 to Y1006.7, Y1007.0 to Y1007.7
Y1014.0 or later
3 Blanks in the above table indicate that the corresponding pins cannot be used.

A receiver having a long delay (5 to 22 ms) is used for X1013. Normal receivers have a delay of 2 ms or less.

8.6.2

Example of DI Connection

For address X1008, either source or sink type (with a $0-$ or $24-\mathrm{V}$ common voltage) can be selected. COMX08 must be connected to either 24 or 0 V ; never leave it open. From the viewpoint of safety standards, it is recommended that a sink type signal be used. The above diagram shows an example in which the signal is of sink type (with a $24-\mathrm{V}$ common voltage).

A receiver having a long delay (5 to 22 ms) is used for X1013. Normal receivers have a delay of 2 ms or less.
For addresses X1009 and X1013, either a source or sink type (with a $0-$ or $24-\mathrm{V}$ common voltage) can be selected. COMX09 and COMX13 must be connected to either 24 or 0 V ; never leave them open. From the viewpoint of safety standards, it is recommended that sink type signals be used. The above diagram shows an example in which the signals are of sink type (with a $24-\mathrm{V}$ common voltage).

8.6.3

Example of DO Connection

8.6.4

Notes on DO

Connection

CAUTION

Do not connect DOs in parallel, as shown below.

CAUTION

When using a dimming resistor, as shown below, connect a diode to prevent leakage.

8.6.5

Requirements Imposed
on I/O Signals and
Driver

8.6.5.1
Signal requirements

Requirements for the DI signals

- Contact capacity : 30VDC, 16 mA or more
- Leakage current between contacts for an open circuit : 1 mA or less (at 26.4 V)
- Voltage drop between contacts for a closed circuit :

2 V or less (with 8.5 mA), including the voltage drop in the cables.

DO output signal driver ratings

- Maximum on-state load current :

200 mA or less, including momentary surges
(For the DOCOM power supply pins, the maximum current per pin shall not exceed 0.7A.)

- On-state saturation voltage : 1.0 V or less for a load current of 200 mA
- Dielectric strength : $24 \mathrm{~V}+20 \%$ or less, including momentary surges
- Off-state leakage current : $20 \mu \mathrm{~A}$ or less
8.6.5.2

External power supply for output signals

- Supply voltage : $24 \mathrm{~V}+10 \%$
- Supply current : Total of the maximum load current for each signal (including momentary surges) +150 mA , or higher

8.6.5.3
 Output signal driver

Each output signal driver element on the I/O board outputs eight signals.
The driver elements each monitor the current of an output signal. If a driver element detects a signal overcurrent, it stops output of that signal. Once output of that signal has been turned off, an overcurrent no longer flows, at which point the driver element will again turn on the output of the signal. This means that the signal output will be repeatedly turned on and off upon the occurrence of a ground fault or overload. Connecting a load which induces a large surge current will also produce this effect.
Each driver element contains an overheat detection circuit. If an overcurrent flows continuously, as a result of a ground fault or some other cause, such that the temperature of the element increases beyond the specified range, the element turns off all eight of its output signals. The signals remain off even after the element temperature drops back to within the specified range. Logically turning the signals off, after the temperature has dropped sufficiently, resets the overheat detection circuit, after which the signals can be turned on again. The detection circuit can also be reset by turning off the system power.
The following signals are assigned to the driver elements:

Element \#0: Y1000.0 to 7 Element \#1: Y1001.0 to 7
Element \#2: Y1002.0 to 7 Element \#3: Y1008.0 to 7
Element \#4: Y1009.0 to 7 Element \#5: Y1010.0 to 7
Element \#6: Y1011.0 to 7 Element \#7: Y1012.0 to 7
Element \#8: Y1013.0 to 7
If the output of a signal cannot be turned on even when NC diagnosis indicates that the output is being turned on, that signal, or another signal assigned to the same element, may be overloaded, causing all eight output signals of that element to be turned off. In such a case, turn the system power off, then determine and eliminate the cause of the overload.
[Internal block diagram of driver element]

OHD : Overheat detection circuit, OCD : Overcurrent detection circuit

8.7

BUILT-IN I/O CARD

 CONNECTION(FOR 21/210-TB)

8.7.1

Connector Pin

Arrangement

CB104			CB105			CB106			CB107		
HIROSE 50PIN			HIROSE 50PIN			HIROSE 50PIN			HIROSE 50PIN		
	A	B		A	B		A	B		A	B
01	OV	+24V									
02	X1000.0	X1000.1	02	X1003.0	X1003.1	02	X1004.0	X1004.1	02	X1007.0	X1007.1
03	X1000.2	X1000.3	03	X1003.2	X1003.3	03	X1004.2	X1004.3	03	X1007.2	X1007.3
04	X1000.4	X1000.5	04	X1003.4	X1003.5	04	X1004.4	X1004.5	04	X1007.4	X1007.5
05	X1000.6	X1000.7	05	X1003.6	X1003.7	05	X1004.6	X1004.7	05	X1007.6	X1007.7
06	X1001.0	X1001.1	06	X1008.0	X1008.1	06	X1005.0	X1005.1	06	X1010.0	X1010.1
07	X1001.2	X1001.3	07	X1008.2	X1008.3	07	X1005.2	X1005.3	07	X1010.2	X1010.3
08	X1001.4	X1001.5	08	X1008.4	X1008.5	08	X1005.4	X1005.5	08	X1010.4	X1010.5
09	X1001.6	X1001.7	09	X1008.6	X1008.7	09	X1005.6	X1005.7	09	X1010.6	X1010.7
10	X1002.0	X1002.1	10	X1009.0	X1009.1	10	X1006.0	X1006.1	10	X1011.0	X1011.1
11	X1002.2	X1002.3	11	X1009.2	X1009.3	11	X1006.2	X1006.3	11	X1011.2	X1011.3
12	X1002.4	X1002.5	12	X1009.4	X1009.5	12	X1006.4	X1006.5	12	X1011.4	X1011.5
13	X1002.6	X1002.7	13	X1009.6	X1009.7	13	X1006.6	X1006.7	13	X1011.6	X1011.7
14			14			14	COM4		14		
15			15			15			15		
16	Y1000.0	Y1000.1	16	Y1002.0	Y1002.1	16	Y1004.0	Y1004.1	16	Y1006.0	Y1006.1
17	Y1000.2	Y1000.3	17	Y1002.2	Y1002.3	17	Y1004.2	Y1004.3	17	Y1006.2	Y1006.3
18	Y1000.4	Y1000.5	18	Y1002.4	Y1002.5	18	Y1004.4	Y1004.5	18	Y1006.4	Y1006.5
19	Y1000.6	Y1000.7	19	Y1002.6	Y1002.7	19	Y1004.6	Y1004.7	19	Y1006.6	Y1006.7
20	Y1001.0	Y1001.1	20	Y1003.0	Y1003.1	20	Y1005.0	Y1005.1	20	Y1007.0	Y1007.1
21	Y1001.2	Y1001.3	21	Y1003.2	Y1003.3	21	Y1005.2	Y1005.3	21	Y1007.2	Y1007.3
22	Y1001.4	Y1001.5	22	Y1003.4	Y1003.5	22	Y1005.4	Y1005.5	22	Y1007.4	Y1007.5
23	Y1001.6	Y1001.7	23	Y1003.6	Y1003.7	23	Y1005.6	Y1005.7	23	Y1007.6	Y1007.7
24	DOCOM	DOCOM									
25	DOCOM	DOCOM									

8.7.2
 Connecting DI/DO

For example, connecting

 DI

For address X1004, either a source or sink type (with a 0 - or $24-\mathrm{V}$ common voltage) can be selected. COM4 must be connected to either 24 or 0 V ; never leave it open. From the viewpoint of safety standards, it is recommended that a sink type signal be used. The above diagram shows an example in which the signal is of sink type (with a $24-\mathrm{V}$ common voltage).

For example, connecting DO

8.7.3

I/O Signal
Requirements and External Power Supply for DO

Requirements Contact capacity : for DI signals

Leakage current between contact points for an open circuit : 1 mA or less (at 26.4 V)
Voltage drop between contact points for a closed circuit : 2 V or less (including the voltage drop in the cables)

Ratings for the DO output driver

Maximum load current when turned on :
200 mA or less, including momentary surges (Themaximum current for one DOCOM (power supply) pin must be 0.7 A or less.)
Saturation voltage when turned on :
1.0 V max when the load current is 200 mA

Dielectric strength :
$24 \mathrm{~V}+20 \%$ or less, including momentary surges
Leakage current when turned off :
100 A or less
External power supply for DO 30 VDC 16 mA or more

Power supply voltage :
$24 \mathrm{~V}+10 \%$

Power supply current :
(Sum of maximum load current including momentary surges + 100 mA) or more

Power-on sequence
Turn on the external power supply at the same time or before turning on the control unit.
Power-off sequence :
Turn off the external power supply at the same time or after turning off the control unit.

CAUTION

1 Never use the following DO parallel connection.

CAUTION

2 When using a dark lighting resistor as shown in the following figure, use a leakage-proof diode.

NOTE

Output signal driver
Each of the output signal driver devices used on this I/O board outputs eight signals.
A driver device monitors the current of each output signal. If it detects an overcurrent on an output, it turns off the output. Once an overcurrent causes an output to turn off, the overcurrent is no longer present. Then, the output is turned on again. In ground-fault or overload conditions, outputs may turn on and off alternately. This phenomenon also occurs when a load with a high surge current is connected.
Each driver device contains an overheat detector circuit. If an overcurrent is observed on an output continuously because of a ground-fault or similar reason and the temperature in the device rises, the overheat detector circuit turns off all eight outputs. The output-off state is maintained. This state can be released by logically turning off then on again the outputs after the internal temperature of the device drops to a specified level. This state can also be released by turning off the system power supply.
The output signals of the driver devices are assigned the following addresses:

Device \#0: Y1000.0 to Y1000.7
Device \#1: Y1001.0 to Y1001.7
Device \#2: Y1002.0 to Y1002.7
Device \#3: Y1003.0 to Y1003.7
Device \#4: Y1004.0 to Y1004.7
Device \#5: Y1005.0 to Y1005.7
Device \#6: Y1006.0 to Y1006.7
Device \#7: Y1007.0 to Y1007.7
If NC diagnosis shows that an output is on but the output is actually not turned on, an overload on that output or another output in the same device may have turned off the eight outputs of that device. In such a case, turn off the system power supply and remove the cause of the overload.

8.8

CONNECTION OF

Series OOPERATOR'S
PANEL

Outline

The FANUC Series 0 operator's panel is provided with a lot of key switches, LEDs, rotary switches, etc. For key switches and LEDs, they are coded, and connected to the CNC with less signal lines than the actual number of theses signals. The coding and data transfer are executed by the PMC management software automatically. Therefore, it is only necessary for the PMC ladder program to operate with the simple bit image for the key switches and LEDs.
This chapter describes how the Series 21/210 users connect and assign the key switches and LEDs signal address and their bit image address to the PMC address.

Fig. 8.8 Block diagram

Connection

- Conection to I/O Unit-A

DI Module : +24 V common, 20 ms
(ex.) AID32A1
DO Module : 0 V common
(ex.) AOD32A1

	Type of operator's panel	
	Type A	Type B (for CE Marking)
DI module	Sink type, 20ms (Example) AID32A1	Sink type (Example) AID32A1
DO module	Sink type (Example) AOD32A1	Sink type (Example) AOD32D1

- Connection to built-in

 I/O card

	Type of operator's panel	
	Type A	Type B (for CE Marking)
$21-\mathrm{TB}$	Not to connected	I/O card
$21-\mathrm{MB}$	$\mathrm{I} / \mathrm{O}-\mathrm{A}, \mathrm{I} / \mathrm{O}-\mathrm{B}$	I/O-C, I/O-D

Signal assignment of

Series 0 Operator's

panel

- Signal assignment

The signals boxed in thick lines in the above figure are used in the Series 0 operator's panel.
+24 V is used as the common of such signals and the power source of the inside of the operator's panel. Therefore, 0 V and +24 V of upper figure must be connected.
For +24 V , this operator's panel requires 0.5 A . In the above figure, each of +24 V and 0 V uses one pin only. For securer connection, however, it is recommended to use as many pins as possible in addition to the above.

- Emergency (*ESP)

- Override (*OV1 to *OV8), protect key (KEY)
- Key switch signal (Xn, Xn+2)

The CNC directly monitors this signal at fixed address.
For the connection, refer to the Function volume (B-62703EN-1) of the connection manual.

Since these signals are directly input to the PMC, process them directly by the PMC ladder program.
For the connection, refer to the Function volume (B-62703EN-1) of the connection manual.

The key switch signal is decoded into the bit image at the PMC address R by the management software of the PMC. Whether the necessary key is depressed or not can be known by checking the bit image of the key switch by the PMC ladder program of the user. (Refer to Table 8.8(a), (b), (c))

The key switch signal address ($\mathrm{Xn} \sim \mathrm{Xn}+2$ on Table 8.8(a)) and its bit image address ($\mathrm{Rk} \sim \mathrm{Rk}+7$ on Table 8.8(b), (c)) are optionally assigned to the proper and unused address. (On Series 0 , each address is fixed to X20~, F292~.)

- LED signal (Ym)

Generate the LED signal by the bit image at the PMC address R by the PMC ladder program of the user. The management software of the PMC encodes that LED bit image to the coded output signal. (Refer to Table 8.8(a), (b), (c))

The LED signal address (Ym on Table 8.8(a)) and its bit image address (RI \sim RI +7 on Table 8.8(b), (c)) are optionally assigned to the proper and unused address.
(On Series 0, each address is fixed to Y51, G242~.)
Table 8.8(a) The key switch and LED signal address

Xn	7	6	5	4	3	2	1	0
	KD7	KD6	KD5	KD4	KD3	KD2	KD1	KD0
$\mathrm{Xn}+1$								
Xn+2	KST				KA3	KA2	KA1	KA0
	7	6	5	4	3	2	1	0
Ym	LD7	LD6	LD5	LD4	LD3	LD2	LD1	LDO

Table 8.8(b) The key switch and LED signal bit image address (For the small type operator's panel)
KEY/LED
Rk/RI
Rk+1/RI+1
Rk+2/RI+2
Rk $+3 / \mathrm{RI}+3$
$R k+4 / R I+4$
Rk+5/RI+5
Rk+6/RI+6
Rk+7/RI+7

7	6	5	4	3	2	1	0
F3	F2	F1		D1	C1	B1	A1
F4				D2	C2	B2	A2
D4	D3	C4	C3	B4	B3	A4	A3
	F6	F5		D5	C5	B5	A5
F8				D6	C6	B6	A6
D8		C8		B8		A8	A7
		F9		D9	C9	B9	A9
		F10		D10	C10	B10	A10

Table 8.8(c) The key switch and LED signal bit image address (For the full key type operator's panel)
KEY/KED

Rk+1/RI+1
Rk+2/RI+2
Rk+3/RI +3
$R k+4 / R 1+4$
Rk+5/RI+5
Rk+6/RI+6
Rk+7/RI+7

E1	C1	A	A	E6	D6	C6	B6
A6							
E2	C2	A2	E7	D7	C7	B7	A7
E3	C3	A3	E8	D8	C8	B8	A8
E5	C4	A4	E9	D9	C9	B9	A9
D2	C5	A5	E10	D10	C10	B10	A10
D4	D5	B2	E11	D11	C11	B11	A11
D1	B1	B4	E12	D12	C12	B12	A12
D3	B3	B5	E13	D13	C13	B13	A13

How to assign

Parameter screen

- Operation

Assign the signal address and the bit image address of the key switch and LED signal as follows.
(It is available from vers. 2.3 of FAPT LADDER on the P-G Mate)

```
KEY IN ONE OF THE FOLLOWING NO.S WHICH YOU WANT TO SET PARA, S.
NO. ITEMS
CURRENT PARAMETERS
01 (UNUSED)
02 COUNTER DATA TYPE
03 OPERATOR PANEL
    KEY/LED ADDRESS
    KEY/LED BIT IMAGE ADRS.
04 PMC TYPE
05 (UNUSED)
06 (UNUSED)
07 LADDER EXEC.
0 8 ~ ( U N U S E D )
09 IGNORE DIVIDED CODE
(UNUSED)
0 0 ~ N O T H I N G ~ T O ~ S E T
NO.=
```

1) Select menu No. " 3 " on Parameter Screen.

Then, following message appears.

```
EXAMPLE 0:NO, 1:YES
OP.PANEL=_
```

2) Select " 1 " on example menu.

Then , following message appears.

```
SET KEY/LED ADDRESS (KEY ADRS., LED ADRS.)
ADDR=
```

3) Set PMC ADDRESS (X and Y) for KEY and LED signals.

For example, if you want to set X0 for key switches and Y0 for LEDs, type "X0, Y0" and [NL].
Then, following message appears.

```
SET KEY/LED BIT IMAGE ADDRESS (KEY ADRS., LED ADRS.)
ADDR=_
```

4) Set PMC ADDRESS for BIT IMAGE.

For example R900 and R910 if you want. Set "R900, R910" [NL]. Then, return to Parameter Screen and following message appears.

NOTE

1 As a result of above operation, Table 8.8(a), (b), (c) are assigned for the PMC address as follows.
$\mathrm{Xn} \rightarrow \mathrm{X} 0000 \mathrm{Rk} / \mathrm{RI} \rightarrow \mathrm{R} 0900 / \mathrm{R} 0910$
$\mathrm{Xn}+1 \rightarrow \mathrm{X} 0001 \quad \mathrm{Rk}+1 / \mathrm{Rl}+1 \rightarrow \mathrm{R} 0901 / \mathrm{R} 0911$
$\mathrm{Xn}+2 \rightarrow \mathrm{X} 0002 \quad \mathrm{Rk}+2 / \mathrm{RI}+2 \rightarrow \mathrm{R} 0902 / \mathrm{R} 0912$
Rk+3/ Rl+3 \rightarrow R0903/ R0913
$\mathrm{Ym} \rightarrow \mathrm{Y} 0000 \quad \mathrm{Rk}+4 / \mathrm{RI}+4 \rightarrow \mathrm{R} 0904 / \mathrm{R} 0914$
Rk+5/ Rl+5 \rightarrow R0905/ R0915
Rk+6/ Rl+6 \rightarrow R0906/ R0916
Rk+7/ RI+7 \rightarrow R0907/ R0917
2 In case of I/O card
PMC address in the I/O Card is fixed. Therefore, set the fixed address for the used signal at operation 3) in above operation.
ex) If X1000, X1001, X1002, Y1000 are used for the key switches and LEDs, type as follows.

SET KEY/LED ADDRESS (KEY ADRS. , LED ADRS.) ADDR= X1000, Y1000 [NL]

9
 CONNECTION TO FANUC I/O Link

9.1 GENERAL

The FANUC I/O Link is a serial interface which connects the CNC, cell controller, I/O Unit-A, or Power Mate and transfers I/O signals (bit data) at high speeds between each device. The FANUC I/O Link regards one device as the master and other devices as slaves when more than one device is connected. Input signals from the slaves are sent to the master at specified intervals. Output signals from the master are also sent to the slaves at specified intervals.

On Series 21/210, the interface connector JD1A for I/O Link is provided on the main board.
In the I/O there are the master station and its slave stations. The master is the control unit of the CNC, and the slave is the I/O unit-A. The slaves are divided into groups, and up to 16 groups can be connected to one I/O Link. A maximum of two base I/O units can be connected as a group. The I/O Link is connected in different ways depending on the types of units actually used and the I/O points. To connect the I/O Link, the assignment and addresses of the I/O signals have been made programmable with the PMC program. The maximum number of I/O points is 1024 .
The two connectors of the I/O Link are named JD1A and JD1B, and are common to all units (that have I/O Link function). A cable is always connected from JD1A of a unit to JD1B of the next unit. Although JD1A of the last unit is not used and left open, it need not be connected with a terminator.
The pin assignments of connectors JD1A and JD1B are common to all units on the I/O Link, and are illustrated on Subsec. 9.2.1. Use the figures when connecting the I/O Link irrespective of the type of unit.

Fig.9.2 I/O Link connection diagram

9.2.1
 Connection of FANUC
 I/O Link by Electric
 Cable

+5 V terminals are for an optical I/O Link adapter. They are not necessary when connecting with a metal cable.
A line for the +5 V terminal is not required when the Optical I/O Link Adapter is not used.

9.2.2

Connection of FANUC I/O Link Optical Fiber Cable

The FANUC I/O Link can be extended to the maximum length of 200 m with optical fiber cables using an optical I/O Link adapter.
In the following cases, use an optical fiber cable.

- When the cable is more than 10 meters long.
- When the cable runs between different cabinets and it is impossible to connect the cabinets with a grounding wire of $5.5 \mathrm{~mm}^{2}$ or thicker.
- When there is concern that the cable is influenced by strong noise; for example :
When there is a strong electromagnetic noise source beside the cable such as a welding machine.
When a noise generating cable such as a power cable runs for a long distance in parallel with the cable.

External dimension of optical link adapter

Main body: Approx. 100 g .

Weight of optical link adapter

Connection

- Connection diagram

- Interunit connecting cables

01	SIN	11	0 V
02		SIN	12
0 V			
03	SOUT	13	0 V
04	SOUT	14	0 V
05		15	0 V
06		16	0 V
07		17	
08		18	+5 V
09	+5 V	19	
10		20	+5 V

- Optical cable

Power source

Installation conditions

Required parts

1 Recommended connector for cable side : PCR-E20FS (made by HOND Communication Co., Ltd.)
2 Recommended cable (wire material) : A66L-0001-0284\#10P
3 Cable length : Max. 2 m (when the recommended cable is used)
1 Specification: A66L-6001-0009
(Make sure to use one with this specification)
2 Cable length: Max. 200m.
(a) Power voltage: 4.75 V to 5.25 V (at the receiving end)
(b) Consumption current: 200 mA
(a) The optical link adapter enclosure is not fully sealed ; install it with the CNC control unit in the fully enclosed cabinet.
(b) Ground the case using the case fixing screw of the optical link adapter.
(c) The optical link adapter is light, and it may not be necessary to mount it with screws. However, keep it from coming in contact with other circuits to prevent possible short-circuits. When mounting the optical link adapter in a cabinet, attach it with an L-type fitting using the case fixing screws (M3) of the optical link adapter.

For making up an I/O Link using the optical link adapter, the following parts are necessary:
1 Optical I/O Link adapter 2
2 Interunit connecting cable 2
3 Optical cable 1

9.3
 UNITS THAT CAN BE CONNECTED USING FANUC I/O Link

Basically, the Series $21 / 210$ can be connected to any unit that has a FANUC I/O Link slave interface. The following table lists general units that can be connected to the Series 21/210. Detailed descriptions of each unit are given later in this section. For details of other units, refer to the documentation provided with the unit.

General units that can be connected to the Series 21/210

Unit	Description	Reference
FANUC I/O Unit-MODEL A	Modular I/O unit that supports a com- bination of the input/output signals re- quired by a power magnetics circuit.	Connection and maintenance manual B-61813E
FANUC I/O Unit-MODEL B	Distribution type I/O unit that supports a combination of input/output signals required by a power magnetics circuit.	Connection manual B-62163E
Machine operator's panel interface unit	Unit having an interface with a matrix of key switches and LEDs on the ma- chine operator's panel, and a manual pulse generator	Sec. 9.4
Operator's panel connection unit	Unit having an interface with a ma- chine operator's panel	Sec. 9.5
Source type output operator's panel connection unit	Unit having an interface with a ma- chine operator's panel; a source type output circuit is used in the DO signal output driver.	Sec. 9.6
FANUC I/O Link connection unit	Unit for connecting FANUC I/O Link masters to transfer DI/DO signals	Sec. 9.7

9.4
 CONNECTION OF MACHINE OPERATOR'S PANEL INTERFACE UNIT

The machine operator's panel interface unit (A16B-2201-0110) is connected to the control unit through the I/O Link and is used for interfacing with the machine operator's panel.
It features interfaces with matrix key switches, LEDs and manual pulse generators.

9.4.1

Function Overview

Number of DI/DO points

DI or DO	DI/DO = 128/128		DI/DO = 256/256	
	$\begin{gathered} \text { DI } \\ (\mathrm{OCO2I}) \end{gathered}$	$\begin{gathered} \text { DO } \\ \text { (OC02O) } \end{gathered}$	$\begin{gathered} \text { DI } \\ (\text { OC03I) } \end{gathered}$	$\begin{gathered} \text { DO } \\ (0 C 030) \end{gathered}$
Number of matrix key switch inputs	64		96	
Number of matrix LED data outputs		64		64
Number of general-purpose switch inputs	32		32	
Number of general-purpose LED data outputs		32		32
Number of total DI/DO points	96	96	128	96

- Matrix key switch inputs (matrix DI)

Ninety-six DI points are provided by a matrix of twelve common signals times eight data signals. Note that I/O Link allocation may limit the number of usable key switch inputs.

- Matrix LED data outputs (matrix DO)

Sixty-four DO points are provided by a matrix of eight common signals times eight data signals.

- General-purpose switch inputs (general-purpose DI)

Each general-purpose DI point has an individual interface.

- General-purpose LED data outputs (general-purpose DO)

Each general-purpose DO point has an individual interface.

Analog signal inputs

Terminal for signal forwarding

- Two inputs (input voltage: 0 to +10 V)
- Input voltages are converted from analog to digital. The resulting five bits of data are sent to the CNC through the FANUC I/O Link.
- The analog signal input function can be used regardless of whether I/O Link allocation is $128 / 128$ or $256 / 256$.
- Emergency stop and OT release signals are forwarded without change to the power magnetics cabinet.
- Power ON/OFF control signals are forwarded without change to an input unit.
- Analog signal inputs described in item "Analog signal inputs" can be sent out without being changed.

Pulse information from the manual pulse generator is transferred via an I/OLink. This is selected according to the interface with the manual pulse generator in the control unit, and the set parameters.

9.4.2
 System Configuration

NOTE

Power requirements
When 60% of the $\mathrm{DI} / \mathrm{DO}$ points are on, this interface unit requires "1.0 A"
(not including the current required by the CRT and MDI).

9.4.3

Signal Assignment

Connector pin signal assignment

CM15 (General DI/DO) CM16 (General DI/DO) CM17 (General DI/DO)

	A	B
01	+5 E	DI06
02	0 V	DO06
03	+5 E	DI07
04	0 V	DO07
05	+5 E	DI16
06	0 V	DO16
07	+5 E	DI17
08	0 V	DO17
09	*ESP	ECM1
10	OTR	ECM2
11	DI00	D102
12	DI04	+5 E
13	DI03	DI01
14	DI05	DI10
15	DI12	DI14
16	+5 E	DI13
17	DI11	DI15

	A	B
01	DI20	DI22
02	DI24	+5 E
03	DI23	DI21
04	DI25	DI26
05	DI27	+5 E
06	DO00	0 V
07	DI05	+5 E
08	DO01	0 V
09	DI15	+5 E
10	DO02	0 V
11	DO03	DO04
12	DO05	0 V
13	0 V	0 V
14	DO10	DO11
15	DO12	DO13
16	DO14	DO15
17	+5 E	+5 E

	A	B
01	OV	OV
02	DO20	DO21
03	DO22	DO23
04	DO24	DO25
05	DO26	DO27
06	0 V	0 V
07	DO30	DO31
08	DO32	DO33
09	DO34	DO35
10	DO36	DO37
11	0 V	0 V
12	+5 E	+5 E
13	DI30	DI31
14	DI32	DI33
15	DI34	DI35
16	DI36	DI37
17	+5 E	+5 E

CA40 (Connector on the manual pulse generator)

14	DI37	08		01	+5V
15	OV	08	Di31	02	+5V
16	DO37	09	Di32	03	HA1
17	OV	10	DI34	04	HB1
18		11	DI35	05	
19	+5E	12	Di35	06	
20	+5E	13	Di36	07	DI30

CNA1 (Connector on the machine side)

9	0M	10	ECM2	19	OTR	20	
7	DO36	8	ECM1	19	OTR	18	
5	SM	6	SM	17	ESP	16	
5	OM	4	OM	15	COM	14	
3	OM	2	LM	13	EOF	12	
1	LM			11	EON	12	

CNB1 (Connector on the operator's panel side) CPD1 (Power supply)

01	LM	05	EON	09	HA1
02	SM	06	EOF	10	HB1
03	OM	07	COM	11	+5 V
04	0 M	08	0 V	12	0 V

3	2	1
	0 V	+24 V
6	5	4
	0 V	+24 V

Pins shaded by
 are those for forwarding signals. Pins with the same name are connected directly to one another.
Note 1 LM and SM also function as input terminals to the A/D converter. Note 2 OM is connected to 0 V on the PCB.
Input/output pins shaded by \square are in pairs. Only one in each pair is usable.

JD1A (FANUC I/O Link : NEXT SLAVE)							
		10		19		20	+5V
9	+5V	8		19		18	$+5 \mathrm{~V}$
7		6		17		16	OV
5		4	*TXB	15	OV	14	OV
3	TXB	2	*RXB	13	OV	12	OV
1	RXB			11	OV		

JD1B (FANUC I/O Link : BEFORE SLAVE)

9	$+5 \mathrm{~V}$	10		19		20	$+5 \mathrm{~V}$
						18	+5V
7		6		17		16	OV
5		4	*TXA	15	OV	14	OV
3	TXA	2	*RXA	13	OV	12	OV
1	RXA	2		11	0V	12	O

CM26 (Matrix DI/DO)

	A	B
01	OV	*MND1
02	*KYDO	*KYD1
03	*KYD2	*KYD3
04	*KYD4	*KYD5
05	*KYD6	*KYD7
06	*KYC0	*KYC1
07	*KYC2	*KYC3
08	*KYC4	*KYC5
09	*KYC6	*KYC7
10	*KYC8	*KYC9
11	*KYCA	*KYCB
12	*BZMD	0 V
13	*LD0	*LD8
14	*LD1	*LD9
15	*LD2	*LD10
16	*LD3	*LD11
17	*LD4	*LD12
18	*LD5	*LD13
19	*LD6	*LD14
20	*LD7	*LD15
21	LC1L	LC1H
22	LC2L	LC2H
23	LC3L	LC3H
24	LC4L	LC4H
25	OV	OV

DInx	General-purpose DI	LM	Load meter voltage
DOnx	General-purpose DO	SM	Speed meter voltage
*ESP	Emergency stop	OM	LM/SM reference voltage (OV)
ECM1	*ESP common signal	*KYDx	Matrix DI data signal
OTR	OT release	*KYCx	Matrix DI common signal
ECM2	OTR common signal	*LDx	Matrix DO data signal
EON/OF	Power ON/OFF control signal	LCnL/H	Matrix DO common signal
COM	EON/EOF common signal	*MNDI	Three DI points acceptable
HAI	Input from manual pulse generator	*BZMD	Buzzer off
HBI	Input from manual pulse generator		

See Subsec. 9.4.4 for details of connection and signal meanings.

9.4.4

Interface

General-purpose DI

Input signal specifications

Contact rating	5VDC, 3.2mA or higher
Leakage current between open contacts	0.2 mA or lower (5 VDC)
Voltage drop across closed contacts	0.75 V or lower

General-purpose DO

Output signal specifications

Maximum load current	0.03 A
Maximum open-circuit leakage current	0.1 mA
Maximum closed-circuit voltage drop	0.1 V

NOTE

When using an LED at the DO point, connect an external resistor that meets the requirements of the LED.

Matrix DI

- Key switch addresses

See Subsec. 9.4.5 for the corresponding PMC addresses.

- Mode selection

Preventing malfunctions that may be caused by detouring current When there are three or more matrix DI points, detouring current can cause a nonexistent DI input to be falsely detected as existing.
As shown below, if KY01, KY03, and KY21 are closed simultaneously, current detours through the path indicated with arrows, thus causing a false input of *KY23 to be detected because of a current path formed by a combination of common signal *KYC2 and data signal *KYD3.

Two modes are available to prevent this malfunction. One should be selected according to the user applications.
[Method 1]

- Ignoring all occurrences of three or more simultaneous inputs Action : Make the *MNDI signal open (see item " \bullet Key switch addresses")

If there are two inputs and a third is added, all three are ignored. When one of the three inputs is removed, two are accepted.
[Method 2]

- Attaching detour prevention diodes to enable three simultaneous inputs
Action : Connect the *MNDI signal (see item "• Key switch addresses") to 0V.

A diode must be connected in series with a switch, as shown below.

This PCB can raise a confirmation sound when a key is pressed. The condition to raise an audible alarm is set in 8 -bit units, or in $* \mathrm{KYCn}$ units. If $* \mathrm{BZMD}$ and common $* \mathrm{KYCn}$ are disconnected, a KYnx input causes a sound to generate. If they are connected, a KYnx input does not generate the sound.
To generate a confirmation sound for key input, the DO (PMC address $\mathrm{DO}+00.7$) "MD07" must have been turned to " 1 " (see Subsec. 9.4.5).

1 A diode is necessary to connect *BZMD and *KYCn, as shown below.
2 This setting cannot be changed when power is supplied.
3 The sound is generated when the circuit closes between common signal *KYCn and data signal *KYDx. It does not sound when the circuit is disconnected. If key switches are used, the sound is heard at the moment a key is pressed. It does not sound when a key is released or when a key is held pressed.

(Example)
If *BZMD is connected to $* \mathrm{KYC} 0$ and $* \mathrm{KYC} 2$, but disconnected from *KYC1 and *KYC3, as shown below, closing a switch at key addresses KY10 to KY17 and KY30 to KY37 causes a confirmation sound for key input to be heard, but closing a switch at key addresses KY00 to KY07 and KY20 to KY27 does not. See item " Key switch addresses".

- Signal specification

Contact rating	6VDC, 2mA or higher
Leakage current between open contacts	0.2 mA or lower (6VDC)
Voltage drop across closed contacts	0.9 V or lower (1 mA) Note)

NOTE

This voltage must be maintained even when detour prevention diodes are used.

Matrix DO

- LED addresses

See Subsec. 9.4.5 for the corresponding PMC addresses.

NOTE

The timing for the common signals are shown below. Their duty cycle is 2 ms for LEDs being on and 6 ms for LEDs being off.
LC4L (H)
LC3L (H)
LC2L (H)
LC1L (H)

- Internal circuit

The circuit contains a 100 -ohm resistor, as shown below. Connecting an LED does not require an external resistor.

- Signal specifications

Interface for manual pulse generator

- Connection of connector CNB1
- Connection of connector CA40

The LEDs must have the following rating

Forward voltage	$2.4 \mathrm{~V} \max \left(\mathrm{l}_{\mathrm{f}}=5 \mathrm{~mA}\right)($ Typical value $)$
Forward current	$30 \mathrm{~mA} \max$
Reverse voltage	$3 \mathrm{~V} \max$

One interface is provided on connector CNB1.

When only the manual pulse generator is directly connected		$\begin{aligned} & \text { HA1 } \\ & \text { HB1 } \end{aligned}$	Manual pulse generator
	HA1 9		
	HB1 10		
	+5V 11	$\begin{aligned} & +5 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	
	0 V 12		
	OV 12		
	CNB1		
	Control PCB		

Pendant-type manual pulse generator with axis selection and multiplier setting functions can be connected to connector CA40.

NOTE

1 When DI30 to DI37 of connector CA40 are allocated as the Dls used for the axis selection and multiplier setting, DI30 to DI37 of connector CM17 cannot be used.
2 One DO is available for the manual pulse generator side at the user's discretion. When this is used, DO37 of CM17 cannot be used, as in the case for Dls above.

Analog signal inputs

- Connection diagram (example)

Analog inputs received from the outside are forwarded without change to output terminals.

Analog inputs from the spindle amp being output for load meter and speed meter indications.

Analog inputs received on the Machine operator's panel interface unit are converted to five-bit digital values, which are sent to the CNC though the I/O Link.
See Subsec. 9.4.5 for PMC addresses.
LM conversion data : "LM03 to LM07"
SM conversion data : "SM03 to SM07"

- Analog signal specifications

Acceptable input voltage	0 V to +15 V
Voltage that can be converted to digital	0 V to $+10 \mathrm{~V} \quad$ Note)

NOTE

Any voltage higher than +10 V is converted to the same digital value as +10 V is.

- A/D conversion

 specifications| Conversion error | 5% | (\max) |
| :--- | :--- | :--- |
| Resolution | 5 bit | (\min) |

- Emergency stop

- OT release
- Power ON/OFF control signal

A signal generated by the emergency stop switch on the machine operator's panel can be sent to the power magnetics cabinet. (This signal cannot be sent to the CNC through the FANUC I/O Link.)

A signal generated by the OT release switch on the machine operator's panel can be sent to the power magnetics cabinet.
(This signal cannot be sent to the CNC through the FANUC I/O Link.)

Signals generated by the power ON/OFF control switches on the machine operator's panel can be sent to an input unit. (These signals cannot be sent to the CNC through the FANUC I/O Link.)

NOTE

The LM, OM, SM, D036, ECM, EON, EOF, COM, ESP, and OTR signals are all assigned to the pins of one connector (CNA1).
They can be connected to the machine using only one cable.

9.4.5
 PMC Addresses

PMC BIT NUMBER										Scope in which PMC addresses can be used I/O Link allocation		
ADDRESS		7	6	5	4	3	2	1	0	$128 / 128 \text {, 256/256 }$		
	DI+00			FUSE						4	\uparrow	
	DI+01	KY07	KY06	KY05	KY04	KY03	KY02	KY01	KYOO			
	DI+02	KY17	KY16	KY15	KY14	KY13	KY12	KY11	KY10			
	DI+03	KY27	KY26	KY25	KY24	KY23	KY22	KY21	KY20			
	DI+04	KY37	KY36	KY35	KY34	KY33	KY32	KY31	KY30			
	DI+05	KY47	KY46	KY45	KY44	KY43	KY42	KY41	KY40			
	DI+06	KY57	KY56	KY55	KY54	KY53	KY52	KY51	KY50			
	DI+07	KY67	KY66	KY65	KY64	KY63	KY62	KY61	KY60			
	DI+08	KY77	KY76	KY75	KY74	KY73	KY72	KY71	KY70			
	DI+09	DI07	DI06	DI05	DI04	DI03	DIO2	DI01	DI00			
	DI+10	D117	DI16	DI15	DI14	DI13	DI12	D111	DI10			
	DI+11	D127	DI26	DI25	DI24	DI23	DI22	D121	DI20			
	DI+12	D137	DI36	DI35	DI34	DI33	DI32	DI31	DI30			
	DI+13	LM07	LM06	LM05	LM04	LM03	-					
	DI+14	SM07	SM06	SM05	SM04	SM03	-					
	DI+15	MP17	MP16	MP15	MP14	MP13	MP12	MP11	MP10	\checkmark		
	DI+16			Reserv	d for use	by FANU						
	DI+17			,		-						
	DI+18	KY87	KY86	KY85	KY84	KY83	KY82	KY81	KY80			
	DI+19	KY97	KY96	KY95	KY94	KY93	KY92	KY91	KY90			
	DI+20	KYA7	KYA6	KYA5	KYA4	KYA3	KYA2	KYA1	KYAO			
	DI+21	KYB7	KYB6	KYB5	KYB4	KYB3	KYB2	KYB1	KYBO			
	DO+00	MD07	MD06	FUSE						4		
	DO+01	L1L7	L1L6	L1L5	L1L4	L1L3	L1L2	L1L1	L1L0			
	DO+02	L2L7	L2L6	L2L5	L2L4	L2L3	L2L2	L2L1	L2L0			
	DO+03	L3L7	L3L6	L3L5	L3L4	L3L3	L3L2	L3L1	L3L0			
	DO+04	L4L7	L4L6	L4L5	L4L4	L4L3	L4L2	L4L1	L4LO			
	DO+05	L1H7	L1H6	L1H5	L1H4	L1H3	L1H2	L1H1	L1H0			
	DO+06	L2H7	L2H6	L2H5	L2H4	L2H3	L2H2	L2H1	L2H0			
	DO+07	L3H7	L3H6	L3H5	L3H4	L3H3	L3H2	L3H1	L3H0			
	DO+08	L4H7	L4H6	L4H5	L4H4	L4H3	L4H2	L4H1	L4H0			
	DO+09	DO07	DO06	DO05	DO04	DO03	DO02	DO01	DO00			
	DO+10	DO17	D016	DO15	DO14	DO13	DO12	DO11	D010			
	DO+11	DO27	DO26	DO25	DO24	DO23	DO22	DO21	DO20			
	DO+12	DO37	DO36	DO35	DO34	DO33	DO32	DO31	DO30	\checkmark	γ	
FUSE	When 1 , it indicates the +5 E fuse has blown. Shorting of the general-purpose DI input is considered as a possible cause. Turn off the power at once, check the general-purpose DI input and its vicinity, replace the fuse and turn the power on.											
DInx		General-purpose DI										
LM0x	: Load	Load meter indication										
SM0x	: Sp	: Speed meter indication										
KYnx	: Ky	Ky signal (matrix)										
$\operatorname{LnL}(\mathrm{H}) \times$	x : LED	LED signal (matrix)										
DOnx	: Ge	General-purpose DO										
MD07	$\begin{aligned} & \text { : Bu } \\ & \text { tur } \end{aligned}$	Buzzer mode selection (It is possible to sound the key entry confirmation tone at the matrix DI input by turning this to " 1 ".)										
MD06	Buzzer ON/OFF setting (The buzzer sounds as this is turned to " 1 " and stops as it is turned to " 0 ". This operation is performed irrespective of MD07.)											
MP1X	: Fir	: First manual pulse generator										

9.4.6
 Major Connection Precautions

- Use flat cables for connectors CM15, CM16, CM17, and CM26. When splitting and connecting flat cables to the machine operator's panel or other equipment, be careful not to break or short the conductors.
- All signals with the same name described in Subsec. 9.4.3 are connected to one another.
- One of the holes for mounting the PCB is also used for grounding. Before mounting the PCB, check the location of that hole with the diagram in Subsec. 9.4.10.

9.4.7
 State of the LEDs on the Machine Operator's Panel Interface Unit

L1 (green) :

Monitors +5 E . When on, it indicates that the fuse is intact $(+5 \mathrm{E}: 5 \mathrm{~V}$ for connector output).
When off, it indicates that the fuse has blown.
L2 (green) :
Monitors key scanning. When blinking, it indicates that the keys are being scanned normally. When on or off, it indicates key scanning is at halt.
L3 (red) :
When on, it indicates that an alarm condition has occurred. When off, it indicates that there is no alarm condition.

9.4.8 Connector (on the Cable Side) Specifications

Connector	Major use	Specification
CM15, CM16, CM17	General-purpose DI/DO	HIF3BA-34D-2.54R : Manufactured by HIROSE ELECTRIC CO., LTD.
CNA1	Relay terminal (to the machine)	PCR-E20FS : Manufactured by HONDA TSUSHIN KO- GYO CO., LTD.
CNB1	Relay terminal (to the machine operator's panel)	MVSTBR2.5/12-ST-5.08 : Manufactured by PHOENIX CONTACT GmbH \& Co.
JD1A, JD1B	FANUC I/O Link	PCR-E20FS : Manufactured by HONDA TSUSHIN KO- GYO CO., LTD.
CPD1	Power supply	Dynamic D3100 (three pins) : Manufactured by AMP JAPAN, LTD. 1-178288-3: Connector
CM26	Matrix DI/DO	HIF3BB-50D-2.54R : Manufactured by HIROSE ELECTRIC CO., LTD.
CA40	Manual pulse generator	MR-20LFH (solder type) : Manufactured by HONDA TSUSHIN KO- GYO CO., LTD.

NOTE

1 Several types of connectors are available for use at the other end of the cable leading to connector CNB1. Refer to brochures of PHOENIX CONTACT GmbH \& Co..
The connector used on the machine operator's panel interface unit side is MSTBVA2.5/12-G-5.08.
2 Crimped type cable connector is available for CA40. For purchase from FANUC, please specify as below.
A02B-0029-K890 : Solder type
A02B-0029-K892 : Crimped type

9.4.9

Machine Operator's

Panel Interface Unit
Dimension Diagram
(Including Connector Locations)

9.4.10
 Machine Operator's
 Panel Interface Unit
 Mounting Dimension
 Diagram

Mounting hole position

Unit : mm

Sheet fixing area (mounting face side)

It is possible to fix the sheet, spacer, etc. only in the area shown in the diagram below.

NOTE
Applied to the PCB version number "03A" and beyond.

Sheet fixing area (Soldering face side)

It is possible to fix the sheet, spacer, etc. only in the area shown in the diagram below.

NOTE
Applied to the PCB version number "03A" and beyond.

9.4.11

Fuse Mounting
 \section*{Position}

FU1 : +24V fuse (general-purpose DO, this supplies printed board power protection)
FU2 : +5V fuse (IC power, manual pulse generator protection)
FU3 : +5E fuse (general-purpose DI protection)

NOTE
FU2 is not mounted on Revision 05A or later.

9.5
 CONNECTION OF OPERATOR'S PANEL CONNECTION UNIT

The operator's panel connection unit (A16B-2200-0660, 0661) is connected to the control unit through the FANUC I/O Link and is used for interfacing with the machine operator's panel.
The electric interface and pin layout of the connectors CM1 to CM4 are fully compatible with those for Series 15 . There are two units available depending on the number of I/O points.

Specification	Input	Output
A16B-2200-0660	96 points	64 points
A16B-2200-0661	64 points	32 points

CAUTION
For a power cable, use a cable of $30 / 0.18\left(0.75 \mathrm{~mm}^{2}\right)$ or thicker.

9.5.1

Input Signal
Regulations for Operator's Panel Connection Unit

The input signal of the operator's panel connection unit is 0 V common non-insulation type interface as shown below.

Fig. 9.5.1 (a) Receiver circuit

Fig. 9.5.1 (b) Width of input signals and delay time

In the above figure, it is logic 0 when the contact is open and logic 1 when closed.
Connect the common line of the input signal of the operator's panel connection unit as shown below.

Fig. 9.5.1 (c) Connection of common lines

WARNING

All signals input to this operator's panel connection unit are of source type.
When a source interface is used, a ground fault in an input signal has the same effect as closing the contacts. From the viewpoint of safety, therefore, FANUC does not recommend the use of such an interface for input signals. In particular, input signals X008.0 to X008.7 must be connected in a sink layout, because these signals include the emergency stop signal.
Do not use this operator's panel connection unit for safety-critical input signals (such as an emergency stop signal).

9.5.2

Output Signal
Regulations for Operator's Panel Connection Unit

Output signals DO00 to DO77 of the operator's panel connection unit drive indicators and LEDs on the machine operator's panel and use NPN transistor for drivers.
Prepare 24VDC for power supply of indicators and LEDs and connect 0 V to COM3 and COM4. For LEDs, however, 5VDC 300 mA output from the terminal +5 N of the connector CM3 can be used. There is no +5 N in the connector CM4; use +5 N in connector CM3 as shown below:

Output regulation Load voltage : $24 \mathrm{~V}+20 \%$ or less
Load current : 40 mA

WARNING

When a sink output interface is used, a ground fault in an output signal causes the output signal to remain on. From the viewpoint of safety, therefore, FANUC does not recommend the use of such an interface for output signals.

9.5.3
 Connector Layout for Operator's Panel Connection Unit

CM1

1	DIOO			33	
2	DI03	19	D101	34	DI02
3	DI06	19	Di04	35	DI05
4	DI11	20	D104	36	DI10
5	DI14	21	Di07	37	DI13
6	DI17	22	D112	38	DI16
7	DI22	24	DI20	39	DI21
8	DI25	24	Dl20	40	DI24
9	DI27	25	D123	41	DI26
10	DI32	26	DI33	42	DI31
11	DI35	27		43	DI34
12	DI40	28	Di36	44	DI37
13	DI43	29	D14	45	DI42
14	DI46	30	D144	46	DI45
15	DI51	31		47	DI50
16	DI54	32	Di52	48	DI53
17	DI56			9	DI55
18	COM1			50	DI57

Address	7	6	5	4	3	2	1	0
Xn	DI07	DI06	DI05	DI04	DI03	DI02	DI01	DI00

$\mathrm{Xn}+1$	Dl17	DI16	DI15	Dl14	DI13	DI12	DI11	DI10

$\mathrm{Xn}+2$	DI27	DI26	DI25	DI24	DI23	DI22	DI21	DI20

$\mathrm{Xn}+4$	DI47	DI46	DI45	DI44	DI43	DI42	DI41	DI40

$X n+5$

DI57	DI56	DI55	DI54	DI53	DI52	DI51	DI50

CM2

Address	7	6	5	4	3	2	1	0
Xn+6	DI67	DI66	DI65	DI64	D163	D162	DI61	DI60
Xn+7	DI77	DI76	DI75	DI74	DI73	DI72	D171	DI70
Xn+8	DI87	DI86	DI85	DI84	D183	D182	DI81	DI80
Xn+9	D197	D196	D195	D194	D193	D192	D191	D190
$X \mathrm{n}+10$	DIA7	DIA6	DIA5	DIA4	DIA3	DIA2	DIA1	DIA0
Xn+11	DIB7	DIB6	DIB5	DIB4	DIB3	DIB2	DIB1	DIB0

NOTE

n in addresses can be 0 to 127.
64 points (DI00 to DI77) can be used for the A16B-2200-0661.

CM3

1	DO00			33	+5N
2	DO03	19		34	DO02
3	DO06	19	D004	35	DO05
4	DO11	21	D004	36	DO10
5	DO14	21	D012	37	DO13
6	DO17	22	DO12	38	DO16
7	DO22	24	DO15	39	DO21
8	DO25	24	DO20	40	DO24
9	DO27	26	DO23	41	DO26
10	DO32	26	DO30	42	DO31
11	DO35	27	DO33	43	DO34
12	DO40	28	D031	44	DO37
13	DO43	29	DO41	45	DO42
14	DO46	30	DO44	46	DO45
15	DO51	31	DO47	47	DO50
16	DO54	32	DO52	48	DO53
17	DO56			9	DO55
18	COM3			50	DO57

Address	7	6	5	4	3	2	1	0
Yn	D007	DO06	DO05	DO04	DO03	DO02	D001	DO00

$Y \mathrm{n}+1$	DO17	DO16	DO15	DO14	DO13	DO12	DO11	DO10
Yn+2	DO27	DO26	DO25	DO24	DO23	DO22	DO21	DO20

$\mathrm{Yn}+3$	DO37	DO36	DO35	DO34	DO33	DO32	DO31
	DO30						

$Y n+4$	DO47	DO46	DO45	DO44	DO43	DO42	DO41

Yn+5	DO57	DO56	DO55	DO54	DO53	DO52	DO51
	DO50						

CM4

1	DO60	8		14	DO60
2	DO64	8	D062	15	DO63
3	DO67	10	D065	16	DO66
4	DO72	11	D070	17	DO71
5	DO75	12	D073	18	DO74
6		12	DO76	19	DO77
7	COM4	13		20	

Address	7	6	5	4	3	2	1	0
Yn+6	D067	DO66	DO65	DO64	DO63	D062	DO61	DO60
Yn+7	DO77	DO76	DO75	DO74	DO73	DO72	DO71	DO70

NOTE

n in addresses can be 0 to 127.
32 points (DO00 to DO37) can be used for the A16B-2200-0661.

9.5.4

External View of Operator's Panel Connection Unit

Fig. 9.5.4 External view of operator's panel connection unit

9.6
 CONNECTION OF SOURCE OUTPUT TYPE CONNECTION UNIT

The operator's panel connection unit (A16B-2202-0730, 0731), which connects to the control unit via the FANUC I/O Link, acts as an interface with the machine operator's panel.
Connectors CM51, CM52, CMB3, and CMB4, used to interface with the operator's panel, feature an electrical interface and pin assignment which are fully compatible with those of the source type output operator's panel connection unit for the Series 15. The following two units are available with different numbers of I/O points:

Specifications	No. of input points	No. of output points
A16B-2202-0730	96	64
A16B-2202-0731	64	32

CAUTION

Use 30/0.18 ($0.75 \mathrm{~mm}^{2}$) or heavier wire as the power cable.

9.6.1
 Input Signal Specifications for Source Output Type Connection Unit

Most input signals for the source output type connection unit support a sink type non-isolated interface. For some input signals, however, either sink or source type can be selected. (European safety standards demand the use of sink types.)
The machine's contacts shall conform to the following specifications:
Capacity: 30 VDC, 16 mA or higher
Intercontact leakage current in closed circuit:
1 mA or less (at 26.4 V)
Intercontact voltage drop in closed circuit:
2 V or less (including the voltage drop in the cables)

Fig. 9.6.1(a) Receiver circuit
Always connect both DICMN1 and DICMN2 to 24 V or 0 V . Do not leave them open.

Fig. 9.6.1 (b) Signal width and delay of input signal

In the above figure, logical 0 corresponds to open contacts, while logical 1 corresponds to closed contacts.

WARNING

When a source interface is used, a ground fault in an input signal has the same effect as closing the contacts. From the viewpoint of safety, therefore, FANUC does not recommend the use of such an interface for input signals.

9.6.2

Output Signal Specifications for Source Output Type Connection Unit

The output signals shall satisfy the following:
Maximum load current when driver is on:
200 mA (including momentary values)
Saturation voltage when driver is on:
1.0 V max.

Withstand voltage: $24 \mathrm{~V}+20 \%$ (including momentary values) Leakage current when driver is off: $100 \mu \mathrm{~A}$

Prepare the following external power supply for the output signals:

$$
\begin{aligned}
& \begin{array}{l}
\text { Supply voltage: }+24 \mathrm{~V} \pm 10 \% \\
\text { Supply current (per board): } \\
\text { At least total maximum load current } \\
\text { (including momentary values) }+100 \mathrm{~mA}
\end{array} \\
& \text { Power-on timing: } \begin{array}{l}
\text { At the same time as or before turning on } \\
\text { the power to the control unit }
\end{array} \\
& \text { Power-off timing: } \begin{array}{l}
\text { At the same time as or after turning on the } \\
\text { power to the control unit }
\end{array}
\end{aligned}
$$

CAUTION

A power supply which satisfies the above specifications shall be connected to the DOCOM and OV power supply terminals for the output signals. The maximum current that can be carried by the DOCOM pin is 2.0 A . The total load current must not exceed this value, therefore.

Output signal driver

Correspondence between red LEDs and DO signals

The output signal driver used with the operator's panel connection unit can output up to eight signals.
The driver element monitors the current of each output signal. If an overcurrent is detected, the output of that signal is turned off. Once a signal has been turned off, the overcurrent will no longer exist, such that the driver turns the signal on again. Therefore, in the case of a ground fault or overload, the output of a signal will be repeatedly turned on and off. This also occurs when a load which causes a high surge current is connected.

The driver element contains an overheat detector, which turns off all eight output signals if the temperature in the device exceeds the set value as a result of an overcurrent caused by a ground fault or some other failure. This off state is held. To restore signal output, logically turn the output off then back on again, for each signal, after the temperature falls below the set value. Signal output can also be restored by turning the system power off then back on again.

On the PCB, a red LED beside the driver element lights once the overheat detection circuit operates.

NOTE

The overheat detection circuit also causes a system alarm to be issued to the CNC. (When setting pins CP1 on the PCB are closed (jumpered), this alarm is not issued to the CNC.)

Red LED name	DO signals	Remarks
DAL1	Y q + 0.0 to $Y q+0.7$	
DAL2	Y q + 1.0 to $\mathrm{Y} q \mathrm{q}+1.7$	
DAL3	Y q + 2.0 to $\mathrm{Y} q \mathrm{q}+2.7$	
DAL4	Y q + 3.0 to $\mathrm{Y} q \mathrm{q}+3.7$	
DAL5	Y q + 4.0 to $\mathrm{Y} q \mathrm{q}+4.7$	
DAL6	Y q + 5.0 to $\mathrm{Y} q \mathrm{q}+5.7$	
DAL7	Y q + 6.0 to $\mathrm{Y} q \mathrm{q}+6.7$	
DAL8	Y q + 7.0 to $\mathrm{Y} q \mathrm{q}+7.7$	

NOTE

The above red LED and alarm transfer to the CNC are supported by PCBs of version 03B and later.

If the output of a signal cannot be turned on even though the CNC diagnostic indicates that the signal is on, that signal or another signal being handled by the same element may be overloaded, thus causing the eight output signals to be turned off. In such a case, turn the system power off and eliminate the cause of the overload.

- Driver element block diagram

Notes on output signals

CAUTION
Observe the following precautions when connecting output signals:
Output pins shall not be connected in parallel, as shown below.

CAUTION

When using a dimming resistor, connect a diode to prevent leakage.

9.6.3

Connector Pin Layout

for Source Output Type

Connection Unit

CM51					CM52				33	OV
1	DIOO		33	DICMN1	1	DI60				
2	DI03	DI01	34	DI02	2	DI63	19	D161	34	DI62
3	DI06	DIO4	35	DI05	3	DI66			35	DI65
4	D111	DI07	36	DI10	4	DI71	21	D16	36	DI70
5	DI14		37	DI13	5	DI74	2		37	DI73
6	D117	DI12	38	D116	6	DI77			38	DI76
7	DI22	DI20	39	DI21	7	D182			39	DI81
8	DI25	DI23	40	DI24	8	DI85	24		40	D184
9	DI27		41	DI26	9	D187	25	DI83	41	D186
10	D132	DI30	42		10	DI92	26	D190		
		DI33					27	DI93		
11	DI35	DI36	43	DI34	11	D195	28	D196	43	DI94
12	DI40	DI41	44	DI37	12	DIA0			44	D197
13	DI43	DI44	45	DI42	13	DIA3			45	DIA2
14	DI46	DI47	46	DI45	14	DIA6	30	DIA4	46	DIA5
15	DI51		47	D150	15	DIB1	31	DIA7	47	DIB0
16	DI54	DI52	48	DI53	16	DIB4	32	DIB2	48	DIB3
17	DI56		49	DI55	17	DIB6			49	DIB5
18	+24V		50	D157	18	+24V			50	DIB7

CMB3

CMB4

1	DO61	8	DO62	14	DO60
2	D064			15	DO63
3	D067	9	DO65	16	DO66
4	D072	10	D070	17	DO71
5	D075	11	D073	18	DO74
6	DO56	12	D076	19	DO77
7	OV	13	DO57	20	DOCOM

NOTE

When the operator's panel connection unit having 64 Dls and 32 DOs is selected, connector CMB4 is not mounted on the PCB.

DICMN1, DICMN2: Pins used to switch the DI common. Usually, jumper these pins with 0 V . (input)
$+24 \mathrm{~V}: \quad+24$ VDC output pin. This pin shall be used only for DI signals input to the operator's panel connection unit. (output)
DOCOM: Power supply for the DO driver. All DOCOM pins are connected in the unit. (input)

I/O addresses

The following PMC addresses are assigned to the operator's panel connection unit, depending on the number of I/O points (DI/DO $=96 / 64$ or 64/32):

[DI address]			7	6	5	4	3	2	1	0
	DI: 96 points	Xp	DI07	DI06	DI05	DI04	DI03	DIO2	DI01	DIOO
		DI: $\quad \mathrm{Xp}+1$	DI17	DI16	DI15	DI14	DI13	DI12	DI11	DI10
		points $\mathrm{Xp}+2$	DI27	DI26	DI25	DI24	DI23	DI22	DI21	DI20
		Xp+3	DI37	DI36	DI35	DI34	DI33	DI32	DI331	DI30
		Xp+4	DI47	DI46	DI45	DI44	DI43	DI42	DI41	DI40
		X $p+5$	DI57	DI56	DI55	DI54	DI53	DI52	DI51	DI50
		Xp+6	DI67	DI66	D165	D164	DI63	DI62	DI61	DI60
		X p+7	DI77	DI76	DI75	D174	DI73	DI72	DI71	DI70
		Xp+8	DI87	DI86	D185	D184	DI83	DI82	D181	DI80
		X p+9	D197	DI96	D195	D194	DI93	D192	D191	DI90
		X $\mathrm{p}+10$	DIA7	DIA6	DIA5	DIA4	DIA3	DIA2	DIA1	DIAO
		X $\mathrm{p}+11$	DIB7	DIB6	DIB5	DIB4	DIB3	DIB2	DIB1	DIB0

- Address p is determined by the machine tool builder.
- The common voltage can be selected for the DIs assigned to the following 20 addresses:

Address	Common signal to correspond
$X p+0.0, X p+0.1, X p+0.2, X p+0.7$ $X p+1.0, X p+1.1, X p+1.2, X p+1.7$	DICMN1
$X p+4.0$ to $X p+4.7$	DICMN2
$X p+11.4, X p+11.5, X p+11.6, X p+11.7$	DICMN1

[DO address]			7	6	5	4	3	2	1	0
	DO: 64 points	Y q	DO07	DO06	DO05	DO04	DO03	DO02	DO01	DO00
		DO: $\mathrm{Y} q+1$	DO17	DO16	DO15	DO14	DO13	DO12	DO11	DO10
		points $\mathrm{Y} q+2$	DO27	DO26	DO25	DO24	DO23	DO22	DO21	DO20
		Y q + 3	DO37	DO36	DO35	DO34	DO33	DO32	DO31	DO30
		Y q + 4	DO47	DO46	DO45	DO44	DO43	DO42	DO41	DO40
		Y q+5	DO57	DO56	DO55	DO54	D053	DO52	DO51	DO50
		Y q+6	D067	DO66	DO65	DO64	D063	DO62	D061	DO60
		Y q + 7	DO77	DO76	DO75	DO74	DO73	DO72	DO71	DO70

Address q is determined by the machine tool builder.
For details of address assignment, refer to the FANUC PMC
Programming Manual (Ladder Language) (B-61863E).

9.6.4

Dimensions of Source

Output Type

Connection Unit

The following LEDs, fuses, variable resistors, and setting pins are mounted on the PCB:
[LEDs]
DB1 (green, pilot) : Lights while the power to the PCB is on.
DB2 (red, alarm) : Lights if an error occurs in the PCB or CNC.
DAL1 to DAL8 : See Subsec. 9.6.2
[Variable resistors]
VR1 and VR2 : Factory-set by FANUC. The machine tool builder need not adjust these resistors.
[Setting pin]
CP1 : Used to specify whether the CNC will be notified of a DO signal error as a system alarm (see Subsec. 9.6.2).

9.7
 FANUC I/O Link CONNECTION UNIT

9.7.1

Overview

This unit connects FANUC I/O Link master devices's such as the CNC and F-D Mate, via an I/O Link to enable the transfer of DI/DO signals.

I/O Link Master : F-D Mate, Series 18/180, Series 16/160, Series 15/150, Series 0-C, Series 20, Series 21/210 I/O Link Slave: I/O unit, Power Mate, Series 0-C, etc.

Fig. 9.7.1 System which uses FANUC I/O Link connection units

NOTE

This system enables I/O data transfer between two independent FANUC I/O Link master devices. When the system is adjusted and maintained, the FANUC I/O Link can be operated with the system power for one of the FANUC I/O Link lines switched off, that is, the link operation is stopped. In this case, DI data sent from a system at rest consists entirely of zeros. If one of the links is stopped, either abnormally or normally, it takes up to several hundred milliseconds for this function to take effect. During this period, that data which exists immediately before the link stops is sent out. Take this into account when designing your system.

9.7.2 Specification

Item	Specification
I/O Link function	Provided with two slave mode I/O Link interface channels, between which DI/DO data can be transferred. [Interface types] One of the following combinations is selected: Electrical - optical Electrical - electrical Optical $-\quad$ optical
Number of DI/DO data items	DI: Up to 256, DO: Up to 256 (The number of data items actually used varies depend- ing on the amount of data assigned in the host.)
Power supply	Each I/O Link interface must be independently supplied with +24 VDC. Voltage: +24 VDC +10\%, -15\% Current: 0.2 A (excluding surge) If a master unit does not have sufficient capacity to supply power to each unit (0.2 A per slot), use an external power supply unit. The power supply must be switched on, ei- ther simultaneously with or before, the I/O Link master. The two systems can be switched on and off indepen- dently of each other. Data from a system to which no power is supplied appears as zeros when viewed from the other system. The data becomes 0 within 200 ms of the power being switched off.
Operating environment	180 mm (wide) $\times 150$ mm (high) \times about 50 mm (deep) Fig. 9.7.2 (b) is an outline drawing of the unit.
External dimensions Humidity Vibration $\quad: ~ 5 ~ 0.5 ~ G ~ o r ~ l e s s ~$	
Installation	The unit, which is a separate type, is installed in the pow- er magnetics cabinet. Fig. 9.7.2 (c) shows how to mount the unit.

Ordering information

Interface type	Specification
Electrical-optical interface	A20B-2000-0410
Electrical-electrical interface	A20B-2000-0411
Optical-optical interface	A20B-2000-0412

Fig 9.7.2 (a) LED locations

	LED status	Description
1	LED1	Normal
	LED1	A RAM parity error occurred because of a hardware failure.
2	$\begin{array}{cc} \text { LED4 } & \text { LED2 } \\ \square & \square \end{array}$	CP1 is supplied with the specified voltage. (Pilot lamp)
	LED4 LED2	CP1 is supplied with a voltage that is lower than specified or zero.
	LED4 LED2	A communication error occurred in a channel of CP1.
3	$\begin{array}{cc} \text { LED5 } & \text { LED3 } \\ \square & \square \end{array}$	CP2 is supplied with the specified voltage. (Pilot lamp)
	$\begin{array}{cc} \text { LED5 } & \text { LED3 } \\ \square \end{array}$	CP2 is supplied with a voltage that is lower than specified or zero.
	LED5 LED3	A communication error occurred in a channel of CP2.
	$\square:$ On	\square : Off

Fig. 9.7.2 (b) Outline drawing

Fig. 9.7.2 (c) Mounting location

9.7.3

Connection

9.7.3.1

I/O Link interface

(1) Connection diagram (example)

(2) Signal cable (electrical)

JD1A1/JD1A2

11	$0 V$	1	RXB
12	$0 V$	2	*RXB
13	$0 V$	3	TXB
14	$0 V$	4	*TXB
15	$0 V$	5	
16	$0 V$	6	
17		7	
18	-	8	
19		9	-
20	-	10	

JD1B1/JD1B2

11	OV	1	RXA
12	0 V	2	*RXA
13	0 V	3	TXA
14	0 V	4	*TXA
15	0 V	5	
16	0 V	6	
17		7	
18	-	8	
19		9	-
20	-	10	

$\begin{array}{lll}\text { This unit (JD1A1/JD1A2) } & \longleftrightarrow \text { or } & \text { Another device (JD1B) } \\ \text { Another device (JD1A) } & \longleftrightarrow \text { This unit (JD1B1/JD1B2) }\end{array}$

!	
,	
'	'
!	,
-	
,	'
,	'
:	,
'	
-	'
!	,
!	

Shielding
Frame ground (the shielding must be grounded at either end of the cable)

- Cable-side connector specification : PCR-E20FA (manufactured by Honda Tsushin)
- Cable specification : A66L-0001-0284\#10P or equivalent
- Cable length : 10 m (maximum)
(3) Signal cable (optical)
- Optical cable specification: A66L-6001-0009\#XXXX (where XXXX is a cable length specification)
Cable specification examples
10 m - L10R03
100 m - L100R3
- Cable length
: 200 m (maximum)
(4) Power supply cable

CP1/CP2 connector
1 2 3 Y +24 V 0 V (Input) X +24 V 0 V (Output)

- 24 VDC is supplied via a Y-connector. Provided the power supply has sufficient capacity, power can be supplied to another device with the X -side as output.
- Power must be supplied to both CP1 and CP2.
- Cable-side connector specification

Y-connector: A63L-0001-0460\#3LKY
(AMP Japan, 2-178288-3)
X-connector: A63L-0001-0460\#3LKX
(AMP Japan, 1-178288-3)
Contact : A63L-0001-0456\#BS (AMP Japan, 175218-5)
Ordering information : Y + 3 contacts : A02B-0120-K323
$\mathrm{X}+3$ contacts : A02B-0120-K324

- Cable material : Vinyl-insulated electrical wire AWG20-16
- Cable length : Determine the length of the cable such that the supplied voltage at the receiving end satisfies the requirements, because the voltage may fluctuate and drop as a result of the resistance of the cable conductor.
(5) Frame grounding

Ground the frame of the unit using a wire having a cross section of at least $5.5 \mathrm{~m}^{2}$ (class 3 or higher). An M4 frame ground terminal is provided.

9.8
 CONNECTING THE FANUC SERVO UNIT β SERIES WITH I/O Link

9.8.1 Overview

The FANUC servo unit β series with I/O Link (called the β amplifier with I/O Link) is a power motion control servo unit that can be easily connected to a CNC control unit via the FANUC I/O Link.
The β amplifier with I/O Link can be connected to the Series 21/210 using the FANUC I/O Link.

NOTE

Using the β amplifier requires that the power motion manager software function be installed in the Series $21 / 210$. This function is included as one of the Series 21/210 option functions. Note that this function was not featured by early versions.
9.8.2

Connection

The β amplifier with I/O Link is connected to the Series 21/210 using the usual FANUC I/O Link connection.

9.8.3
 Maximum Number of Units that can be Connected

The maximum number of β amplifiers with I/O Link that can be connected to a control unit depends on the maximum number of FANUC I/O Link points provided by that control unit, as well as their assignments. For the Series $21 / 210$, the maximum number of FANUC I/O Link DI and DO points are 1024 and 1024, respectively. One β amplifier with I/O Link occupies $128 \mathrm{DI} / \mathrm{DO}$ points in the FANUC I/O Link. If no units other than the β amplifiers with I/OLink are connected to the control unit, up to eight β amplifiers can be connected.

9.8.4
 Address Assignment by Ladder

If the β amplifier with I/O Link is used as an I/O Link slave, I/O addresses are assigned in the PMC in the CNC. Because data output from the slave is made in 16-byte units, the number of input/output points must be set to 128 .

The module names are PM161 (input) and PM160 (output). The BASE is always 0 , and the SLOT is 1 .

10
 EMERGENCY STOP SIGNAL

Using the emergency stop signal effectively enables the design of safe machine tools.
The emergency stop signal is provided to bring a machine tool to an emergency stop. It is input to the CNC controller, servo amplifier, and spindle amplifier. An emergency stop signal is usually generated by closing the B contact of a pushbutton switch.
When the emergency stop signal (*ESP) contact is closed, the CNC controller enters the emergency stop released state, such that the servo and spindle motors can be controlled and operated.
When the emergency stop signal (*ESP) contact opens, the CNC controller is reset and enters the emergency stop state, and the servo and spindle motors are decelerated to a stop.
Shutting off the servo amplifier power causes a dynamic brake to be applied to the servo motor. Even when a dynamic brake is applied, however, a servo motor attached to a vertical axis can move under the force of gravity. To overcome this problem, use a servo motor with a brake.
While the spindle motor is running, shutting off the motor-driving power to the spindle amplifier allows the spindle motor to continue running under its own inertia, which is quite dangerous. When the emergency stop signal (*ESP) contact opens, it is necessary to confirm that the spindle motor has been decelerated to a stop, before the spindle motor power is shut off.
The FANUC control amplifier α series products are designed to satisfy the above requirements. The emergency stop signal should be input to the power supply module (called the PSM). The PSM outputs a motor power MCC control signal, which can be used to switch the power applied to the power supply module on and off.
The CNC controller is designed to detect overtravel by using a software limit function. Normally, no hardware limit switch is required to detect overtravel. If the machine goes beyond a software limit because of a servo feedback failure, however, it is necessary to provide a stroke end limit switch, connected so that the emergency stop signal can be used to stop the machine.
Fig. 10 shows an example showing how to use the emergency stop signal with this CNC controller and α series control amplifier.

Fig. 10

WARNING

To use a spindle motor and amplifier produced by a manufacturer other than FANUC, refer to the corresponding documentation as well as this manual. Design the emergency stop sequence such that, if the emergency stop signal contact opens while the spindle motor is rotating, the spindle motor is decelerated until it stops.

11
 DISPLAY UNIT CHANGE-OVER SWITCH

11.1
 OVERVIEW

In a system containing two CNC control units, a single display unit (including the MDI section) can be switched between the control units. Likewise, using a display unit change-over circuit enables the switching of a CNC control unit between two display unit MDI sections. This display change-over circuit is different from that used in the former case. Both types of changer-over circuits can be used with the Series 21, but not with the Series 210.

11.2
 CONNECTING ONE DISPLAY UNIT TO TWO CONTROL UNITS

The following block diagram shows an example of a system in which a single display unit (including an MDI section) is switched between two CNC control units.

11.2.1

Ordering Information

Name	Ordering information
CRT/MDI change-over circuit	A02B-0120-C170

NOTE

Although the above is named the CRT/MDI change-over circuit, it can also be used to connect a plasma display panel (PDP) and liquid crystal display panel (LCD), not only a CRT unit. Note that the required connection cables are not shipped with the circuit.

11.2.2

Connection Diagram

NOTE

Either control unit A or B can supply +24 V power to the CRT/MDI change-over circuit unit from CP5IN.

Cables

No.	Cable	Connector name	Connector model (on cable side)	Recommended cable specification
1	Power cord	CP5IN	2-178288-3 produced by AMP	A02B-0120-K823
2, 3	Video signal cable	JA1A, JA1B	FI40-2015S produced by Hirose	A02B-0120-K818 (See Section 5.1.5.)
$\text { 4, } 5 \text {, }$ 8	MDI signal cable	JA2A, JA2B	PCR-E20FA produced by Honda	A02B-0120-K810 (See Section 5.2.3.)
6	Power cord	CP5OUT	2-178288-3 produced by AMP	To be designed by the machine tool builder. (See Sections 5.1.3 to 5.1.5.)
7	Video signal cable	JA1S	FI40-2015S produced by Hirose	A02B-0120-K819 or A02B-0120-K818. (See Sections 5.1.3 to 5.1.5.)
9	Change-over signal cable	SW	PCR-E20FA produced by Honda	To be designed by the machine tool builder.

Connector tables

JA1A, JA1B, JA1S (PCR-20 female)

9		10			20	
7		8		19	18	HSYNC
7		6	GND	17	16	GND
5	VDOB	4	GND	15	14	GND
3	VDOG	2	GND	13	12	VSYNC
1	VDOR			11		VSYNC

JA2A, JA2B, JA2S (PCR-20 female)

9	*KCM8	10	*KCM10	19	*KCM9	20	*KCM11
7	*KCM4	8	*KCM6	17	*KCM5	18	*KCM7
5	*KCM0	6	*KCM2	17	KCMs	16	*KCM3
3	KEYD4	4	KEYD6	15	KCM1	14	KEYD7
1	KEYD0	2	KEYD2	13	KEYD5	12	KEYD3
1	KEYDO			11	KEYD1		

SW (PCR-20 female)

9		10		$\|c\| c\|c\|$	20	
7		19		18		
5		6		17		16
	GND					
3		15		14	GND	
1		2		13		12
	SELECT					

CP5IN, CP5OUT (AMP D-3000 DP Y-KEY)

1	+24 V
2	0 V
3	

(1) Correspondence between state of the change-over switch contact and the selected control unit

Change-over switch open \rightarrow control unit A is selected.
Change-over switch closed \rightarrow control unit B is selected.

(2) Maximum cable length for video and MDI signals

The sum of the cable length between the control unit and CRT/MDI change-over circuit unit and that between the CRT/MDI change-over circuit unit and the display unit must be less than 50 m .
(3) Power supply cable length

The material for the power supply cable shall be vinyl-insulated electric wire of $30 / 0.18\left(0.75 \mathrm{~mm}^{2}\right)$ or thicker. The cable length shall not exceed 50 m .
(4) Change-over signal cable length

The material for the signal cable shall be vinyl-insulated electric wire of $30 / 0.18\left(0.75 \mathrm{~mm}^{2}\right)$ or thicker. The cable length shall not exceed 10 m .
(5) There are two I/O board types for the CNC control unit (Series 21), the CRT type and LCD type. An appropriate I/O board shall be selected according to the type of the display unit to be used. For a PDP, select CRT type.
If CNC control units have different I/O boards, they cannot be connected.
(6) The change-over circuit can be used to switch between the CNC control unit (Series 21) and a different CNC control unit model, with the exception of those listed below.

Control units switchable with the FANUC Series 21

Model	Video signal	MDI signal	Note
FANUC Series 0-C	Possible with a CRT Not possible with an LCD	Not possible	
FANUC Series 16/18	Possible	Possible	
FANUC Series 20	Possible	Possible	
FANUC Series 15	Possible	Not possible	
Power Mate-D	Possible	Possible	Note 3

NOTE

1 Connectable display units (including the MDI section) are those for the FANUC Series 21, with the exception of the following:

- 9" monochrome CRT and CRT/MDI for the FANUC Series 16/18
- 9" PDP and monochrome PDP/MDI for the FANUC Series 16/18
- MDI for the FANUC Series 16/18

2 The key arrangement varies between the MDI for the machining center (M) CNC and that for the lathe (T) CNC. They are not interchangeable.
3 For the Power Mate-D, the display unit change-over circuit is connected to the CRT/MDI control unit of the Power Mater D. Some restrictions are imposed on the Power Mate-D side. For details, refer to the Power Mate-D Connection Manual (B-62833EN).

Operation

Adjustment

Example of application

The control unit is switched using a change-over switch.
If the display unit being used is a CRT, no adjustment is needed. If the display unit being used is an LCD, however, adjustment is necessary. The adjustment procedure is as follows:
1 Set the change-over switch of the display unit change-over circuit unit to control A.
2 Adjust the LCD unit to eliminate flicker, using the potentiometer or jumper pin on the rear of the LCD unit. (See Subsections 5.1.7 and 5.1.8.)

3 Set the change-over switch of the display unit change-over circuit unit to control B.
4 Rotate rotary switch SW1 of the change-over circuit unit to identify the range where no flicker occurs. Then, set the switch to the midpoint of that range. (For example, if no flicker occurs in the range between 5 and 9 , set the switch to 7 .)

Linking CRT/MDI change-over circuit units enables the connection of up to four control units. Up to two CRT/MDI change-over circuit units can be connected in series.

Block diagram of a system in which four control units share a single display unit

Assume that the change-over switches in change-over circuits 1, 2, and 3 are SW1, SW2, and SW3, respectively. The relationships between the contact states of SW1, SW2, and SW3 and the selected control units are as listed below:

Selected control units	SW1	SW2	SW3
Control unit 1	1	\times	1
Control unit 2	0	\times	1
Control unit 3	\times	1	0
Control unit 4	\times	0	0

Legend:
1 : Switch open
0 : Switch closed
\times : Don't care.

Outline drawing

Cable lead-in diagram

11.3
 CONNECTING TWO DISPLAY UNITS TO ONE CONTROL UNIT

The following block diagram shows an example of a system in which a CNC control unit is connected to two display units by switching the MDI section. The change-over switch is used to switch the MDI signal between display units A and B.

Block diagram

11.3.1

Ordering Information

Name	Ordering information
CRT/MDI change-over circuit	A02B-1004-0381

NOTE

Although the above circuit is named the CRT/MDI change-over circuit, it can also be used to connect a plasma display panel (PDP) and liquid crystal display panel (LCD), not only a CRT unit. Note that the required connection cables are not shipped with the circuit.
11.3.2 Jumper Pins

Set all the CMA and CMB jumper pins on the change-over circuit board to A.

Jumper pins CMA and CMB are located on the printed-circuit board as shown below.

11.3.3

Connections

The change-over circuit board should be installed inside the machine. It receives CRT signals from a control unit and sends video signals to two display units. It also selects the MDI signal of each display unit according to a change-over signal and sends it to the control unit.
A change-over switch for signal change-over should be installed in the machine operator's panel.

11.3.4

Connection Diagram

CAUTION

The +24 V output connector pin (CP1B) of the power supply unit in the Series $21 / 210$ can supply a current of 1.0 A (maximum). The CRT/MDI change-over circuit unit requires at least 0.4 A, and each display unit uses 0.8 A or more. (See Section 3.2.1.) Therefore, connect the power supply of the CRT/MDI change-over unit to the control unit, and supply the power for each display unit from an external 24 VDC power supply unit.
Switch the power supplied to the control unit, CRT/MDI change-over circuit unit, and display units, on and off simultaneously.

Cables

No.	Cable	Connector name	Connector model (on cable side)	Recommended cable specification
1	Power supply cable	CP61	SMS3PNS-5 produced by Burndy	To be designed by the machine tool builder.
2	Video signal cable	CN1A	MR-20LFH produced by Honda	A02B-0120-K819 (See Subsec. 5.1.3.)
3	MDI signal cable	CA9A	MR-20LMH produced by Honda	To be designed by the machine tool builder.
4, 6	Video signal cable	$\begin{aligned} & \text { CA5A, } \\ & \text { CA5B } \end{aligned}$	MR-20LFH produced by Honda	To be designed by the machine tool builder.
5, 7	MDI signal cable	$\begin{aligned} & \text { CA4A, } \\ & \text { CA4B } \end{aligned}$	MR-20LMH produced by Honda	To be designed by the machine tool builder.
8	Change-over signal cable	SW	PCR-E20FA produced by Honda	To be designed by the machine tool builder.
9,10	Power supply cable			To be designed by the machine tool builder.

Connector tables

CP61

1	+24 V	2	0 V	3	

CN1A, CA5A, CA5B

CA9A, CA4A, CA4B

1	*KEY00			14	*KEY07
2	*KEY02	8	*COM06	15	*COM01
3	*KEY04	9	*COM08	16	*COM03
4	*KEY06	10	*KEY01	17	*COM05
5	*COM00	11	KEYO1	18	*COM07
6	*COM02	12	*KEY03	19	*COM09
7	*COM04	13	*KEY05	20	*COM11

SW

1					
2		8	0 V	14	
3		9	0 V	15	
4		10	0 V	16	
5		11	0 V	17	
6		12	0 V	18	SELECT
7		13	0 V	19	0 V
	20				

Cautions regarding connection

(1) Correspondence between state of the change-over switch contact and the selected display unit
Change-over switch open \rightarrow Display unit A is selected.
Change-over switch closed \rightarrow Display unit B is selected.
Do not operate the change-over circuit switch while any MDI key is held down.

(2) Maximum cable length for video and MDI signals

The sum of the cable length between the control unit and CRT/MDI change-over circuit unit and that between the CRT/MDI change-over circuit unit and the display unit must be less than 50 m .
(3) Power supply cable length

The material for the power supply cable shall be vinyl-insulated electric wire of $30 / 0.18\left(0.75 \mathrm{~mm}^{2}\right)$ or thicker. The cable length shall not exceed 50 m .
(4) Change-over signal cable length

The material for the signal cable shall be vinyl-insulated electric wire of $30 / 0.18\left(0.75 \mathrm{~mm}^{2}\right)$ or thicker. The cable length shall not exceed 1 m .
(5) This change-over circuit cannot be used with the following combinations:

- CRT and LCD
- PDP and LCD
- MDI having a small keypad and that having a full keypad
- MDI of a machining center (M) CNC and that of a lathe (T) CNC

A wide variety of LCD panels is available. Basically, these LCD panels can be used in any combination. If monochrome and color types are combined, however, the monochrome LCD panel will appear dim. It is recommended, therefore, that LCD panels of the same type be combined.
(6) When an LCD panel is used, screen adjustment should be made on the LCD side.

Outline drawing

12
 REMOTE BUFFER INTERFACE

12.1

GENERAL

When the remote buffer is connected to the host computer or input/output device via serial interface, a great amount of data can be sent to CNC consecutively at a high speed.

The remote buffer enables the following operations:

- When connected to the host computer online, it performs DNC operation with high reliability and at a high speed.
- The CNC program and parameters can be down-loaded from the host computer.
- When connected to an input/output device, it enables DNC operation, and various data can be down-loaded. The following input/output devices can be connected.

\square FANUC PPR

\square FANUC FA Card
\square FANUC FLOPPY CASSETTE
\square FANUC PROGRAM FILE Mate
\square FANUC Handy File
Hereafter, the device to which the remote buffer is connected is called the host computer.

Explanations

- interface between the remote buffer and host computer
\square Electrical interface
The following two types of interface are prepared as standard specifications.
- RS-232-C Interface
- RS-422 Interface

	RS-233-C	RS-422
Interface	Serial voltage interface (start- stop)	Balanced transmission serial interface (start-stop)
Baud rate	50 to 19,200 BPS	50 to 86,400 BPS (*)
Cable length	$100 \mathrm{~m}(4800 \mathrm{BPS}$ or less) $50 \mathrm{~m}(9600 \mathrm{BPS})$ Varies according to I/O device.	Approx. 800 m (9600 BPS or less) $50 \mathrm{~m}(19,200 ~ B P S ~ o r ~ m o r e) ~$

NOTE

(*) The average data transfer rate is lower than the maximum transfer rate.
\square Software interface
The following three protocols are prepared as the communication protocols between the remote buffer and host computer. The protocol can be selected by a parameter according to the specifications of the device to be connected.

Protocol	Features	Interface	Maximum transfer rate
Protocol A	Handshake method. Sending and receiving are repeated between two stations.	RS-232-C	19200 BPS
	RS-422	86400 BPS	
Extended protocol A	Similar to protocol A. Enables high- speed transfer of the NC program to meet high-speed DNC operation.	RS-422	86400 BPS
Protocol B	Controls communication with control codes output from the remote buffer.	RS-232-C	19200 BPS
	RS-422	86400 BPS	

12.2

REMOTE BUFFER
INTERFACE
(RS-232-C)

Connect CS to RS if CS is not used. However, when protocol A or expanded protocol A is used, connect as shown above because CS is used for busy control. Connect DR to ER when DR is not used. Be sure to connect CD to ER.

12.3

REMOTE BUFFER INTERFACE (RS-422)

CNC OPTION-1 board Host computer (Example)

JD6A (PCR-EV20MDT)			
1	RD	11	SD
2	*RD	12	*SD
3	RT	13	TT
4	*RT	14	*TT
5	CS	15	RS
6	*CS	16	*RS
7	DM	17	TR
8	OV	18	*TR
9	*DM	19	(+24V)
10	(+24V)	20	

$(+24 \mathrm{~V})$ is not used.

1	FG	20	
2		21	
3			
4	SD	22	*SD
		23	
5		24	*RD
6	RD	25	*RS
7	RS	26	*RT
8	RT		
9	CS	27	*CS
10		28	
11		29	*DM
11	DM	30	*TR
12	TR	31	
13		32	
14		33	
15		34	
16		35	*TT
17	TT	35	T
18		36	
19	SG	37	

Conceptional diagram of signal connection

The figure below shows a signal connection between CNC and a host computer. Since signals other than FG and SG perform differential signal transmission, two wires of signal lines are used for those signals.

Actual example of

RS-422 signal wiring

NOTE

1 Be sure to use twisted pair cable.
2 Note that the pin position of the *DM signal on the CNC side is positioned irregularly relative to the other signals. This is to reduce the risk of damage to the circuit when this connector is erroneously connected to the connector on the other side.

13 CONNECTING PERIPHERAL UNITS TO THE MMC-IV

13.1 GENERAL

The MMC-IV is a personal computer designed for installation in a FANUC CNC. It is compatible with the IBM PC ${ }^{(*)}$. It can be installed in the control unit of the Series 210.

* IBM is a registered trademark of IBM Corp. of the US.

13.2

CONNECTING A DISPLAY UNIT

13.2.1
 I/O Board (Video Signal Output Board in NC) Interface

MMC-IV Print board				I/O board				
JA1B (PCR-EV20MDT)					JA1 (PCR-EV20MDT)			
1	VDR	11			1	VDR	11	
2	OV	12	VSYNC		2	OV	12	VSYNC
3	VDG	13			3	VDG	13	
4	OV	14	OV	$\rangle\rangle$ \ll	4	OV	14	OV
5	VDB	15			5	VDB	15	
6	OV	16	OV		6	OV	16	OV
7		17		FI40A-20S	7		17	
8		18	HSYNC	FI-20-CV5 (Case)	8		18	HSYNC
9		19			9		19	
10		20			10		20	

1) Cable

2) Recommended cable material

A66L-0001-0371...Coaxial cable (5-core, shielded)

NOTE

The cable length shall not exceed 400 mm .

3) Recommended cable specification

A02B-0161-K810...Video signal cable (350mm)

13.2.2

Connecting the Display Unit (Video Signal)

MMC-IV Print board					14"CRT/MDI unit 9.5"TFT/MDI Unit			
JA1A (PCR-EV20MDT)					JA1 (PCR-E20LMD)			
1	VDR	11			1	VDR	11	
2	OV	12	VSYNC		2	OV	12	VSYNC
3	VDG	13			3	VDG	13	
4	OV	14	OV	$\rangle>\ll$	4	OV	14	OV
5	VDB	15			5	VDB	15	
6	OV	16	OV		6	OV	16	OV
7		17		FI40A-20S-CV5	7		17	
8		18	HSYNC	FI-20-CV5 (Case)	8		18	HSYNC
9		19			9		19	
10		20			10		20	

1) Cable

2) Recommended cable material

A66L-0001-0371...Coaxial cable (5-core, shielded)

NOTE

1 With this type of cable, only A02B-0120-K305 connectors can be used.
2 The cable length shall not exceed 20 m .
When using an LCD unit, however, adjustment may be required even when the cable length does not exceed 20 m .

13.2.3
 Connecting a Display
 Unit (Power Supply)

13.2.3.1

14 " analog CRT/MDI unit

1) Cable

2) Recommended cable material

The cable used shall be of $30 / 0.18\left(0.75 \mathrm{~mm}^{2}\right)$ grade or heavier.

NOTE

The power supply connector (1-178128-3) on the 14 "analog CRT/MDI unit is manufactured by JAPAN AMP. When connecting an external power supply, select a connector to fit the terminal on the external power supply.

13.2.3.2

9.5" analog TFT/MDI unit

1) Cable

+24 V	1	1	
	2	2	+24 V

2) Recommended cable material

The cable used shall be of $30 / 0.18\left(0.75 \mathrm{~mm}^{2}\right)$ grade or heavier.

13.3
 CONNECTION TO RS-232C SERIAL PORT

NOTE

1 The above figure shows an example of the host computer interface. A cable should be fabricated to suit the interface of the unit to be connected.
2 The +24 V pins of the interface on the MMC-IV printed circuit board, shown in the above figure, can only be used for FANUC I/O devices. Do not attempt to connect any other devices. At any one time, only one FANUC I/O device can be connected to a CNC control unit.
3 When a FANUC punch panel is being connected, any unit which uses the RI signal (such as a modem) cannot be used.

1) Concept of signal connection

- When CS, DR, and CD are not used (Connect CS to RS, and DR and CD to ER.)
MMC-IV
Print board side

(SIGNAL
GROUND)
(FRAME
GROUNND

SGG

- When all signals are used (for a modem, etc.)
$\left.\begin{array}{l}\text { MMC-IV } \\ \text { Print board side } \\ \text { (SIGNAL } \\ \text { GROUND) } \\ \text { (FRAME } \\ \text { GROUND }\end{array}\right)$

NOTE

When connecting any unit which requires a straight cable for connection (such as a commercially available modem) to MMC-IV, the signal correspondence differs from the above. In such a case, connect between each pair of signals having the same name.

13.4
 CONNECTING
 A PORTABLE-TYPE
 3.5" FLOPPY DISK
 UNIT

MMC-IV print board					Portable type 3.5" floppy disc unit			
$\begin{aligned} & \text { JD8 } \\ & \text { (PCR-E50LMDET) } \end{aligned}$					JD8 (PCR- E50LMDET)			
1	*DSKCH	26	HDSEL		1	*DSKCH	26	HDSEL
2	OV	27	OV		2	OV	27	OV
3	*WPRT	28	*TRK0		3	*WPRT	28	*TRK0
4	OV	29	OV		4	OV	29	OV
5	*WDATA	30	*STEP		5	*WDATA	30	*STEP
6	OV	31	OV		6	OV	31	OV
7	*MENO	32	*INDEX		7	*MENO	32	*INDEX
8	OV	33	OV		8	OV	33	OV
9	*DSO	34	*INUSE		9	*DSO	34	*INUSE
10	OV	35	OV		10	OV	35	OV
11	*RDATA	36	*DS1		11	*RDATA	36	*DS1
12	OV	37	OV		12	OV	37	OV
13	*WE	38	DENSEL		13	*WE	38	DENSEL
14	OV	39	OV	$1>$	14	OV	39	OV
15	*DIR	40			15	*DIR	40	
16	OV	41	OV	PCR-E50FS (Connector)	16	OV	41	OV
17		42	OV	For soldering wires of	17		42	OV
18	OV	43	OV		18	OV	43	OV
19	OV	44	OV	For crimping separate	19	OV	44	OV
20	OV	45	OV	wires of \#28AWG	20	OV	45	OV
21	(+5 V)	46	OV	PCR-E50LA(OLA(Case)	21		46	OV
22	(+5V)	47	(+5V)		22		47	
23	(+5V)	48	(+5V)		23		48	
24		49			24		49	
25		50			25		50	

NOTE

The +5 V pins of the interface on the MMC-IV printed circuit board, shown in the above figure, cannot be used for a portable-type 3.5" floppy disk unit.

Cable connection

2) Recommended cable material
(Cable kit for portable-type 3.5"floppy disk unit)
A08B-0047-K822...100VAC power supply cables and signal cables (each cable measuring 1.5 m)

NOTE

The cable length shall not exceed 1.5 m .

13.5
 CONNECTION TO CENTRONICS PARALLEL PORT

MMC-IV print board				printer (example)				
JD9 (PCR-EV20MDT)				\<				
1	STDO	11	*STB		1	*STB	19	OV
2	STD1	12	OV		2	STD0	20	OV
3	STD2	13	*AFD		3	STD1	21	OV
4	STD3	14	OV		4	STD2	22	OV
5	STD4	15	*INIT		5	STD3	23	OV
6	STD5	16	OV		6	STD4	24	OV
7	STD6	17	*SLIN		7	STD5	25	OV
8	STD7	18	*ACK		8	STD6	26	OV
9	PE		*ERROR		9	STD7	27	OV
10	SLCT		BUSY		10	*ACK	28	OV
					11	BUSY	29	OV
					12	PE	30	OV
					13	SLCT	31	*INIT
					14	*AFD	32	*ERROR
					15		33	OV
					16	OV	34	
					17	FG	35	
					18			*SLIN

NOTE

1 The above figure shows an example of the printer interface. Fabricate a cable to suit the interface of the unit to be connected.
2 The above interface differs from the Centronics interface of the FANUC MMC-II.

Example cable connection (printer)

2) Recommended cable material

A66L-0001-0285\#25P...AWG28 $\times 25$ pair

NOTE

The cable length shall not exceed 1.5 m .
Note that some units may malfunction even when connected with cables that do not exceed 1.5 m .

13.6
 CONNECTING A FULL
 KEYBOARD OR
 MOUSE

1) Recommended full key board

A86L-0001-0210...101type A86L-0001-0211...106type
2) Recommended mouse

A86L-0001-0212...Standard PS/2 mouse

NOTE

The above interface and recommended units are used only for application development and maintenance.

14

HIGH-SPEED SERIAL BUS (HSSB)

14.1 OVERVIEW

The high-speed serial bus (HSSB) enables the high-speed transfer of large amounts of data between a commercially available IBM PC or compatible personal computer and a CNC, by connecting them via a high-speed optical fiber. A FANUC intelligent terminal can be used in place of the IBM-compatible personal computer. See Chapter 12 for more information.
On the CNC, the HSSB interface board is installed in a minislot. On the personal computer, an appropriate interface board is installed. The FANUC intelligent terminal can be connected directly to the HSSB.
The HSSB can be used with a Series 210 system, but not with a Series 21 system.
14.2 CAUTIONS

The use of the HSSB requires an IBM PC/AT compatible computer or FANUC intelligent terminal. The machine tool builder or end user is required to procure and maintain the personal computer.
To enable the use of the HSSB, MS-DOS (version 6.2 or later) or Windows (version 3.1 or later) must have been installed on the personal computer.
FANUC owns the copyright for the HSSB device driver.
The software mentioned above and the contents of the related manuals may not be used or reproduced in part or whole without the prior written permission of FANUC.

NOTE

1 IBM is a registered trademark of IBM Corp. of the US.
2 MS-DOS and Windows are registered trademarks of Microsoft Corp. of the US.
3 The company and product names mentioned in this manual are trademarks or registered trademarks of the respective companies.
14.3 CONNECTION DIAGRAM

See Chapter 15 for details of the intelligent terminal.

CAUTION

1 The machine tool builder or end user is required to procure and maintain the personal computer.
2 FANUC is not liable for any problems resulting from the operation of users' personal computers, regardless of whether the operations are normal or abnormal.
(1) The personal computer interface board complies with the ISA standard. It can be used in the PC/AT and compatibles. (The CPU of the personal computer must be a 386 or better. The interface board does not work with a 286 CPU.)
(2) The following address space is used to control the high-speed serial bus. This space cannot be used by other functions or extension boards.

- When using personal computer interface board type 1

D00000h to EFFFFFh in the ISA memory space

NOTE

When using personal computer interface board type 1, restrict the amount of personal computer main memory to within 12 MB .

- When using personal computer interface board type 2

Sixteen bytes, the base of which is an address selected from the ISA I/O space using the jumper switch described in Sec. 14.6.
(3) The connections between the selected personal computer and CNC controller should be tested before they are used for actual production.
(4) The personal computer interface boards require +5 V at 1 A .

14.5
 INSTALLATION ENVIRONMENT

(1) Personal computer interface boards

The same environmental conditions as those for the installation of the personal computer must be satisfied.
(2) CNC interface board

The same environmental conditions as those for the installation of the CNC must be satisfied.

14.6

PROCEDURE FOR

WARNING

Before starting to mount or remove a personal computer interface board, switch off the personal computer and its peripheral devices, and disconnect their power supply cables. Otherwise, there is a serious danger of electric shock.
(1) When using an interface board of type 2 on the personal computer, set the I/O addresses before installing the board. Set I/O base addresses which do not overlap the I/O address areas exclusively used by the personal computer and ISA expansion board. (See the figure below.)
(2) Remove the blank panel from the expansion slot of the personal computer.
(3) Insert the interface board. Ensure that it has been completely inserted into the ISA connector.
(4) Fix the metal brackets with screws.

CAUTION

Do NOT touch the edge terminals (the contacts that engage with a mating connector) of the interface board.

I/O base address setting
(for personal computer interface board type 2 only)

14.7 HANDLING PRECAUTIONS

(1) Personal computer interface board
(A) Electrostatic interference

The personal computer interface board is shipped in an anti-static bag. To store or transport the interface board, always place it in the anti-static bag. Before removing the interface board from the anti-static bag, ground your body.
(B) Protection of card edge terminals

When handling the personal computer interface board, do NOT touch its card edge terminals (the gold-plated contacts which engage with a mating connector). If you accidentally touch any card edge terminal, wipe it gently with clean or ethyl alcohol-dipped tissue paper or absorbent cotton. Do not use any organic solvent other than ethyl alcohol.
(2) Optical connector and fiber cable See Appendix D.

14.8

RECOMMENDED CABLES

Compatible cables (optical fiber cables, used for interconnections)
AA66L-6001-0021\#L5R003 : Cable length $=5 \mathrm{~m}$
AA66L-6001-0021\#L20R03 : Cable length $=20 \mathrm{~m}$
AA66L-6001-0022\#L50R03 : Cable length $=50 \mathrm{~m}$

NOTE

1 The optical fiber cables for the FANUC I/O Link cannot be used with the HSSB.
2 Optical fiber cables cannot be cut or connected without specialized equipment, usually not available to machine tool builders. Therefore, use only the cables listed above.

T FANUC INTELLIGENT TERMINAL

15.1 OVERVIEW

The FANUC intelligent terminal is a panel computer that is compatible with the IBM PC. It can be combined with a Series 21 system via a high-speed optical fiber (high-speed serial bus) to configure a Series 210 system.

15.2 CAUTIONS

The FANUC intelligent terminal must be used with MS-DOS and the software shipped with the intelligent terminal. The copyright for this software is owned by Microsoft Corp. of the US, Chips and Technologies Corp. of the US, IBM Corp. of the US, Matsushita Electric Industrial, and FANUC.
The software mentioned above and the contents of the related manuals may not be used or reproduced in part or whole without the prior written permission of the copyright owner.
The software mentioned above and the related manuals are not available separately. They are provided only with the intelligent terminal.
The software mentioned above and the related manuals can be used only after the user agrees to the terms of the license shipped with the intelligent terminal.
Note that the act of switching on the intelligent terminal is construed as agreeing to the terms of the license mentioned above.

NOTE

1 IBM is a registered trademark of IBM Corp. of the US.
2 MS-DOS is a registered trademark of Microsoft Corp. of the US.
3 The company and product names mentioned in this manual are trademarks or registered trademarks of the respective companies.

15.3
 CONNECTION

15.4
 OVERALL
 CONNECTION
 DIAGRAM

CNC control unit

* These devices can be used only for applications development. They cannot be assembled into a system.
See Chapter 2 for details of other connections.

15.5
 SPECIFICATION

15.5.1

Installation
Environment

When using the intelligent terminal, ensure that the following environmental conditions are satisfied by the cabinet that contains the intelligent terminal.

Ambient temperature	Operating : 5 to $45^{\circ} \mathrm{C}$ Storage : -20 to $60^{\circ} \mathrm{C}$
Temperature drift	$20^{\circ} \mathrm{C} /$ hour (maximum)

*1 Operating ambient temperature
A thermal sensor in the intelligent terminal is used to monitor whether the ambient temperature falls within the prescribed range. (The status is indicated by the LEDs of the high-speed serial bus interface board in the CNC.)

1) If the ambient temperature falls outside the specified range when the intelligent terminal is switched on, it stops automatically and nothing is displayed on the screen. The error status is indicated by the LEDs mentioned above. When the ambient temperature moves to within the specified range, the system (including the intelligent terminal) starts up automatically.
2) If the ambient temperature moves out of the specified range after the system has started, an error is reported when the hard disk is accessed.
*2 Vibration
The intelligent terminal and built-in hard disk may vibrate at arbitrary frequencies. After installing the intelligent terminal on the machine, ensure that it cannot vibrate. If an ISA expansion board is installed, the maximum allowable vibration may be lower than that listed above, depending on the specification.

CAUTION

Even in the specified operating environment, records on the hard disk may be damaged or destroyed due to operator errors or malfunctions. Switching off the power while the hard disk is being accessed is extremely likely to damage the data on the disk. Do NOT switch off the power while the hard disk is being accessed. To guard against such an accident, make regular backups of important data on the disk.

Note that some development and maintenance options may require stricter environmental conditions than those listed above.

15.5.2
 Power Supply Specifications

(1) Input power
(a) Requirements

To use the intelligent terminal, prepare a power supply that satisfies the following requirements.

Input voltage		$\mathbf{+ 2 4 ~ V D C ~} \pm \mathbf{1 0 \%}$
Input current	When no ISA expansion is installed	2 A (maximum)
	When an ISA expansion is installed	3 A (maximum)

NOTE

The use of the FANUC I/O device requires an additional 1 A capacity.
(b) Timing

The power for the intelligent terminal should be switched on and off within $\pm 100 \mathrm{~ms}$ of the CNC power being switched on and off.
(2) Supply power

The power supply capacity of the intelligent terminal is as listed below. When connecting a peripheral unit, confirm its current requirements.

Supply voltage	Peripheral device	Current (maximum)
+12 V	ISA, FDD (CN2)	400 mA
+5 V	FDD (CN2), keyboard (CD32, JD33), mouse (JD33)	1000 mA
	ISA	3500 mA
-12 V	ISA	180 mA
-5 V	ISA	74 mA

(3) Heat dissipation 25 W (during normal operation)

NOTE

The heat dissipation increases with the addition of a peripheral device or ISA expansion board.
15.6

INSTALLATION SPACE

When installing the intelligent terminal, provide the space shown below.
A: This space is used to lead in cables. The size of section A in the diagram below should be appropriate for the cables to be installed.
B: This space is provided to enable replacement of the batteries without removing the intelligent terminal from the panel. Battery replacement must be possible from the rear of the intelligent terminal.
C: This space is required for the radiating fan of the intelligent terminal.
15.6.1

When No ISA

Expansion is Installed

15.6.2

When an ISA
Expansion is Installed

15.7
 PERIPHERAL
 DEVICES AND THEIR
 CONNECTIONS

15.7.1

Connector Layout

 Diagram

NOTE

1 Connect the typewriter-style keyboard to either CD32 or JD33.
2 This diagram applies when there is no ISA expansion unit.

15.7.2

Main Power Input

1) Cable connection

+24 V	1	
	2	+24 V
		0 V

2) Recommended wires for cables

Use wires of $30 / 0.18\left(0.75 \mathrm{~mm}^{2}\right)$ or larger.

NOTE

Route this power supply cable well away from the signal lines connected to the intelligent terminal.

15.7.3

Floppy Disk Drive (Signal and Power)

NOTE

1 This is the standard interface for IBM PC compatibles. Note the following:

1) Only two modes (720-Kbyte mode and 1.44-Mbyte mode) can be used.
2) DENSEL is fixed to low level.
3) Not all commercial floppy disk drives require both +12 and +5 VDC. When using a floppy disk drive operating on +12 VDC, pay close attention to the power supply capacity.
2 Some commercial floppy disk drives are incompatible with the intelligent terminal. Not all of their operations can be guaranteed with the intelligent terminal. The machine tool builder is requested to confirm the compatibility of each device to be used. Note also that most commercial floppy disk drives are neither dust- nor waterproof.
3 The drive interface shown above is only an example. When designing a cable, observe the requirements of the drive interface being used.
4) Floppy disk drive cable connection

This is the standard IBM PC interface. Pins 10 and 16 of a commercially available connection cable for this interface are crossed between the intelligent terminal (personal computer) and drive A , as shown above. When using this cable, set the drive number set pin on drive A to 1 (second drive).

15.7.4
 High-speed Serial Bus (HSSB)

(1) Recommended cables (optical fiber cables)

A66L-6001-0021\#L5R003: Cable length $=5 \mathrm{~m}$
A66L-6001-0021\#L20R03: Cable length $=20 \mathrm{~m}$
A66L-6001-0022\#L50R03: Cable length $=50 \mathrm{~m}$

15.7.5
 Typewriter-style Keyboard

NOTE

1 The signals for the typewriter-style keyboard are also connected to serial port 1 (JD33), as described later. Therefore, the typewriter-style keyboard should be connected to either CD32, shown above, or serial port 1 (JD33).
2 Some commercial typewriter-style keyboards are incompatible with the intelligent terminal. Not all of their operations can be guaranteed with the intelligent terminal. The machine tool builder is requested to confirm the compatibility of each device to be used. Note also that most commercial typewriter-style keyboards are neither dustnor waterproof.

1) Recommended typewriter-style keyboards

A86L-0001-0210: Type 101
A86L-0001-0211: Type 106

NOTE

The use of this interface and typewriter-style keyboards should be restricted to development and maintenance.

15.7.6

Centronics Parallel Port

Intelligent terminal				: Ex.) Printer			
$\begin{aligned} & \text { JD9 } \\ & \text { (PCR-EV20MDT) } \end{aligned}$							
1	STD0	11	*STB	1	*STB	19	OV
2	STD1	12	OV	2	STD0	20	OV
3	STD2	13	*AFD	3	STD1	21	OV
4	STD3	14	OV	4	STD2	22	OV
5	STD4	15	*INIT	5	STD3	23	OV
6	STD5	16	0V	6	STD4	24	OV
7	STD6	17	*SLIN	7	STD5	25	OV
8	STD7	18	*ACK	8	STD6	26	OV
9	PE	19	*ERROR	9	STD7	27	OV
10	SLCT	20	BUSY	10	*ACK	28	OV
				11	BUSY	29	OV
				12	PE	30	OV
				13	SLCT	31	*INIT
				14	*AFD	32	*ERROR
				15		33	OV
				16	OV	34	
				17	FG	35	
				18		36	*SLIN

NOTE

1 The printer interface shown above is only an example. When designing a cable, observe the requirements of the interface actually being used.
2 Some commercial printers and other external devices are incompatible with the intelligent terminal. Not all of their operations can be guaranteed with the intelligent terminal. The machine tool builder is requested to confirm the compatibility of each device to be used. Note also that most commercial external devices are neither dust- nor waterproof.

15.7.7

Serial Port 2

CAUTION

Pins 16 and 17 are reserved for a specific purpose. Do not attempt to connect them for your own purposes.

NOTE

1 The host computer interface shown above is only an example. When designing a cable, observe the requirements of the interface actually being used.
2 The +24 V supply of the intelligent terminal interface, shown above, is provided specifically for a FANUC I/O device (such as FANUC cassette or FANUC Handy File). Do not attempt to use it for your own purposes. Do not connect more than one such I/O device to a single CNC control unit or intelligent terminal. If more than one is connected, their total power requirement may exceed the +24 V power capacity.
15.7 .8

Serial Port 1

This connector accommodates mouse and full keyboard ports as well as RS-232-C serial port 1. For full keyboard signals, this connector has the same arrangement as the dedicated connector, CD32. Therefore, a full keyboard can be connected using either this connector or CD32. The mouse is connected to this connector via a connector panel, shown below.

CAUTION

1 The +24 V supply of the intelligent terminal interface, shown on the previous page, is provided specifically for a FANUC I/O device (such as FANUC cassette or FANUC Handy File). Do not attempt to use it for your own purposes. Do not connect more than one such I/O device to a single CNC control unit or intelligent terminal. If more than one is connected, their total power requirement may exceed the +24V power capacity.
2 Some commercial full keyboards and mice are incompatible with the intelligent terminal. Not all of their operations can be guaranteed with the intelligent terminal. The machine tool builder is requested to confirm the compatibility of each device to be used. Note also that most commercial full keyboards and mice are neither dust- nor waterproof.

1) Cable connection (example)

2) Recommended wires for the cable A66L-0001-0284\#10P 10 pairs of $0.08 \mathrm{~mm}^{2}$ wires

NOTE

Restrict the cable length to within 0.5 m . Some devices may not operate normally even within this limit. Note that the conventional CNC punch panel cannot be used with this interface.
3) Recommended full keyboards and mice

A86L-0001-0210 Type 101 full keyboard
A86L-0001-0211 Type 106 full keyboard
A86L-0001-0212 Standard PS/2 mouse

NOTE

The use of this interface and the recommended devices should be restricted to development and maintenance.

15.7.9

Soft Keys

1) Cable length: 500 mm
2) Separate MDI units

MDI units usable with the FS210

	MDI key	Type	Model	
Separate full MDI unit	English-language legends	Horizontal type	210-MB	A02B-0218-C120\#MR
	Symbolic legends	Horizontal type	210-MB	A02B-0218-C120\#MS
	English-language legends	Horizontal type	210-TB	A02B-0218-C120\#TR
	Symbolic legends	Horizontal type	210-TB	A02B-0218-C120\#TS
	English-language legends	Vertical type	210-MB	A02B-0218-C121\#MR
	Symbolic legends	Vertical type	210-MB	A02B-0218-C121\#MS
	English-language legends	Vertical type	210-TB	A02B-0218-C121\#TR
	Symbolic legends	Vertical type	210-TB	A02B-0218-C121\#TS

15.8
 ISA EXPANSION
 BOARDS

15.8.1

Installation Method
(1) Usable boards

Two of the ISA expansion boards shown below can be used with the intelligent terminal.

On the rear surface, components should be no more than 3.81 mm high.

Unit: mm

NOTE

FANUC does not guarantee the operation of commercial ISA expansion boards, and cannot provide maintenance for such boards.
(2) ISA expansion board installation procedure
(See the diagram on the following page.)
1 Remove the metal vibration isolator.
2 Insert the board fully into its connector.
3 Tighten the board retaining screw.
4 Tighten the screw while pressing the metal vibration isolator against the board.
When installing more than one ISA expansion board, the board in slot A must be shorter than that in slot B. Otherwise, the boards cannot be clamped by the metal vibration isolator.

Fig.15.8.1 Installing the ISA expansion board

15.8.2
 Handling Precautions

(1) Address map

- The memory space between D00000h and FFFFFFh is used for the intelligent terminal. It cannot be used for the ISA board. The assignment of all other areas is the same as that for IBM-PC compatibles.
- The assignment of the I/O address space for the intelligent terminal is the same as that for IBM-PC compatibles. The intelligent terminal does not use any special areas.
- Three ports, COM1, COM2, and parallel port 3, are set at set-up. (Refer to the Series 21/210 Maintenance Manual (B-62705EN) for details.)
(2) Interrupt and DMA requests
- The intelligent terminal uses the following IRQ signals:

IRQ1 : Keyboard
IRQ3 : COM2
IRQ4 : COM1
IRQ6 : Floppy disk drive
IRQ7 : Parallel port
IRQ12: Mouse
IRQ14: Built-in hard disk drive
IRQ3, IRQ4, and IRQ7 can be re-set at BIOS set-up.

- The intelligent terminal uses the following DRQ signal:

DRQ2: Floppy disk drive
(3) Maximum current

See Subsec. 15.5.2 for details of the maximum current.
(4) Cable lead-in direction

See Sec. 15.6 for details of the direction in which the cables should be led in.
(5) ISA expansion board installation environment

Refer to the applicable ISA board expansion specification for details of the ISA expansion board installation environment. If the ISA expansion board specification is stricter than the environmental conditions described in Subsec. 15.5.1, the ISA expansion board conditions are applied to the entire CNC control unit environment.
(6) Others

In addition to the items stated in the cautions above, the following cases impede normal operation.

- When an ISA bus signal is pulled up or down
- When the ISA bus refresh cycle is used

More conditions may be added.

APPENDIX

A

EXTERNAL DIMENSIONS OF EACH UNIT

Name			Specification	Fig., No.
Basic unit (2-slot)			A02B-0210-B501	Fig. U1
			A02B-0210-B511	
			A02B-0218-B502	
Basic unit (3-slot)			A02B-0218-B505	Fig. U2
Basic unit (4-slot) for 210-MB			A02B-0218-B524	Fig. U3
9" monochrome CRT/MDI (small size)	21-TB	English display MDI	A02B-0210-C041\#TA	Fig. U4
		Symbol display MDI	A02B-0210-C041\#TAS	
	21-MB	English display MDI	A02B-0210-C041\#MA	
		Symbol display MDI	A02B-0210-C041\#MAS	
9" monochrome CRT (separate type)			A02B-0210-C111	Fig. U5
9" monochrome PDP (separate type)			A02B-0200-C100	Fig. U6
7.2" STN monochrome LCD (separate type)			A02B-0200-C081	Fig. U7
8.4" TFT color LCD (separate type)			A02B-0218-C050	Fig. U8
9.5" STN monochrome LCD (separate type)			A02B-0200-C115	Fig. U9
Separate MDI (small size)	21-TB	English display MDI	A02B-0210-C120\#TA	Fig. U10
		Symbol display MDI	A02B-0210-C120\#TAS	
	21-MB	English display MDI	A02B-0210-C120\#MA	
		Symbol display MDI	A02B-0210-C120\#MAS	
Separate MDI (full key)	21-TB	English display MDI	A02B-0210-C122\#TA	Fig. U11
		Symbol display MDI	A02B-0210-C122\#TAS	
	21-MB	English display MDI	A02B-0210-C122\#MA	
		Symbol display MDI	A02B-0210-C122\#MAS	
Separate MDI (horizontal type, full key)	210-TB	English display MDI	A02B-0218-C120\#TR	Fig. U12
		Symbol display MDI	A02B-0218-C120\#TS	
	210-MB	English display MDI	A02B-0218-C120\#MR	
		Symbol display MDI	A02B-0218-C120\#MS	
Separate MDI (vertical type, full key)	210-TB	English display MDI	A02B-0218-C121\#TR	Fig. U13
		Symbol display MDI	A02B-0218-C121\#TS	
	210-MB	English display MDI	A02B-0218-C121\#MR	
		Symbol display MDI	A02B-0218-C121\#MS	
14" color CRT/MDI (horizontal type)	21/210-TB	English display MDI	A02B-0200-C071\#TBR	Fig. U14
		Symbol display MDI	A02B-0200-C071\#TBS	
	21/210-MB	English display MDI	A02B-0200-C071\#MBR	
		Symbol display MDI	A02B-0200-C071\#MBS	

Name			Specification	Fig., No.	
14" color CRT/MDI (vertical type)	21/210-TB	English display MDI	A02B-0200-C072\#TBR	Fig. U15	
		Symbol display MDI	A02B-0200-C072\#TBS		
	21/210-MB	English display MDI	A02B-0200-C072\#MBR		
		Symbol display MDI	A02B-0200-C072\#MBS		
9.5" color TFT/MDI (horizontal type)	21/210-TB	English display MDI	A02B-0200-C065\#TBR	Fig. U16	
		Symbol display MDI	A02B-0200-C065\#TBS		
	21/210-MB	English display MDI	A02B-0200-C065\#MBR		
		Symbol display MDI	A02B-0200-C065\#MBS		
9.5" color TFT/MDI (vertical type)	21/210-TB	English display MDI	A02B-0200-C066\#TBR	Fig. U17	
		Symbol display MDI	A02B-0200-C066\#TBS		
	21/210-MB	English display MDI	A02B-0200-C066\#MBR		
		Symbol display MDI	A02B-0200-C066\#MBS		
Intelligent terminal		Without ISA extension	A13B-0172-B001	Fig. U18	
		A13B-0172-B002			
		A13B-0172-B021			
		A13B-0172-B022			
		With ISA extension	A13B-0172-B101	Fig. U19	
		A13B-0172-B102			
		A13B-0172-B121			
		A13B-0172-B122			
Full keyboard			English	A86L-0001-0210	Fig. U20
		Japanese	A86L-0001-0211	Fig. U21	
Mouse			A86L-0001-0212	Fig. U22	
Interface board for high-speed serial bus (for PC)			Type 1	A20B-8001-0300	Fig. U23
		Type 2	A20B-8100-0100	Fig. U24	
Position coder			4000 rpm	A86L-0027-0001\#102	Fig. U25
		6000 rpm	A86L-0027-0001\#002		
Manual pulse generator			A860-0202-T001	Fig. U26	
Pendant type manual pulse generator			A860-0202-T004	Fig. U27	
			A860-0202-T005		
			A860-0202-T007		
			A860-0202-T010		
			A860-0202-T012		
			A860-0202-T013		
ABS battery case for separate type detector			A06B-6050-K060	Fig. U28	
Punch panel	Wide width type	Cable length : 1 m	A02B-0120-C181	Fig. U29	
		Cable length : 2 m	A02B-0120-C182		
		Cable length : 5m	A02B-0120-C183		
	Narrow width type	Cable length : 1 m	A02B-0120-C191	Fig. U30	
		Cable length : 2 m	A02B-0120-C192		
		Cable length : 5m	A02B-0120-C193		

Fig.U1 Basic unit (2-slot)
Specification No. : A02B-0210-B501

Fig.U2 Basic unit (3-slot)
Specification No. : A02B-0218-B505

Fig.U3 Basic unit (4-slot) for 210-MB
Specification No. : A02B-0218-B524

Fig.U4 9" monochrome CRT/MDI (small size)
Specification No. : A02B-0210-C041\#TA (English display MDI)
A02B-0210-C041\#TAS (Symbol display MDI) A02B-0210-C041\#MA (English display MDI)
A02B-0210-C041\#MAS (Symbol display MDI)

At the rear of the metal plate of the panel, the area within 8 mm of the perimeter is left unpainted

Fig.U5 9" monochrome CRT (separate type) Speification No.: A02B-0210-C111

Fig.U6 9" monochrome PDP (separate type) Specification No. : A02B-0200-C100

At the rear of the metal plate of the panel, the area within 8 mm of the perimeter is left unpainted

Weight : 1.3kg

Fig.U7 7.2" STN monochrome LCD (separate type)
Specification No. : A02B-0200-C081

Panel cut drawing

At the rear of the metal plate of the panel, the area within 8 mm of the perimeter is left unpainted

Fig.U8 8.4" TFT color LCD (separate type) Specification No. : A20B-0218-C050

At the rear of the metal plate of the panel, the area within 8 mm of the perimeter is left unpainted

Fig.U9 9.5" STN monochrome LCD (separate type) Specification No. : A02B-0200-C115

At the rear of the metal plate of the panel, the area within 8 mm of the perimeter is left unpainted

Fig.U10 Separate MDI (small size)
Specification No. : A02B-0210-C120\#TA (English display MDI) A02B-0210-C120\#TAS (Symbol display MDI) A02B-0210-C120\#MA (English display MDI) A02B-0210-C120\#MAS (Symbol display MDI)

Panel cut drawing

Weight : 0.8 kg
At the rear of the metal plate of the panel, the area within 8 mm of the perimeter is left unpainted

Fig.U11 Separate MDI (full key)
Specification No. : A02B-0210-C122\#TA (English display MDI) A02B-0210-C122\#TAS (Symbol display MDI) A02B-0210-C122\#MA (English display MDI) A02B-0210-C122\#MAS (Symbol display MDI)

Fig.U12 Separate MDI (horizontal type, full key)
Specification No. : A02B-0218-C120\#TR (English display MDI) A02B-0218-C120\#TS (Symbol display MDI) A02B-0218-C120\#MR (English display MDI) A02B-0218-C120\#MS (Symbol display MDI)

Fig.U13 Separate MDI (vertical type, full key)
Specification No. : A02B-0218-C121\#TR (English display MDI)
A02B-0218-C121\#TS (Symbol display MDI)
A02B-0218-C121\#MR (English display MDI)
A02B-0218-C121\#MS (Symbol display MDI)

At the rear of the metal plate of the panel, the area within 8 mm of the perimeter is left unpainted

Fig.U14 14" color CRT/MDI (horizontal type)
Specification No. : A02B-0200-C071\#TBR (English display MDI)
A02B-0200-C071\#TBS (Symbol display MDI) A02B-0200-C071\#MBR (English display MDI)
A02B-0200-C071\#MBS (Symbol display MDI)

At the rear of the metal plate of the panel, the area within 8 mm of the perimeter is left unpainted

Fig.U15 14" color CRT/MDI (vertical type)
Specification No. : A02B-0120-C072\#TBR (English display MDI)
A02B-0120-C072\#TBS (Symbol display MDI)
A02B-0120-C072\#MBR (English display MDI)
A02B-0120-C072\#MBS (Symbol display MDI)

At the rear of the metal plate of the panel, the area within 8 mm of the perimeter is left unpainted

Fig.U16 9.5" color TFT/MDI (horizontal type)
Specification No. : A02B-0200-C065\#TBR (English display MDI) A02B-0200-C065\#TBS (Symbol display MDI) A02B-0200-C065\#MBR (English display MDI) A02B-0200-C065\#MBS (Symbol display MDI)

At the rear of the metal plate of the panel, the area within 8 mm of the perimeter is left unpainted

Fig.U17 9.5" color TFT/MDI (Vertical type)
Specification No. : A02B-0200-C066\#TBR (English display MDI) A02B-0200-C066\#TBS (Symbol display MDI) A02B-0200-C066\#MBR (English display MDI) A02B-0200-C066\#MBS (Symbol display MDI)

At the rear of the metal plate of the panel, the area within 8 mm of the perimeter is left unpainted

Unit : mm

Fig.U18 Intelligent terminal (without ISA extension)
Specification No. : A13B-0172-B001 A13B-0172-B002
A13B-0172-B021
A13B-0172-B022

Fig.U19 Intelligent terminal (with ISA extension)
Specification No. : A13B-0172-B101 A13B-0172-B102
A13B-0172-B121
A13B-0172-B122

NOTE

The panel shall be cut in the same way as when no ISA expansion is installed.

Fig.U20 Full keyboard (English)
Specification No. : A86L-0001-0210

NOTE

This keyboard is not dust-proof. Its use should be limited to program development. It should be used in an ambient temperature range of between $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$.

Fig.U21 Full keyboard (Japanese) Specification No. : A86L-0001-0211

NOTE

This keyboard is not dust-proof. Its use should be limited to program development. It should be used in an ambient temperature range of between $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$.

Unit : mm

Fig.U22 Mouse
Specification No. : A86L-0001-0212

NOTE
This mouse is not dust-proof. Its use should be limited to program development. It should be used in an ambient temperature range of between $0^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$. It is provided together with a 2.7 mm signal cable.

Fig.U23 Interface board for high-speed serial bus (for PC) (type 1)
Specification No. : A20B-8001-0300

Fig.U24 Interface board for high-speed serial bus (for PC) (type 2) Specification No. : A20B-8001-0100

Note : Mechanical specifications of the position coder are as follows :
(1) Input axis inertia $1.0 \times 10^{-3} \mathrm{~kg} \cdot \mathrm{~cm} \cdot \mathrm{sec}^{2}$ or less
(2) Input axis starting torque $100 \mathrm{~g} \cdot \mathrm{~cm}$ or less
(3) Input axis permissible loads
(4) Weight: 1 kg or less

	Radial	Thrust
Operation	1 kg or less	1 kg or less
Idle	20 kg or less	10 kg or less

Attach a pulley directly to the position coder shaft and drive the timing belt. Confirm that the loads conform with the above allowable value.

Fig.U25 Position coder
Specification No. : A86L-0026-0001\#102 (Max. 4000rpm)
A86L-0026-0001\#002 (Max. 6000rpm)

Fig.U26 Manual pulse generator Specification No. : A860-0202-T001
(1)

A860-0202-T004 to T009

(2) A860-0202-T010 to T015

Fig.U27 Pendant type manual pulse generator Specification No. : A860-0202-T004 to T015

Fig.U28 ABS battery case for separate type detector
Specification No. : A06B-6050-K060

Fig.U29 Punch panel (wide width type)
Specification No. : A02B-0120-C181 (Cable length : 1m)
A02B-0120-C182 (Cable length : 2m)
A02B-0120-C183 (Cable length : 5m)

At the rear of the metal plate of the panel, the area within 8 mm of the perimeter is left unpainted

Fig.U30 Punch panel (narrow width type)
Specification No. : A02B-0120-C191 (Cable length : 1m) A02B-0120-C192 (Cable length : 2m) A02B-0120-C193 (Cable length : 5m)

Connectors

Name	Specification	Fig.Nos.
PCR connector (soldering type)	PCR-E20FS	Fig.C1(a)
FI40 connector	FI40-2015S	Fig.C1(b)
Connector case (Honda Tushin PCR type)	PCR-V20LA/PCR-V20LB	Fig.C2(a)
Connector case (Hirose Electric PCR type)	FI-20-CV	Fig.C2(b)
Connector case (Fujitsu FCN type)	FCN-240C20-Y/S	Fig.C2(c)
AMP connector 1 200VAC input	AMP1-178128-3	Fig.C3(a)
AMP connector 2 ON/OFF of MCC	AMP2-178128-3	Fig.C3(b)
AMP connector $3+24 \mathrm{~V}$ input of power supply unit	AMP1-178288-3	Fig.C3(c)
AMP connector $4+24 \mathrm{~V}$ output of power supply unit	AMP2-178288-3	Fig.C3(d)
Contact for AMP connector	$\begin{aligned} & \text { AMP1-175218-2/5 } \\ & \text { AMP1-175196-2/5 } \end{aligned}$	Fig.C3(e)
Honda connector (case)		Fig.C4(a)
Honda connector (female connector)		Fig.C4(b)
Honda connector (male connector)		Fig.C4(c)
Honda connector (terminal layout)		Fig.C4(d)
Connector made by Burndy Japan (3 pins, black)	SMS3PK-5	Fig.C5(a)
Connector made by Burndy Japan (3 pins, brawn)	SMS3PN-5	Fig.C5(b)
Connector made by Burndy Japan (6 pins, brawn)	SMS6PN-5	Fig.C5(c)
Connector for Hirose flat cable	HIF3BB-50D-2.54R	Fig.C6
Connector for Yamaich Electric flat cable	NFP-10A-0122,-0124	Fig.C7
Punch panel connector for reader /puncher interface		Fig.C8(a)
Locking plate for reader/puncher interface connector		Fig.C8(b)
Contact for 9" PDP power supply cable	SVH-21T-1.1	Fig.C9(a)
Housing for 9" PDP power supply cable	VHR-2N	Fig.C9(b)

TYPE : HONDA PCR-E20FS(SOLDERING TYPE)
USAGE : GENERAL
MATING : HONDA PCS-E20LA(METAL)
HOUSING : HONDA PCS-E20L(PLASTIC)

	A	B
PCR-E20FS	21.65	11.43

Fig.C1 (a) PCR connector (soldering type)

```
TYPE : HIROSE FI40-2015S
USAGE : PULSE CODER INTERFACE
                    LINEAR SCALE INTERFACE
                        MPG INTERFACE
MATING/HOUSING : HIROSE FI-20-CV
```


Fig.C1 (b) FI40 connector

Fig.C2 (a) Connector case (HONDA PCR type)

```
TYPE : HIROSE FI-20-CV
USAGE : PULSE CODER INTERFACE
        LINEAR SCALE INTERFACE
        MANUAL PULSE GENERATOR INTERFACE
```


(1) (2) Case
(3) Lock bracket
(4) Lock lever
(5) Cable clamp
(6) Set screw for cable clamp

(3)
(6)
(4)

(2)
(1)

Fig.C2 (b) Connector case (HIROSE FI type)

```
TYPE : FUJITSU FCN-240C20-Y/S(for 5.8 dia. cable)
USAGE : GENERAL
```


Fig.C2 (c) Connector case (FUJITSU FCN type)

Fig.C3 (a) AMP connector (1)

Fig.C3 (b) AMP connector (2)

Fig.C3 (c) AMPconnector (3)

Fig.C3 (d) AMP connector (4)

Fig.C3 (e) Contact for AMP connector

Specification Symbol	A	(B)	C	(D)
MR-20LMH (Plug)	39.3	44.9	39.8	17
MR-20LFH (Jack)				
MR-50LMH (Plug)	67.9	73.5	44.8	18

Number of terminals
20
50

Symbol	Name
1	Connector cover
2	Cable clamp
3	Stopper
4	Screw for cable clamp
5	Plug (MR-20, 50MH)
	Jack (MR-20, 50FH)

Outer diameter of the cable MR-20L dia. 10 mm max MR-50L dia. 16 mm max

Fig.C4 (a) HONDA connector (case)

$\left.\begin{array}{|l|c|c|}\hline & \text { A } & \text { B } \\ \hline \text { MR-20RMH } & 32.8 & 27.8 \\ \hline \text { MR-50RHF } & 61.4 & 56.4 \\ \hline\end{array} \begin{array}{c}\text { Number of } \\ \text { terminals }\end{array}\right]$

Symbol	Name
1	Cable clamp
2	Screw 2.6dia. $\times 8$
3	Connector (MR-20,-50MH)

Fig.C4 (b) HONDA connector (male)

	A	B
MR-20RMH	32.8	27.8
MR-50RMH	61.4	56.4

Symbol	Name
1	Cable clamp
2	Screw 2.6dia. $\times 8$
3	Connector (MR-20,--50FH)

Fig.C4 (c) HONDA connector (female)

Fig.C4 (d) HONDA connector (terminal layout)

Manufacturer: Burndy Japan Corp.

Name		Specification (Connector maker number)	Remarks
Connector housing for cable	SMS3PNS-5	Brown	
	(Crimp type)	RC16M-23T3	For details on tools required for crimp terminals,contact the manufacturer.
	(Solder type)	RC16M-SCT3	

Cables: Cross sectional area : $0.75 \mathrm{~mm}^{2}(30 / 0.18)$
Insulation diameter : 2.8mm max
Peeling length : 7.2mm

Fig.C5 (a) Connector made by Burndy Japan (3 pins,black)

Manufacturer : Burndy Japan Corp.

Name		Specification (Connector maker number)	Remarks
Contact	(Crimp type)	RC16M-23T3	For details on tools required for crimp terminals,contact the manufacturer.
	(Solder type)	RC16M-SCT3	SMS3PNS-5

Cables: Cross sectional area : $0.75 \mathrm{~mm}^{2}(30 / 0.18)$
Insulation diameter : 2.8mm max
Peeling length : 7.2mm

Fig.C5(b) Connector made by Burndy Japan (3 pins,brown)

Manufacturer : Burndy Japan Corp.

Name		Specification (Connector maker number)	Remarks
Connector housing for cable	SMS6PN-5	Brown	
	(Crimp type)	RC16M-23T3	For details on tools required for crimp terminals,contact the manufacturer.
	(Solder type)	RC16M-SCT3	man

Cables: Cross sectional area : $1.27 \mathrm{~mm}^{2}(50 / 0.18)$
Insulation diameter : 2.8mm max
Peeling length $: 7.2 \mathrm{~mm}$

Fig.C5 (c) Connector made by Burndy Japan (6 pins,brown)

CONNECTOR FOR FLAT CABLE (HIROSE ELEC. CO.)
Specification HIROSE ELEC. CO. HIF3BB-50D-2. 54R (50contacts)

MAIN BODY

PROTECTOR

Dimensions

Description	No.of contact	A	B	C	D
HIF3BB-50D-2.54R	50	68.07	60.96	62.23	63.6

FLAT CABLE CONNECTOR CONTACT NUMBER (HIROSE)

Fig.C6 Connector for HIROSE Flat cable

Fig.C7 Connector for Yamaich Electric Flat cable

Fig.C8 (a) Punch panel connector for reader/puncher interface

Fig.C8 (b) Locking plate plate for reader/puncher interface connector

Fig.C9 (a) Contact for 9" PDP power supply cable

Fig.C9 (b) Housing for 9" PDP power supply cable

20-PIN INTERFACE CONNECTORS AND CABLES

B. 1
 OVERVIEW

B. 2
 ADDITIONAL TARGET MODELS

B. 3
 BOARD-MOUNTED CONNECTORS

This section explains the recommended (FANUC-approved) connectors for the $20-$ pin interface, used with the following target models, and the corresponding cables.

- FANUC Series 16/18-MODEL A
- FANUC Series 16/18-MODEL B
- FANUC Series 16/18-MODEL C
- FANUC Series $15 / 150-M O D E L ~ A ~$
- FANUC Series $15 / 150-M O D E L B$
- FANUC Series 20
- FANUC Series 21/210
- FANUC Power Mate-MODEL C/D/E/F/H/I/J
- FANUC I/O Unit-MODEL A
- FANUC I/O Unit-MODEL B
- FANUC AC SERVO AMPLIFIER C series
- FANUC AC SERVO UNIT D series
- FANUC CONTROL MOTOR AMPLIFIER α series
- FANUC CONTROL MOTOR AMPLIFIER β series

Model : PCR-EV20MDT produced by Honda Tsushin or 52618-2011 produced by Japan Molex

The board-mounted connector has been specially developed to achieve the FANUC proprietary high packing density. However, the mating mechanism of the connector is compatible with that of Honda PCR series connectors. Therefore, Honda PCR series connectors can be used as cable connectors. Because cable connectors support this specification extensively, many connector manufacturers offer custom-tailored models.
B. 4

CABLE CONNECTORS

Cable connectors consist of a connector main body and housing. The models listed below are available. Those connectors not marked with an asterisk are currently being mass-produced as manufacturer's standard models. Those marked with an asterisk are produced according to custom specifications by FANUC.

	Use	Type	Manufacturer	Connector model	Housing model	Applicable cable outside diameter
Cable connector	_ General use (MDI, IOLINK, AMP, SPDL, etc.)	Strand wire press-moun type Soldering type	_ Honda \qquad Hirose \qquad Fujitsu \qquad Molex \qquad Honda \qquad Hirose \qquad	$\begin{aligned} & \text { PCR-E20FA - } \\ & \text { FI30-20S* } \\ & \text { FCN-247J020 } \\ & \text { 52622-2011* } \\ & \text { PCR-E20FS } \\ & \text { FI40-20S* } \\ & \text { FI40B-20S* } \\ & \text { (FI40A-20S*) } \\ & \text { FI40B-20S* } \end{aligned}$	$\begin{aligned} & \text { PCR-V20LA } \\ & \text { PCS-E20LA } \\ & \text { FI-20-CV2* } \\ & \text { FCN-240C02 } \\ & \text {-Y2/S**-2015* } \\ & \text { PCR-V20LA } \\ & \text { PCS-E20LA } \\ & \text { FI-20-CV2* } \\ & \text { FI-20-CV5* } \\ & \text { FI-20-CV6* } \end{aligned}$	$\phi 6 \mathrm{~mm}(\phi 5.7$ to 6.5) $\phi 6 \mathrm{~mm}(\phi 5.7$ to 6.5) $\phi 6.2 \mathrm{~mm}$ ($\phi 5.5$ to 6.5) $\phi 5.8 \mathrm{~mm}$ ($\phi 5.5$ to 6.5) $\phi 6.2 \mathrm{~mm} \phi$ (5.9 to 6.5) ϕ 6mm ($\phi 5.7$ to 6.5) $\phi 6 \mathrm{~mm}(\phi 5.7$ to 6.5) $\phi 6.2 \mathrm{~mm}$ ($\phi 5.5$ to 6.5) $\phi 9.2 \mathrm{~mm}$ ($\phi 8.9$ to 9.5) $\phi 10.25 \mathrm{~mm}$ ($\phi 9.5$ to 11.0)
	For pulse coder, coaxial cable, linear scale, manual pulse generator, etc.	Soldering type	Hirose	FI40B-2015S* (FI40-2015S*) FI40B-20S* (FI40A-20S*) FI40B-20S* \qquad PCR-E20FS \qquad	$\begin{aligned} & \text { FI-20-CV* } \\ & \text { FI-20-CV5* } \\ & \text { FI-20-CV6* } \\ & \text { PCR-V20LA } \\ & \text { PCS-E20LA } \end{aligned}$	$\phi 8.5 \mathrm{~mm}$ ($\phi 8.0$ to 9.0) $\phi 9.2 \mathrm{~mm}(\phi 8.9$ to 9.5$)$ $\phi 10.25 \mathrm{~mm}$ ($\phi 9.5$ to 11.0) $\phi 6 \mathrm{~mm}(\phi 5.7$ to 6.5) $\phi 6 \mathrm{~mm}(\phi 5.7$ to 6.5)

Fig. B. 4 Cable connectors

Cable Connectors

Strand wire press-mount connector :
With this connector, \#28AWG wires are press-connected to each pin at the same time. The cost of producing a cable/connector assembly with this connector model is much lower than with connectors designed for crimping or soldering.
Soldering type connector : Details of soldering type connectors and their housings are summarized below.
Table B. 4 Details of soldering type connectors and housings

- Connectors

Connector model (manufacturer)	Supplementary description
PCR-E20FS (Honda)	Soldering type connector for general signals. This is suitable for producing cable assemblies in small quantities, as well as on-site.
FI40-20S (Hirose)	Equivalent to Honda PCR-E20FS
FI40B-20S (Hirose) (formerly, FI40A-20S)	Has the same number of pins as the FI40-20S, but features a wider soldering pitch, facilitating soldering and enabling the use of thicker wires. Its reinforced pins allow wires as thick as \#17AWG to be soldered to the FI40B-20S (wires no thicker than \#20AWG can be used with the FI40A-20S). Note, however, that a thick wire, such as \#17AWG, should be used with a more robust housing like the FI-20-CV6.
FI40B-2015S (Hirose) (formerly, FI40-2015S)	Features a wider soldering pitch, attained by using the space provided by thin- ning out some pins. Also features tougher pins, compared with its predecessor, the FI40-2015S. These pins can be soldered to wires as thick as \#17AWG, provided that the cable diameter does not exceed 8.5 mm.

- Housings

Housing model (manufacturer)	Supplementary description
FI-20-CV5 (Hirose)	Should be used with the FI40B-20S. This is a plastic housing designed for use with a cable that is 9.2 mm in diameter.
FI-20-CV6 (Hirose)	Should be used with the FI40B-20S. This housing, however, can be used with a thicker cable (such as 10.25 mm) than is possible with the FI-20-CV5. Its components are die cast.

In addition to the combinations shown in Fig. B.4, Hirose soldering-type connectors can be combined with the housings listed below. Ensure that the diameter of the cable used with each housing satisfies the requirements of that housing.

Connector model	Housing model (applicable cable diameter)
$\begin{aligned} & \text { FI40B-2015S } \\ & \text { (formerly FI40-2015S) } \end{aligned}$	\longleftrightarrow FI-20-CV (8.5 mm in diameter) only
$\left(\begin{array}{l} \text { FI40-20S } \\ \text { FI40B-20S } \\ \text { (formerly FI40A-20S) } \end{array}\right)$	$\longleftrightarrow\left(\begin{array}{c}\text { Fl-20-CV2 }(\phi 6.2 \mathrm{~mm}) \\ \text { Fl-20-CV5 }(\phi 9.2 \mathrm{~mm}) \\ \text { Fl-20-CV6 }(\phi 10.25 \mathrm{~mm})\end{array}\right) \begin{aligned} & \text { Those listed } \\ & \text { on the left } \\ & \text { can be } \\ & \text { used. }\end{aligned}$

B. 5

RECOMMENDED
CONNECTORS,
APPLICABLE
HOUSINGS, AND
CABLES
Table B. 5 Recommended connectors, applicable housings, and cables

Connector name referenced in the Connection Manual	FANUC-approved connector (manufacturer)	FANUC-approved housing (manufacturer)	Compatible cable (cable diameter) FANUC development FANUC specification number	Remark
PCR-E20FA Strand press-mount type	PCR-E20FA (Honda Tsushin)	PCR-V20LA (Honda Tsushin)	A66L-0001-0284\#10P (6.2 mm in diameter)	Plastic housing
		PCS-E20LA (Honda Tsushin)		Metal housing
	FI30-20S (Hirose Electric)	FI-20-CV2 (Hirose Electric)		Plastic housing
	FCN-247J020-G/E (Fujitsu Takamizawa)	FCN-240C020-Y/S (Fujitsu Takamizawa)		Plastic housing
	$\begin{array}{\|l\|} \hline \begin{array}{l} 52622-2011 \\ \text { (Molex) } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { 52624-2015 } \\ & \text { (Molex) } \end{aligned}$		Plastic housing
PCR-E20FS Soldering type	PCR-E20FS (Honda Tsushin)	$\begin{aligned} & \text { PCR-V20LA } \\ & \text { (Honda Tsushin) } \end{aligned}$		Plastic housing
		PCS-E20LA (Honda Tsushin)		Metal housing
	FI40-20S (Hirose Electric)	FI-20-CV2 (Hirose Electric)		Plastic housing
FI40B-2015S (formerly FI40-2015S) 15-pin soldering type	FI40B-2015S (formerly FI40-2015S) (Hirose Electric)	$\begin{aligned} & \text { FI-20-CV5 } \\ & \text { (Hirose Electric) } \end{aligned}$	$\begin{array}{\|l} \text { A66L-0001-0367 } \\ \text { A66L-0001-0368 } \\ \text { (9.2 mm in diameter) } \end{array}$	Plastic housing
	$\begin{aligned} & \text { FI40B-20S } \\ & \text { (Hirose Electric) } \end{aligned}$	$\begin{aligned} & \text { FI-20-CV6 } \\ & \text { (Hirose Electric) } \end{aligned}$	A66L-0001-0403	Metal housing

NOTE

*1 Cable A66L-0001-0286 has been recommended for use as a pulse coder cable. It can be up to 20 m long. Two cables, A66L-0001-0402 and A66L-0001-0403, have recently been developed. A66L-0001-0402 and A66L-0001-0403 can be as long as 30 m and 50 m , respectively. (See Fig. 4 for detailed specifications.)
Both cables have the same level of oil and bending resistance (cable, 100 mm in diameter, capable of withstanding at least 10 million bending cycles) as conventional cables, and are UL- and CSA-certified.

Press-mount type connector assembly tools and jigs

Connector model referenced in the Connection Manual	FANUC-approved connector (manufacturer)	Wire forming tool	Press-mounting tool	Remark
PCR-E20FA	PCR-E20FA (Honda Tsushin)	PCS-K2A	FHPT-918A	Low cost
		$\begin{aligned} & \text { JGPS-015-1/1-20 } \\ & \text { JGPS-014 } \end{aligned}$	$\begin{aligned} & \text { MFC-K1 } \\ & \text { PCS-K1 } \end{aligned}$	(Note 1)
		FHAT-918A		
	FI30-20S (Hirose Electric)	FI30-20CAT	FI30-20/ID	Low cost
		FI30-20CAT1	$\begin{array}{\|l\|} \hline \text { HHP-502 } \\ \text { FI30-20GP } \end{array}$	
	FCN-247J020-G/S (Fujitsu)	FCN-237T-T043/H	$\begin{aligned} & \text { FCN-237T-T109/H } \\ & \text { FCN-247T-T066/H } \end{aligned}$	
		FCN-237T-T044/H		
		FCN-237T-T062/H		
	$\begin{aligned} & \text { 52622-2011 } \\ & \text { (Molex) } \end{aligned}$	57829-5000	57830-5000	Low cost
		57823-5000	57824-5000	

NOTE

1 Those tools indicated by shading are available from FANUC (specification number A02B-0120-K391).
2 The tools available from each manufacturer are specifically designed for use with the connectors manufactured by that manufacturer.

Materials for cable assemblies

Machine tool builders are required to manufacture or procure the materials for the cable assemblies to be used with their products. FANUC recommends the following materials as being suitable for interface connectors. Individual machine tool builders are encouraged to contact each cable manufacturer for themselves, as required.

Material	Use	Constitution	FANUC specification number	Manufacturer	Remark
10-pair cable	General use	$\begin{aligned} & 0.08 \mathrm{~mm}^{2} \\ & 10 \text {-pair } \end{aligned}$	$\begin{aligned} & \text { A66L-0001-0284 } \\ & \text { \#10P } \end{aligned}$	Hitachi Cable, Ltd. Oki Electric Cable Co., Ltd.	
6-pair cable	CRT interface (press-mount)	$\begin{aligned} & \text { 0.08mm² } \\ & \text { 6-pair } \end{aligned}$	A66L-0001-0295	Hitachi Cable, Ltd.	20 m or less
6-conductor coaxial cable	CRT interface (long-distance)	6-conductor coaxial	A66L-0001-0296	Hitachi Cable, Ltd.	50 m or less
12-conductor composite cable	Pulse coder, linear scale, manual pulse generator	$\begin{aligned} & 0.5 \mathrm{~mm}^{2} \\ & \text { 6-conductor } \\ & 0.18 \mathrm{~mm}^{2} \\ & \text { 3-pair } \end{aligned}$	A66L-0001-0286	Hitachi Cable, Ltd. Oki Electric Cable Co., Ltd.	20 m or less
		$\begin{aligned} & \hline 0.75 \mathrm{~mm}^{2} \\ & \text { 6-conductor } \\ & 0.18 \mathrm{~mm}^{2} \\ & \text { 3-pair } \end{aligned}$	A66L-0001-0402	Oki Electric Cable Co., Ltd.	30 m or less Usable on movable parts
		$\begin{array}{\|l\|} \hline 1.25 \mathrm{~mm}^{2} \\ \text { 6-conductor } \\ 0.18 \mathrm{~mm}^{2} \\ \text { 3-pair } \end{array}$	A66L-0001-0403	Oki Electric Cable Co., Ltd.	50 m or less Usable on movable parts

10-pair cable
 (a) Specifications

Item		Unit	Specifications
Product No.		-	A66L-0001-0284\#10P
Manufacturer			Hitachi Cable,Ltd. Oki Electric Cable, Co.,Ltd.
Rating		-	$\begin{array}{ll}60^{\circ} \mathrm{C} & \text { 30V:UL2789 } \\ 80^{\circ} \mathrm{C} & \text { 30V:UL80276 }\end{array}$
Material	Conductor	-	Stranded wire of tinned annealed copper (ASTM B-286)
	Insulator	-	Cross-linked vinyl
	Shield braid	-	Tinned annealed copper wire
	Sheath	-	Heat-resistant oilproof vinyl
Number of pairs		Pairs	10
Conductor	Size	AWG	28
	Structure	Conductors /mm	7/0.127
	Outside diameter	mm	0.38
Insulator	Thickness	mm	0.1 Thinnest portion : $0.8(3.1 \mathrm{~mm})$
	Outside diameter (approx.)	mm	0.58
	Core style (rating)	mm	UL15157(80$\left.{ }^{\circ} \mathrm{C}, 30 \mathrm{~V}\right)$
Twisted pair	Outside diameter (approx.)	mm	1.16
	Pitch	mm	20 or less
Lay		-	Collect the required number of twisted pairs into a cable, then wrap binding tape around the cable. To make the cable round, apply a cable separator as required.
Lay diameter (approx.)		mm	3.5
Drain wire		Conductors /mm	Hitachi Cable: Not available Oki Electric Cable: Available,10/0.12
Shield braid	Element wire diameter	mm	0.12
	Braid density	\%	85 or more
Sheath	Color	-	Black
	Thickness	mm	1.0
	Outside diameter (approx.)	mm	6.2
Standard length		m	200
Packing method		-	Bundle
Electrical performance	Electric resistance (at $20^{\circ} \mathrm{C}$)	Ω / km	233 or less
	Insulation resistance (at $20^{\circ} \mathrm{C}$)	M , -km	10 or more
	Dielectricstrength (AC)	$\mathrm{V} / \mathrm{min}$.	300
Flame resistance		-	Shall pass flame resistance test VW-1SC of UL standards.

(b) Cable structure

Fig. B. 5 (a) Cable made by Hitachi Cable

Fig. B. 5 (b) Cable made by Oki Electric Cable

Composite 12-core cable
 (a) Specifications

Item		Unit	Specifications	
Product No.		-	A66L-0001-0286	
Manufacturer		-	Oki Cable, Ltd. Hitachi Electric Cable Co., Ltd.	
Rating		-	$80^{\circ} \mathrm{C}, 30 \mathrm{~V}$	
Material	Conductor,braid-shielded wire,drain wire	-	Strand wire of tinned annealed copper (JIS C3152)	
	Insulator	-	Heat-resistant flame-retardant vinyl	
	Sheath	-	Oilproof, heat-resistant, flame-retardant vinyl	
Number of wires (wire ons.)		Cores	6 (1 to 6)	6 (three pairs) (7 to 9)
Conductor	Size	mm ${ }^{2}$	0.5	0.18
	Structure	Conductors /mm	20/0.18	7/0.18
	Outside diameter	mm	0.94	0.54
Insulator	Standard thickness (The minimum thickness is at least 80% of the standard thickness.)	mm	0.25	0.2
	Outside diameter	mm	1.50	0.94
Twisted pair	Outside diameter	mm		1.88
	Direction of lay	-		Left
	Pitch	mm		20 or less
Lay		-	Twist the wires at an appropriate pitch so the outermost layer is right-twisted, and wrap tape around the outermost layer. Apply a cable separator as required.	
Lay diameter		mm	5.7	
Drain wire	Size	mm^{2}	0.3	
	Structure	Wires/mm	12/0.18	
	Outside diameter	mm	0.72	
Shield braid	Element wire diameter	mm	0.12	
	Thickness	mm	0.3	
	Braid density	\%	70	
	Outside diameter	mm	6.3	

NOTE

The maximum outside diameter applies to portions other than the drain wire.
(b) Cable structure

The cable structure is shown below.

(c) Specifications

	Item	Specification			
FANUC specification number		A66L-0001-0402		A66L-0001-0403	
Manufacturer		Oki Electric Cable Co., Ltd.			
		A-conductor	B-conductor	A-conductor	B-conductor
Conductor	Constitution Number of conductors/mm	$\begin{gathered} 16 / 0.12 \\ \left(0.18 \mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} 3 / 22 / 0.12 \\ \left(0.75 \mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} 16 / 0.12 \\ \left(0.18 \mathrm{~mm}^{2}\right) \end{gathered}$	$\begin{gathered} 7 / 16 / 0.12 \\ \left(1.25 \mathrm{~mm}^{2}\right) \end{gathered}$
	Typical outside diameter (mm)	0.55	1.20	0.55	1.70
Insulation (polyester)	Color	White, red, black	Red, black	White, red, black	Red, black
	Typical thickness (mm)	0.16	0.23	0.16	0.25
	Typical outside diameter (mm)	0.87	1.66	0.87	2.20
Pair twisting	Constitution	White-red, white-black, and black-red		White-red, white-black, and black-red	
	Direction of twisting	Left Typical pitch: 20 mm		Left Typical pitch: 20 mm	
Assembling by twisting	Number of strands or conductors	3	6	3	6
	Direction of twisting	Left		Left	
	Taping	Twisting is wrapped with washi, or Japanese paper, tape.		Twisting is wrapped with washi, or Japanese paper, tape.	
	Typical outside diameter (mm)	5.7		6.9	
Braided shielding	Typical strand diameter (mm)	0.14			
	Typical density (mm)	80			
	Drain	A 12/0.18 mm wire is roughly wrapped under braided shielding.			
	Typical outside diameter (mm)	6.4		7.6	
Sheath (polyurethane)	Color	Black (matted)			
	Typical thickness (mm)	1.05		1.1	
	Vertical taping	Vertically taped with washi under sheathing.			
	Outside diameter (mm)	8.5 ± 0.3		9.8 ± 0.3	
Finished assembly	Typical length (m)	100			
	Short size	Basically not approved.			

5-core coaxial cable

Item		Unit	Description
Specification		-	A66L-0001-0371
Manufacture		-	Hitachi Densen
Number of Conductors		-	5
Inside Conductor	Size	mm^{2}	0.14
	Components	Conductors(PCS)/mm	7/0.16
	Material	-	Tin-coated Soft Copper Wire
	Diamter	mm	0.48
Insulator	Material (Color)	-	Polyethylene (White) Heat-resistant $80^{\circ} \mathrm{C}$
	Thickness	mm	0.71
	Diamter	mm	1.90
Outside Conductor	Material	-	Tin-coated Soft Copper Wire (Rolled)
	Diamter of Component-Wire	mm	0.08
	Density	\%	95 or more
	Thickness	mm	0.2
Jacket	Material	-	Vinyl Heart-resistant $80^{\circ} \mathrm{C}$
	Color	-	Black, White, Red, Green, Blue
	Thickness	mm	0.15
	Diamter	mm	2.6
Twisted Assembly Diameter		mm	7.1
Thickness of Paper Tape		mm	0.05
Shield braiding	Element wire diameter (material)	mm	0.12 (tinned soft copper wire)
	Density	\%	80 or more (typ. 82\%)
	Thickness	mm	0.3
	Diameter	mm	7.8
Sheath	Material, Color	-	Oil Tight Vinyl (A) Black Heat-resistant $80^{\circ} \mathrm{C}$
	Thickness	mm	0.7 (Min. : 0.56)
Finish Diameter		mm	9.2 ± 0.3
Conductor Resistance ($20^{\circ} \mathrm{C}$)		Ω / km	143 or less
Withstand Voltage (A.C.)		-	1000VAC
Insulation Resistance ($20^{\circ} \mathrm{C}$)		M ת-km	1000 or more

Item	Unit	Description
Impedanse (10MHz)	Ω	75 ± 5
Standard Capacitance $(1 \mathrm{MHz})$	$\mathrm{nF} / \mathrm{km}$	56
Standard Attenation $(10 \mathrm{MHz})$	$\mathrm{dB} / \mathrm{km}$	53
Estimated weight	$\mathrm{kg} / \mathrm{km}$	105
Standard Length	m	200
Package form	-	Bundle

An example of circuit testing 20-pin interface cable

CONNECTION CABLE (SUPPLIED FROM US)

The following connection cables are prepared.
Cables associated with servo

Purpose	Description	Specification	Length
Servo amplifier signal cable Control unit \downarrow Servo amplifier (SVM)		A02B-0120-K800	5 m
Separated APC battery cable Control unit \downarrow APC battery case		A02B-0177-K809	5 m

Cables associated with CRT/MDI

Purpose	Description	Specification	Length
MDI signal cable Control unit (JA2) \uparrow MDI unit (CK1)		A02B-0120-K810	5 m
CRT/PDP video signal cable Control unit (JA1) \uparrow CRT/PDP unit (CN1)		A02B-0120-K819	5 m
Monochrom CRT power cable Control unit (CP1B) \uparrow CRT unit (CN2)		A02B-0120-K820	5 m

Cables associated with CRT/MDI

Purpose	Description	Specification	Length
LCD Video signal cable Control unit (JA1) \uparrow LCD unit (CN1)		A02B-0120-K818	5 m
CNC Video cable (for MMC-IV) Control unit (JA1) \uparrow Control unit (JA1B)		A02B-0161-K810	0.35m
LCD Power supply cable Control unit (CP1B) \uparrow LCD unit (CP5)		A02B-0120-K823	5 m

Others

Purpose	Description	Specification	Length
Manual pulse generator cable (for one unit) Control unit (JA3) Manual pulse generator terminal board		A02B-0120-K847	7 m
Manual pulse generator cable (for two units) Control unit (JA3) Manual pulse generator terminal board		A02B-0120-K848	7 m
Manual pulse generator cable (For 3 MGs) Control unit (JA3B) \uparrow Manual pulse generator terminal board		A02B-0120-K841	7 m
I/O Link cable Control unit (JD1A) \downarrow I/O unit (JD1B)		A02B-0120-K842	5 m
Spindle signal cable Control unit (JA7A) \uparrow Spindle amplifier (JA7B)		A03B-0807-K801 A03B-0807-K802	5 m 10 m
Control unit power supply cable Voltage regulator (24VDC) \downarrow Control unit (CP1A)		A02B-0124-K830	5 m

OPTICAL FIBER CABLE

This CNC uses optical fiber cables for the following interfaces.
(1) Serial spindle interface
(2) I/O link interface
(3) High-speed serial bus (HSSB) interface

The optical fiber cable used for interfaces (1) and (2) differs from that used for interface (3) in specification. Assume that the former cable is A, and that the latter is B.

External view of optical fiber cable

Reinforced optical fiber code diameter : 8.4 mm
Tensile strength: Optical fiber code : 25kg
Optical fiber code-connector: 2kg
Reinforcing cover : 150kg
Bending radious of optical fiber code with reinforcing cover: 50mm

Notes on the specification of optical fiber cable A

(1) Standard length of an optical fiber cable is 5, 10, and 15 meters.
(2) An optical fiber cable cannot be cut and joined at machine manufacturers side.
(3) If it needs to relay on cabling, use optical fiber adapter. Up to one relay points are allowed on a transmission line.

Handling precautions

Unlike the conventional power cables, optical fiber cables need special care in installation and handling.
(1) Even though reinforcing cover used on the optical fiber code has enough mechanical strength, be sure not to be damaged by heavy materials drop.
(2) Detaching and attaching of optical connector should always be made by touching connector. Optical fiber code should not be touched when replacement.
(3) Optical connector is automatically locked with upper side lock levels after being connected. It is impossible to pull out the connector without releasing the lock levers.
(4) Optical connector can not be connected oppositely. Be sure the connector direction when connection is done.
(5) Optical connector should be processed as follows before laying of optical fiber cable.
Fix a reinforcing cover to a wire with hook or tension member by a tape.
At laying hook the wire or pull the tension member taking enough care that optical connector dose not receive pulling strength.

(6) Reinforcing cover is fixed to cable lamp so that optical fiber cable could not weigh directly the connecting part of connector.
(7) Notice that optical connector's chip is clear.

The attached protect cap must be always put on when optical connector is not used.
Remove dirty with a clear tissue or absorbent cotton (cotton with ethylalcohol is applicable). No other organic solvent than ethyl alcohol can not be used.
(8) Protecting optical connectors and fiber cables when not in use When optical connectors and optical fiber cables are not in use, cover their mating surfaces with the lid or cap shipped together with them. If they are left uncovered, they are likely to become dirty, which will ultimately result in a poor connection.

Protecting optical connectors and fiber cables when not in use

Outline drawing of optical fiber cable B

Notes on the specification of optical fiber cable B

1 The standard length of the optical fiber cable is 5,20 , or 50 m .
2 Optical fiber cables cannot be cut or connected without special equipment, usually not available to machine tool builders.
3 Optical fiber cables cannot be used in tandem.

Optical fiber cable clamping method

When reinforcing cover is fixed at cable clamp with sponge, enough sag at optical fiber code as shown below is necessary so that connecting part of optical should not be weighed directly by optical fiber cable.

Relay using an optical fiber adapter

(2) Example of the use of an optical fiber adapter

NOTE

Up to one relay points are permitte.

Maximum transmission distance by optical fiber cable

Maximum transmission distance by optical fiber cable A is shown below: Maximum transmission distance varies depend on numbers of relay points by optical fiber adapter.

Relay points	Max. trans. distance (total)
0	200 m
1	100 m

The maximum transmission distance of optical fiber cable B is 50 m . It cannot be used in tandem with another, such as by using a connection adapter.

ATTACHING A CRT PROTECTIVE COVER

To satisfy the requirements for CE marking (machine directive), it is necessary to attach a CRT protective cover to the $9^{\prime \prime}$ monochrome CRT display unit.
The CRT display unit is already provided with a protective cover at its top and rear surfaces. So, additional covers are required on the bottom and side surfaces.

«Number»

$14^{\prime \prime}$ analog CRT/MDI unit, 284
20-pin interface connectors and cables, 381
9.5" analog TFT/MDI unit, 285
$9^{\prime \prime}$ CRT display unit interface, 72

$\ll A \gg$

Action against noise, 33
Additional target models, 382
Address assignment by ladder, 255
Adjusting the flat display, 75
Adjusting the STN monochrome LCD, 76
Adjusting the TFT color LCD, 77
Analog signal inputs, 220
Analog spindle interface, 113
Attaching a CRT protective cover, 406

$\ll B \gg$

Battery, 66
Battery for memory backup (3VDC), 66
Battery for separate absolute pulse coders (6VDC), 68
Board-mounted connectors, 382
Built-in I/O A connection (for 21/210-MB), 129
Built-in I/O card B connection (for 21/210-MB), 139
Built-in I/O card C connection (for 21/210-MB), 150
Built-in I/O card connection (for 21/210-TB), 177
Built-in I/O D connection (for 21/210-MB), 164

$<C \gg$

Cable clamp and shield processing, 44
Cable connectors, 383
Cable for power supply to control unit, 65
Cable lead-in diagram, 48
Cable length when only one manual pulse generator is used, 109
Centronics parallel port, 318
Configuration, 1
Connecting a display unit, 281
Connecting a display unit (power supply), 284
Connecting a full keyboard or mouse, 293
Connecting a portable-type $3.5^{\prime \prime}$ floppy disk unit, 288
Connecting DI/DO for example connecting DI, 179
Connecting DI/DO points for the machine, 134, 155
Connecting I/O devices, 93
Connecting machine interface I/O, 126

Connecting one display unit to two control units, 260
Connecting peripheral units to the MMC-IV, 279
Connecting the display unit (video signal), 283
Connecting the FANUC servo unit β series with I/O Link, 253
Connecting the manual pulse generator, 106
Connecting the signal ground (SG) of the control unit, 36
Connecting two display units to one control unit, 266
Connection, 201, 250, 254, 307
Connection cable (supplied from US), 396
Connection diagram, 261, 268, 298
Connection of battery for separate type absolute detector, 119
Connection of DI, 141
Connection of DI/DO for operation panel, 131, 152
Connection of DO, 146
Connection of FANUC I/O Link by electric cable, 203
Connection of FANUC I/O Link optical fiber cable, 204
Connection of machine operator's panel interface unit, 207
Connection of MDI unit, 78
Connection of operator's panel connection unit, 229
Connection of Series 0 operator's panel, 193
Connection of source output type connection unit, 236
Connection the MDI unit, 78
Connection to centronics parallel port, 291
Connection to CNC peripherals, 69
Connection to display unit, 71
Connection to FANUC I/O Link, 199
Connection to manual pulse generators, 108
Connection to RS-232C serial port, 286
Connection to the display unit, 70
Connection to the standard MDI unit, 80
Connections, 267
Connector (on the cable side) specifications, 223
Connector layout diagram, 50, 313
Connector layout for operator's panel connection unit, 233
Connector pin arrangement, 130, 140, 151, 165, 178
Connector pin layout for source output type connection unit, 242
Control unit, 47
Cooling by heat exchanger, 23
Cooling fin A/B/C, 25
CRT display unit interface, 73

$<D \gg$

Design and installation conditions of the machine tool magnetic cabinet, 21

DI signals and receivers, 128
Dimensions of source output type connection unit, 245
Display unit change-over switch, 258
DO signals and drivers, 128

$<E \gg$

Emergency stop signal, 256
Environment for installation, 18
Environmental requirements of control unit built-in MMC-IV (for Series 210), 19
Environmental requirements outside the cabinet, 18
Example of DI connection, 166
Example of DO connection, 170
External dimensions of each unit, 329
External power supply for output signals, 162, 175
External view of operator's panel connection unit, 235

$\ll F$

FANUC Handy File connection, 105
FANUC I/O Link connection unit, 246
FANUC intelligent terminal, 304
Floppy disk drive (signal and power), 315
Fuse mounting position, 228

\ll »

General of hardware, 7
Ground, 35

$\ll H \gg$

Handling precautions, 302, 325
Heat loss of each unit, 24
High-speed serial bus (HSSB), 295, 316

$\ll \gg$

I/O board (video signal output board in NC) interface, 282
I/O Link interface, 250
I/O signal requirements and external power supply for DO, 189
Input signal regulations for operator's panel connection unit, 230
Input signal requirements, 162
Input signal specifications for source output type connection unit, 237
Installation, 17, 29
Installation environment, 300, 309
Installation method, 323
Installation of the control unit, 47
Installation requirements of CNC and servo unit, 18
Installation space, 311
Installing the heat exchanger, 25
Interface to the servo amplifier, 116

ISA expansion boards, 323

$\ll>$

Jumper pins, 266

$\ll L \gg$

LED addresses, 217
$\ll M \gg$
Machine operator's panel interface unit dimension diagram (including connector locations), 225
Machine operator's panel interface unit mounting dimension diagram, 226
Main power input, 314
Major connection precautions, 223
Matrix DO, 217
Maximum number of units that can be connected, 255

$\ll N \gg$

Noise suppressor, 43
Notes on DO connection, 161, 174

$\ll O>$

Optical fiber cable, 400
Ordering information, 260, 266
OT release, 221
Output signal driver, 162, 175
Output signal driver ratings, 162
Output signal regulations for operator's panel connection unit, 232

Output signal specifications for source output type connection unit, 238

Overall connection diagram, 308

$$
\ll P \gg
$$

Peripheral devices and their connections, 313
Personal computer specification, 299
PMC addresses, 222
Position coder interface, 114
Power ON/OFF control signal, 221
Power supply, 20
Power supply connection, 60
Power supply for CNC control units, 20
Power supply for the control unit, 62
Power supply specifications, 310

Procedure for installing personal computer interface boards,
301
Procedure for turning off the power, 64
Procedure for turning on the power, 64
$<\boldsymbol{R} \gg$

Recommended cables, 303
Recommended connectors, applicable housings, and cables, 385

Remote buffer interface, 272
Remote buffer interface (RS-232-C), 275
Remote buffer interface (RS-422), 277
Requirements for the manual pulse generator interface, 110
Requirements imposed on I/O signals and driver, 175
Requirements imposed on input/output signals and the external power supply for output signals, 162
RS-232-C interface specification, 96
RS-232-C serial port, 95

$\ll S \gg$

Separate type detector interface, 118
Separating signal lines, 33
Serial port 1, 320
Serial port 2, 319
Serial spindle interface, 112
Servo interface, 115
Signal assignment, 210
Signal requirements, 175

Soft keys, 322
Specification, 247, 309
Spindle connection, 111
State of the LEDs on the machine operator's panel interface unit, 223

System configuration, 209

$\ll T \gg$

Temperature rise within the cabinet, 23
The heat pipe type heat exchanger, 29
Thermal design of the cabinet, 23
Total connection diagram, 9
Turning on and off the power to the control unit, 62
Typewriter-style keyboard, 317

$$
\ll U \gg
$$

Units that can be connected using FANUC I/O Link, 206

$$
\ll \geqslant
$$

Varied LCD units interface, 74
Varied MDI key switch, 81

$$
\ll W \gg
$$

When an ISA expansion is installed, 312
When no ISA expansion is installed, 311

- No part of this manual may be reproduced in any form.
- All specifications and designs are subject to change without notice.

